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Abstract—Vitamin-V is a project funded under the Horizon
Europe program for the period 2023-2025. The project aims
to create a complete open-source software stack for RISC-
V that can be used for cloud services. This software stack
is intended to have the same level of performance as the
x86 architecture, which is currently dominant in the cloud
computing industry. In addition, the project aims to create a
powerful virtual execution environment that can be used for
software development, validation, verification, and testing. The
virtual environment will consider the relevant RISC-V ISA
extensions required for cloud deployment. Commercial cloud
systems use hardware features currently unavailable in RISC-
V virtual environments, including virtualization, cryptography,
and vectorization. To address this, Vitamin-V will support these
features in three virtual environments: QEMU, gem5, and cloud-
FPGA prototype platforms. The project will focus on providing
support for EPI-based RISC-V designs for both the main CPUs
and cloud-important accelerators, such as memory compression.
The project will add the compiler (LLVM-based) and toolchain
support for the ISA extensions. Moreover, Vitamin-V will develop
novel approaches for validating, verifying, and testing software
trustworthiness. This paper focuses on the plans and visions that
the Vitamin-V project has to support validation, verification,
and testing for cloud applications, particularly emphasizing the
hardware support that will be provided.

Index Terms—RISC-V, Validation, Verification, Testing, Cloud
computing, Simulation

I. INTRODUCTION

RISC-V is a revolutionary open-source instruction set ar-
chitecture (ISA) designed to offer simplicity, modularity, and
extensibility [1]. This exciting development brings many ben-
efits over proprietary processor architectures, including the
potential for customization and lower licensing costs [2].

Despite these advantages and the fact that RISC-V ap-
plications have started to see their birth in the embedded
domain [3], several challenges still need to be addressed before

Funded by the European Union. Views and opinions expressed are, however,
those of the authors only and do not necessarily reflect those of the European
Union or the HaDEA. Neither the European Union nor the granting authority
can be held responsible for them. Project number: 101093062

RISC-V can be widely adopted for cloud applications. One
key obstacle is the maturity of the RISC-V ecosystem. The
platform has gained significant momentum in recent years,
but the ecosystem surrounding RISC-V processors is still
developing. This includes hardware and software tools and
the number of vendors and support services available [4]. As
the ecosystem continues to mature, it is expected that this will
become less of a concern.

Another potential challenge is performance. Although
RISC-V processors can offer good performance, they may not
yet be able to match the performance of more established ar-
chitectures, such as x86 or ARM, in specific applications. This
could limit the adoption of RISC-V in performance-sensitive
cloud applications. As technology continues to evolve, this
may become less of a barrier.

Compatibility is another potential challenge to widespread
RISC-V adoption. Many cloud applications are designed to
run on x86 or ARM architectures and may not be compatible
with RISC-V processors. This could limit the use of RISC-V in
specific cloud environments. Efforts are underway to address
this issue by developing emulation and virtualization solutions.

Security is also a concern. As RISC-V processors become
more widely adopted, there is an increasing potential for
security attacks. Ensuring the security of RISC-V-based cloud
applications will be an important challenge that needs to be
addressed as technology develops.

Eventually, standardization is another area that needs to be
addressed. While RISC-V is an open standard, there is still
a need for further standardization in areas such as memory
management and I/O interfaces. This can lead to compatibility
issues between different RISC-V implementations and limit
the portability of RISC-V-based cloud applications. Efforts are
underway to address this issue by developing standardization
solutions that can promote interoperability.

Vitamin-V is a research project funded by the European
Commission in the 2023-2025 time frame to propose innova-
tive solutions that aim to address these challenges. Vitamin-
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V will deploy a complete RISC-V hardware-software stack
for cloud services based on cutting-edge cloud open-source
technologies for RISC-V cores, with a focus on EPI cores.
Vitamin-V is designed to offer an innovative RISC-V virtual
execution environment, which provides hardware emulation,
simulation, and FPGA prototyping to enable software devel-
opment, verification, and validation before actual hardware
is released. Additionally, Vitamin-V contributes to porting
the complete cross-compiling toolchain, software stack, and
essential application libraries for the forthcoming release of
the RISC-V EPI processors [5]. This solution is expected to
play a critical role in promoting the adoption of RISC-V for
cloud applications [6].

In particular, Validation, Verification, and Testing (VVT)
activities are among the most critical activities during software
development and deployment, with potential risks in terms of
the safety and security of cloud applications. After providing a
general overview of the Vitamin-V activities, this paper wants
to focus on plans and visions that the Vitamin-V project has
to support VVT activities for cloud applications, concentrating
on the support that the hardware itself can provide to these
activities.

The paper is organized as follows: Section II overviews the
Vitamin-V project organization, while Section III provides a
deeper overview of the project’s implementation plans VVT
techniques for RISC-V cloud applications. Finally, Section IV
summarizes the main contributions of the paper.

II. CONCEPT AND METHODOLOGIES

The objective of Vitamin-V is to create a complete RISC-
V cloud software stack that can compete with the dominant
x86 counterpart in terms of performance, as shown in Figure
1. However, the lack of full-fledged RISC-V systems presents
a significant challenge for porting and evaluating advanced
cloud setups and software stacks. Commercial cloud systems
use hardware features partially available in RISC-V virtual
environments and commercial hardware cores. These features
include virtualization, cryptography, and vector extensions.
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Fig. 1. VITAMIN-V concept and architecture

To address this challenge, Vitamin-V aims to develop the
Vitamin RISC-V virtual execution environment (VRISC-V),
which is a multi-layered high-performance RISC-V virtual en-
vironment based on three cutting-edge technologies: functional
emulation (QEMU [7]), cycle-accurate simulation (gem5) [8],
and an FPGA-based hardware prototype system node capable
of running on AWS EC2 F1 FPGAs (and thus scalable to
100s of nodes) (FPGA [9]). These technologies provide unique
features essential for software development, validation, veri-
fication, and testing, making it easier for software developers
to adopt RISC-V. With QEMU and the RISC-V on FPGA,
the project aims at simulating multi-node systems with more
than 100 cores. The goal is to simulate multi-node systems
in gem5 with cycle-accurate accuracy and microarchitectural
configuration flexibility [10].

Vitamin-V will support accelerators, such as memory com-
pression, in the VRISC-V virtual execution environment and
provide a mature compiler toolchain based on LLVM [11]
to handle the complete RISC-V ISA, including its extensions.
Additionally, the project will develop a validation, verification,
and testing (VVT) toolset to identify software bugs and
malicious code sequences to ensure the trustworthiness of the
software layers in future RISC-V systems. The VVT tools
will use the VRISC-V platform to facilitate software porting
and prototyping before mature hardware is available. This will
promote the migration towards new RISC-V servers in the
cloud.

To enable the execution of complete cloud stacks on the
VRISC-V virtual execution environment, Vitamin-V will port
all necessary machine-dependent modules in relevant open-
source cloud software distributions. These modules include
support for running entire Virtual Machines (VMs), containers,
and lightweight VMs (KVM, QEMU, Docker, RustVMM),
safety-security trusted execution environments (VOSySMon-
itoRV [12]), cloud management software (OpenStack, Ku-
bernetes, Kata Containers), and AI and Big Data libraries
(Tensorflow, Spark).

The project will address classic cloud stacks that target
the execution of entire VMs managed by OpenStack, modern
cloud setups that target entire VMs and containers managed
by Kubernetes, and serverless cloud stacks that target the
execution of lightweight VMs managed by Kubernetes with
Kata Containers. Vitamin-V will benchmark the three working
cloud setups against relevant AI applications (i.e., Google Net,
ResNet, VGG19), Big-Data applications (TPC-DS on top of
Apache Spark), and Serverless applications (FunctionBench,
ServerlessBench). The goal is to match the software perfor-
mance of its x86 equivalent, using CPU core mark scores for
a fair assessment. Overall, this development will establish a
RISC-V cloud-stack ecosystem for market adoption.

III. VALIDATION, VERIFICATION, AND TESTING FOR
RISC-V CLOUD SERVICES

In the age of cloud services, it is often difficult to trans-
fer software workloads between different computing plat-
forms without sacrificing performance and trustworthiness



[13]. Several factors can contribute to decreased performance
when moving from one architecture to another, including
poor software implementation, inefficient data structures, and
limited use of caching. Additionally, the software can be
compromised by bugs or malicious code at any point in its
lifespan. As a result, to optimize and ensure the trustworthiness
of an application, it is essential to monitor its execution,
identify performance bottlenecks, and customize the software
to fit the underlying hardware. However, this task cannot
be accomplished using simple performance metrics such as
execution time or clock cycles. Multiple factors come into
play when mapping software to a modern computing sys-
tem, including in- vs. out-of-order execution engines, pipeline
stages, execution ports and corresponding latencies, re-order
buffers, load/store queues, and cache organization. As a result,
capturing and analyzing detailed performance metrics is be-
coming increasingly necessary to enable in-depth architecture
modeling and optimization procedures [14].

This section explains how the Vitamin-V project intends
to utilize the RISC-V Hardware Performance Monitor (HPM)
unit to implement advanced Validation, Verification, and Test-
ing for RISC-V cloud services.

A. Hardware Performance Monitoring

Like other modern processors, RISC-V processors come
with hardware performance monitoring units to keep track
of processor performance. These units have become neces-
sary due to the increased complexity of processors in recent
decades, which has resulted in the need for hierarchical cache
subsystems, non-uniform memory, simultaneous multithread-
ing, and out-of-order execution. Software that can understand
and adjust to resource utilization has benefits for performance
and efficiency.

The RISC-V ISA has a simpler HPM unit than x86, but
it defines a flexible and open-source performance monitoring
solution that can be implemented in various ways. Vitamin-
V plans to support the latest RISC-V HPM specifications,
starting with hardware simulation in VRISC-V and integrating
it into the operating system using open-source libraries like
Linux perf [15] and PAPI [16]. The implemented HPM will
have hardware registers and counters for microarchitectural
events that software can access and hardware assertions from
gem5 useful for debugging [17]. Vitamin-V aims to build
at least essential counter events during early development,
using existing RISC-V cores like Semidynamics’ Atrevido
Core [18].

The hardware performance monitoring units track various
events related to the processor’s architecture and micro-
architecture, such as retired instructions, branch predictions,
cache hits and misses, floating-point operations, hardware
interrupts, elapsed core clock ticks, and core frequency. These
events generate several parameters, but the processors have
only a few registers to store them, so only a few hardware
performance counters are available at any given time. The
design complexity and cost of concurrent monitoring of events
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Fig. 2. Methodology used to create the Deep Learning model used in
VITAMIN-V.

limit the number of available hardware performance counters
[19]–[21].

Performance monitoring instructions allow developers to
access the counters by reading or writing their values. Vitamin-
V will investigate VRISC-V’s hardware monitor extensions to
address the need for software validation, verification, and test-
ing in cloud environments. The project plans to use hardware
monitoring to assess the trustworthiness of software deployed
on RISC-V. Vitamin-V will implement various monitoring
events to support software validation, verification, and testing
for future implementation in RISC-V cores, using the state-
of-the-art gem5 simulator [8].

B. VVT through Static Analysis

It is crucial to evaluate the trustworthiness of software at
an early stage before it is executed. Vitamin-V is planning
to implement a machine learning (ML) tool to analyze the
static content of executable files to determine whether they are
benign or malicious. Previous work on using static analysis of
executable files to detect software bugs and security threats
[22], [23] has inspired Vitamin-V’s decision to incorporate
deep learning (DL) techniques to identify complex patterns
from a vast amount of labeled data. However, there are
situations where the dataset may not be sufficient or a zero-
day attack detection is required. In such cases, a transfer
learning (TL) technique can be implemented to enhance the
accuracy of the detection process. Transfer learning involves
reusing a pre-trained model for a different task [24].

The proposed methodology is based on a similar approach
to the one used by Haddadpajouh et al. [23] and consists of
four main steps as illustrated in Figure 2: dataset creation,
feature extraction, model training, and model deployment and
tuning.

The first step in training any neural network model is to have
a balanced collection of benign and malicious codes. Vitamin-
V focuses on detecting various types of malicious codes,
including hardware attacks like spectre [25], meltdown [26],
viruses, and other malware. To achieve this, Vitamin-V will
gather different source codes from popular public repositories
such as VirusTotal [27], VirusShare [28], or SourceFinder
[29]. However, since there is currently a lack of source code



repositories for RISC-V malicious codes, the plan is to use
the AMD64 version of the collected malware and recompile
them for the target platform. This approach is suitable for the
current situation, while new malicious codes for the RISC-
V architecture can be added to the dataset when they become
available. Vitamin-V plans to download a selection of common
Linux application packages from the Debian repository, which
already has RISC-V versions, for the benign codes. A balanced
selection of both sets of codes will be built.

Each program must be represented as a feature vector to
classify executables. Vitamin-V uses Linux as its operating
system; therefore, the binary files use the Executable and Link-
ing Format (ELF). These ELF binaries can be disassembled
using default Linux tools to a textual format and extract their
sequence of instructions (the operation codes or OpCodes).
This sequence of instructions can be analyzed to obtain the
frequency of different OpCodes sequences (the n-grams) and
then calculate the feature vector for each sequence, which will
help train the neural network.

The categorized feature vectors can be fed to the DL
network and train it to generate a model capable of detecting
benign or malicious codes. However, due to the previously
mentioned lack of malicious codes in RISC-V, the resulting
model will -initially- only be able to detect malicious code
coming from AMD64 platforms.

To overcome this limitation, Vitamin-V plans to use transfer
learning techniques to transfer this knowledge to a new neural
network that will detect malicious code and zero-day attacks
on RISC-V binaries. To fine-tune the model, new data will be
collected, such as hardware performance counters, to adjust
the parameters of the pre-trained model and improve its
performance in detecting malware attacks. After an evaluation
period to ensure the proper performance of the detection
mechanism, the proposed model will be deployed. Additional
data collection and fine-tuning steps may be required to keep
the model accurate and effective over time.

C. Dynamic Analysis using Hardware Performance Counters

Although an application may be deemed trustworthy
through static verification, corruption can still occur during
runtime, necessitating dynamic monitoring. Such corruption
can result from environmental conditions, electromagnetic
fields, space radiation, aging, design flaws, manufacturing
imperfections, and intentional attacks, which can generate
abnormal behavior in processors, compromising the safety, re-
liability, and security of modern computing systems. Anomaly
detection involves identifying patterns in data that deviate
from expected behavior [30]. Vitamin-V intends to exploit
the RISC-V HPM unit for this purpose, as demonstrated by
the proof of concept reported in Figure 3, where the use of
hardware counters distinguishes between benign and malicious
applications. The figure shows a box plot of the frequency of
a specific ratio, L3 misses per L1 misses, clearly identifying
three malicious codes (MeltDown, Spectre, and ZombieLoad)
in contrast to three benign applications (two applications from

the MiBench benchmark and a YouTube video visualization
in a Firefox browser).

Fig. 3. Using hardware counters to detect benign and malicious code.

Anomaly detection through hardware and artificial in-
telligence (AI) involves the dynamic analysis of micro-
architectural events in a processor by machine learning (ML)
algorithms, which distinguish between normal and anomalous
behavior. This approach was first introduced in the hardware-
based malware detector proposed by Demme et al. in 2013
[31] and exploited for soft error detection in [32], [33].

The intuition behind detecting anomalies based on hard-
ware performance counters (HPCs) stems from the fact that
programs exhibit phase behavior [34], [35]. Programs perform
activities in distinct phases, which can correspond to patterns
in architectural and micro-architectural events, thus enabling
the detection of anomalies based on time-behavioral patterns
of the HPCs.

The Vitamin-V hardware and AI-based anomaly detector
framework is presented in Figure 4, with its primary goal of
differentiating between normal execution and anomalous ex-
ecution. The framework comprises three fundamental blocks:
(i) the RISC-V based processor with its HPCs, (ii) the data
collection process, and (iii) the anomaly detection itself,
performed by an ML classifier. The detector’s performance
and efficiency are evaluated to determine its effectiveness.

Fig. 4. The hardware and AI-based anomaly detector framework. Elaborated
by the author.



Adding hardware performance counters presents challenges
due to the design complexity and cost of monitoring events
under speculative execution. Mobile and Internet of Things
devices have even stricter resource constraints, making adding
more hardware performance counters challenging. The trade-
off between the number of hardware events and detection
accuracy is important to consider. To achieve reasonable
accuracy, some works analyze more events than the number
of available hardware performance counters, requiring running
the application multiple times [31], [36], [37]. This limits the
run-time applicability of hardware-based anomaly detection. A
careful design of the machine learning classifier is needed to
compensate for the reduced characterization due to the fewer
events analyzed.

The process of collecting data involves selecting events,
extracting features, and reducing them [38]. In the hardware
and AI-based anomaly detection context, selecting events
consists of choosing from several hardware events available
in the processor for use in the anomaly detector. Feature
extraction is the process of capturing and storing the registered
hardware performance counters (HPCs) in a vector space
for analysis by the machine learning (ML) model. Feature
reduction, also known as dimensionality reduction, is a form of
data processing that deals with redundant dimensions in high-
dimensional space. Redundant dimensions contribute to the
measurement of noise in the training dataset, which reduces
the detection rates of testing.

The selection of events and feature reduction aims to select
the most relevant/predictive data for anomaly detection. Since
only a few hundred hardware events are available in the
processors, it is possible to perform manual event selection
through empirical knowledge of each event’s representation
in the architecture and micro-architecture or based on other
studies. However, in some cases, researchers may need this
information and start collecting all the hardware events avail-
able in the processor, generating big data. In such cases,
manual analysis is impossible, and some feature selection
techniques must be used. Some commonly used methods
include Principal Component Analysis (PCA), Fisher Score
[39], Pearson Correlation Coefficient [40] based-techniques,
and Information Gain (also called Mutual Information) [41].

A key characteristic of feature extraction is the sampling
period of the HPC. There is no set rule for this value. Still, in
hardware-based detection experiments, they generally remain
in the order of milliseconds or seconds or even as multiples
of processor cycles or instruction epochs.

The third fundamental block in the framework is anomaly
detection itself, performed by ML classifiers. After training
with input data, these classifiers can automatically categorize
data into one or more classes (since the training and tested
data have similar statistical distributions). Classifiers may
differ in terms of the labels available (multi-class and one-
class), the way they learn (supervised, unsupervised, and
semi-supervised), the mathematical formula/algorithms they
implement (Neural Networks-Based, Linear Models-Based,
Decision Trees-based, Rule-Based, etc.), and the arrangement

of classifiers (multiple stages). As each classifier configuration
delivers different results across various metrics (including
performance, efficiency, and hardware design overhead), de-
signing an ML classifier is critical.

Multi-class classification-based anomaly detection assumes
that the data includes instances labeled as belonging to multi-
ple normal classes during training. When a new instance is
tested, it is considered anomalous if it is not classified as
normal by any of the trained classifiers. On the other hand,
one-class classification-based anomaly detection techniques
assume that all the training instances have only one class label,
and any new instance that falls outside of the learned boundary
is declared anomalous [30].

Supervised learning refers to classifiers trained using la-
beled examples, while unsupervised learning uses unlabeled
examples. Semi-supervised learning combines labeled and
unlabeled examples in the dataset [42]. However, obtaining
labeled data can be expensive, especially when considering
abnormal behaviors, which are often dynamic and challenging
to label accurately. Therefore, unsupervised learning classifiers
are more commonly used for anomaly detection [30].

Eventually, to improve the accuracy of the classifiers, more
complex algorithms such as Ensemble Learning techniques
are used [43]. Ensemble Learning is a branch of machine
learning that combines the results of multiple base learners to
improve decision accuracy. Examples of Ensemble Learning
algorithms include Boosting (AdaBoost implementation [44])
and Bagging (Bootstrap Aggregation [45]). Multiple-stage
classifiers can also be used to improve the accuracy of anomaly
detection [46].

IV. CONCLUSIONS

This paper provided an overview of Vitamin-V, a project
funded under the Horizon Europe program from 2023 to
2025. The project aims to create a complete open-source
virtualization software stack for RISC-V that can be used for
cloud services. Among the different activities, one of the main
goals of the project is to create a robust virtual execution envi-
ronment that can be used for software development, validation,
verification, and testing thus increasing the trustworthiness of
RISC-V cloud applications. Interested readers may follow the
project’s latest achievements at https://www.vitamin-v.eu.

REFERENCES

[1] A. Waterman, Y. Lee et al., “The RISC-V instruction set manual volume
ii: Privileged architecture version 1.9,” EECS Department, University of
California, Berkeley, Tech. Rep., 2016.

[2] S. Greengard, “Will RISC-V revolutionize computing?” Communica-
tions of the ACM, vol. 63, no. 5, pp. 30–32, 2020.

[3] A. Dörflinger, M. Albers et al., “A comparative survey of open-
source application-class RISC-V processor implementations,” in
Proceedings of the 18th ACM International Conference on Computing
Frontiers, ser. CF ’21. New York, NY, USA: Association for
Computing Machinery, 2021, pp. 12–20. [Online]. Available: https:
//doi.org/10.1145/3457388.3458657

[4] B. W. Mezger, D. A. Santos et al., “A survey of the RISC-V architecture
software support,” IEEE Access, vol. 10, pp. 51 394–51 411, 2022.

[5] The European Commission. European Processor Initiative. https://www.
european-processor-initiative.eu/. Accessed: 2023-03-17.

https://www.vitamin-v.eu
https://doi.org/10.1145/3457388.3458657
https://doi.org/10.1145/3457388.3458657
https://www.european-processor-initiative.eu/
https://www.european-processor-initiative.eu/
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