
A Compression-Driven Test Access Mechanism Design Approach∗

Paul Theo Gonciari and Bashir M Al-Hashimi
School of ECS, University of Southampton

United Kingdom
{ptg,bmah}@ecs.soton.ac.uk

Abstract
Driven by the industrial need for low-cost test method-

ologies, the academic community and the industry alike
have put forth a number of efficient test data compres-
sion (TDC) methods. In addition, the need for core-based
System-on-a-Chip (SoC) test led to considerable research
in test access mechanism (TAM) design. While most previ-
ous work has considered TAM design and TDC indepen-
dently, this work analyzes the interrelations between the
two, outlining that a minimum test time solution obtained
using TAM design will not necessarily correspond to a min-
imum test time solution when compression is applied. This
is due to the dependency of some TDC methods on test bus
width and care bit density, both of which are related to test
time, and hence to TAM design. Therefore, this paper illus-
trates the importance of considering the characteristics of
the compression method when performing TAM design, and
it also shows how an existing TAM design method can be
enhanced toward a compression-driven solution.

1. Introduction
In recent years the semiconductor industry has seen a sig-

nificant increase in manufacturing test cost [13] due to high
volume of test data [17], large test application times [3], in-
sufficient channel capacity [19] and high cost of automatic
test equipment (ATE) [13]. To alleviate the cost problem
numerous approaches, mainly targeting test data compres-
sion, have been proposed. The main thrust behind test data
compression (TDC) is that reducing the amount of test data
and test time required to test a chip will reduce the load
on the tester and hence reduce cost. This has been accom-
plished by compressing the test data using a compression
algorithm, and introducing a decoder or a decompresser on-
chip, which will expand the compressed test data into the
initial test data. TDC has been approached from a number of
research directions. For example, methods which(i) exploit
the sparseness of care bits in the test set have been proposed
in [2, 6, 17], and methods which(ii) exploit the regularities
within the test set have been proposed in [5, 12, 18, 21].

In addition to the high cost of test, high integration facili-

∗This research is supported by EPSRC (UK) grant GR/S41135.

tates the manufacturing of entire systems-on-a-chip (SoC); a
paradigm which brings forth new issues in testing [24], such
as limited knowledge of the cores and restricted access to
the cores. To cope with these restrictions test infrastructures
have been developed to ensure proper test of the embedded
cores. The advocated SoC test infrastructure is based on
a core wrapper (e.g., TestShell [7], IEEE P1500 [23]) – to
provide the environment required to test a core and its sur-
roundings – and a test access mechanism (TAM) (e.g., test
bus, TestRail [7]) – to transport stimuli to/from the embed-
ded core to the test inputs/outputs of the SoC. Understand-
ing and providing solutions for SoC test led to considerable
research into core wrapper and TAM design. These prob-
lems have been tackled for different constraints (e.g., test
time, test bus width, power dissipation, hierarchical infor-
mation, control overhead, routing and layout) using various
heuristics [8, 15, 20, 22].

This paper presents a test solution in which TAM design
and TDC are combined into a unified problem formulation
under core based SoC constraints – i.e., the system integra-
tor has only the mandatory test information specified with a
core as required by P1500 [23], being able to perform core
wrapper design and has the test set delivered with the core.
Also, he/she may be restrained from performing fault simu-
lation due to IP protection of hard cores. We focus on TDC
methods which exploit the spareness of care bits. Firstly,
we analyze possible interactions between TDC and TAM in
Section 2; and motivate the need for the TDC-TAM inte-
gration in the case of test bus widthsensitivecompression
methods in Section 3. To facilitate this integration, in Sec-
tion 4 a test time estimation function for the compression
method considered in this paper is given; and we extend
an existing TAM design method to incorporate the TDC
method characteristics, in Section 5. Section 6 provides ex-
perimental results, and Section 7 concludes the paper.

2. Analysis of TDC-TAM interaction
In this section we provide an analysis of previous work

which focuses on integrated TDC–TAM test solutions [5,
9, 10, 16], considering a control and area-overhead perspec-
tive. Previous work analysis for TDC and TAM design are
detailed in [12, 17] and [8], respectively.

decoder
decoder

decoder

external TAM internal TAM
di

st
ri

bu
tio

n
m

ec
ha

ni
sm

SoC

C3

C1

2C

(a)Core level–TDC scenario

decoder

decoder

decoder

1

TAM2

TAM3

external TAM

TAM

internal TAM

di
st

ri
bu

tio
n

m
ec

ha
ni

sm

SoC

2C3

3C3

3C1

3C1

C1
2

2
1C

C1
1

(b) TAM level–TDC scenario

C1
C2

C3 C4

internal TAMexternal TAM

SoC

de
co

de
r

(c) TAM add-on–TDC scenario
Figure 1. Possible TDC–SoC test scenarios

In addition to the area penalty involved with TDC, in-
serting TDC in a design also requires an increase in control
overhead. Also, in TDC the number of test bus lines driv-
ing the on-chip decoder, and the number of decoder’s out-
puts driving the core under test may be unequal. Therefore,
when considering integrated TDC–SoC test, the question is:
”Where will TDC interact with the existing SoC test infras-
tructure ?”. We distinguish three scenarios as illustrated in
Figure 1: (a) core level–TDC scenario (Figure 1(a));(b)
TAM level–TDC scenario (Figure 1(b)); and(c) TAM add-
on–TDC scenario (Figure 1(c)).

Common to the three scenarios, in Figure 1, is that the
TAM, which feeds the system is not necessarily the TAM
which feeds the on-chip decoders (see Figures 1(a) and 1(b))
or the cores (see Figure 1(c)). In the figures we denote the
TAM which feeds the SoC as theexternal TAM, and the
TAM which feeds the internal cores, or the decoders, as the
internal TAM. Corresponding to the external TAM we in-
troduce theexternal test time (timeext) and theexternal test
data (dataext), i.e., the time required to test the SoC and
the corresponding amount of test data; and with respect to
the internal TAM we introduceinternal test time (timeint)
andinternal test data (dataint), i.e., the amount of test time
and test data without TDC. The difference between the two
types of TAM will become more apparent in the following
paragraphs where we detail the three scenarios.

Core level–TDC In the first scenario(a), the system in-
tegrator chooses to provide for each core its own decoder,
decoders which are then connected to a distribution mech-
anism. This mechanism can be an interleaving architecture
as illustrated in [5], a distributed architecture as proposed
in [10], or a time multiplexing scheme [16]. In all the
cases [5, 10, 16] the distribution mechanism has the exter-
nal TAM of width much smaller than the internal TAM; for
example 1 :n (for n cores) in [5, 10]. However, since each
core is provided with a decoder, for a large number of cores
the area and control overhead is considerable.

TAM level–TDC In the second scenario(b), the system
integrator chooses to provide a group of cores with one de-
coder. Similar to scenario(a) the decoders are then con-
nected to a distribution mechanism. In this case however,
the distribution mechanism can be a simple buffer [16],
when the internal TAM and the external TAM are the same,

or a time multiplexing scheme [9]. As noted in [16] the
decoder and control overhead of this scheme is reduced in
comparison with scenario(a), at the expense of increased
test time. While avoided in the figure for clarity the number
of decoder’s outputs which drive the groups of cores may
not be equal among all groups.

TAM add-on–TDC In the third scenario(c), the system
integrator chooses to perform a TAM design for the entire
system, and then provideonedecoder for decompression.
This scenario has been analyzed in [9] where the extended
distribution architecture has been introduced. The scheme
presented in [9] has the advantage of reduced control over
(a) and(b), at the expense of small test time penalties.

The approaches analyzed above [5, 9, 10, 16] use TDC
methods which are either single-scan chain based [5, 10, 16]
or are not sensitive to the test bus width [9]. Therefore, these
compression methods can be added on-top of existing TAM
design solutions without any changes to the design flow, and
with small performance degradation, in terms of test time
and test data, of the compression method. This has been
illustrated in [9] and [11] where the test data and test time
attained after compression appeared to be invariant to bus
width changes. In this paper, however, we address the prob-
lem of integrating in TAM design a TDC method which is
sensitiveto the test bus width. Hence, performing compres-
sion on-top of an existing TAM solution may lead to ineffi-
cient test bus usage and considerable performance degrada-
tion with respect to test time. This aspect is analyzed in this
paper for scenario(c).

3. Preliminaries and motivation
As noted in Section 1, the core based SoC paradigm may

prohibit the usage of fault simulation during test prepara-
tion. Therefore, the system integrator is restrained from us-
ing TDC methods which may require automated test pattern
generation (ATPG) integration. For these reasons, in [11]
theXOR−Networkapproach from [2] has been tailored for
core based SoC test. In the remainder of this paper we will
use theXOR−Networkmethod as introduced in [11], and,
in order to avoid confusion, we will refer to this particular
implementation asXNet. It should be noted that while we
illustrate the TDC-TAM integration problem forXNet, the
mechanism described in this paper is generally applicable
to similar types of compression methods.

1

3

4

2

data

load

ATE

2

N
et

w
or

k
X

O
R

 (4
x4

)

SR

Core

M
IS

R

ATE

WSC

WSC

WSC

WSC

Figure 2. XNetbased on the architecture from [2]

XNet architecture is illustrated in Figure 2 for a core with
4 wrapper scan chains (WSCs). For a given test cube, the
main idea behind the method is to stream data into the shift
register (SR), which will then justify through the XOR net-
work the care bits into the WSCs. However, if the number
of care bits is too high, the architecture may run into tempo-
ral pattern lockout (i.e., the inability to justify the care bits
at a given moment), and to account for this case a control
signal to halt the WSC load temporarily is added. There-
fore, the architecture requires two ATE channels: one to
feed data and one to control the load. And hence, the num-
ber of bits representing test data will be double the number
of clock cycles representing test time. Further details about
the implementation of this approach can be found in [11].
Throughout the paper we denoteXNet(w) the case when
XNet is applied to a test bus width ofw.

The fact thatXNet is sensitive tow has been pointed out
in [11], where it has been shown that, for the same test set,
the number of temporal pattern lockouts increases with the
increase inw. The following example illustrates the impli-
cations of this fact in TAM design.

Example 1 Consider in Figure 3(a) a SoC composed of
2 cores, from the ISCAS89 benchmark suite [4], assigned
to a test bus of width 16. The test sets used for the
two cores have the following parameters (test data size
in bits, and test time in ATE clock cycles):datas13207 =
243200 andtime16

s13207= 15200; anddatas15850= 209840
and time16

s15850 = 13115. Without compression, the inter-
nal test time and test data of the system is the addition
of the individual’s cores test data and test time, respec-
tively, resulting intimeint = 28315, anddataint = 453040.
Applying the XNet(16), the two cores have a test time
of timec

s13207 = 22671 andtimec
s15850 = 25672, respec-

tively. Hence,timeext = timec
s13207+timec

s15850= 48343 and
dataext = 2∗timeext = 96686 which is≈ 5x less thandataint .
Testing the two cores in parallel, using a 32 bit internal
TAM (see Figure 3(b)), thetimeint = max{15200,13115}=
15200, which brings a 46% reduction in test time. When we
apply XNet(32) to the compound test set, the external test
time becomestimeext = timec

s13207+s15850 = 41554, which
represents only a 14% reduction in external test time. The
external test data isdataext = 2∗ timeext = 83108.

In summary, there are two observations that can be drawn
from Example 1. Firstly, doubling the test bus width toward
obtaining an ideal 50% reduction intimeint will not be fol-
lowed by a similar reduction intimeext. And secondly, ob-

162

X
N

et 16
s13207 s15850

external TAM
internal TAM

(a)w = 16

322

X
N

et s13207

s15850

internal TAM
external TAM

(b) w = 32
Figure 3. Example

taining the external test time requires the application of the
compression method after each new TAM assignment.

A direct implication of the first observation is the choice
of Pareto-points used in a number of TAM design algo-
rithms (e.g., [15]). We note that thetimeext to w relation
corresponding to Pareto-points does not exhibit the same
behavior as the originaltimeint to w relation. For exam-
ple, for core s38584, the Pareto-points (timeint) and the cor-
responding external test times (timeext) are shown in Fig-
ure 4(a). Note that not only the Pareto-points are different,
but also that increasingw does not always lead to a reduc-
tion in test time, e.g.,w = 8. . .12. Hence, in compression-
driven TAM design care must be taken to avoid using certain
Pareto-points since they may lead to solutions with worse
timeext. Therefore, if compression-unaware TAM design is
performed the obtained design may exhibit inefficient test
bus usage and test time penalties.

An implication of the second observation relates to the
computational time required to perform a TDC-TAM de-
sign. This is because, the external test time does not only
depend on the core’s external times, but also on core’s rel-
ative position in the TAM assignment, and hence the com-
pression method must be applied after each new TAM as-
signment. With reference to Example 1, forw = 32, the test
time is not merely a simplemax{timec

s13207, timec
s15850} as in

the case of TAM design, insteadtimeext has been computed
by applyingXNet(32) to the compound test set. Since TDC
is applied to systems with large volumes of test data, which
will take a long time to compress, the computational time
of TDC-TAM may be affected considerably. Therefore, to
facilitate TDC-TAM integration a test time estimation func-
tion is introduced in the following section.
4. Test time estimation

The test time estimation function will provide a correla-
tion between the test set, which has to be compressed, and
the external test time. With respect to the XNet compres-
sion method, we noteacb= the average care bits per WSC
load; andat pl = the average test pattern lockouts per WSC
load. If acb is known, the external test time is given by:

timeXNet
w (acb) = timew · (1+at plw(acb)) (1)

where timew represents the internal test time for a
bus width of w, and at pl is a function of w and
acb. In order to estimate the external test time, we
have to determine the relation betweenat pl, w and
acb. To achieve this we use the following experimen-
tal setup: (i) we perform controlled static compaction
[11], for maximum care bit values per test vector of

20k
40k

80k

120k

160k

200k

0 5 10 15 20 25 30 35 40

T
es

t t
im

e
(t

im
e i

nt
/ti

m
e e

xt
)

Test bus width (w)

timeint
timeext

(a) timeint vs. timeext for s38584

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7

at
pl

acb

w=32
atpl32(x)

(b) Results forw = 32 andat pl32(x)

100k

150k

200k

50k

25k
 0 2 4 6 8 10 12 14

T
es

t t
im

e

acb

XNet(8)
XNet(16)
XNet(32)
XNet(64)
time8

XNet

time16
XNet

time32
XNet

time64
XNet

(c) Random test sets:XNetvs. timeXNet
w

Figure 4. Pareto-optimum points and test time estimation
B = {50,100,150,200,250,300,400,800,1000,2000}, us-
ing the test sets obtained by ATALANTA [1] for one fault
per test vector, for all the ISCAS89 benchmark circuits [4];
(ii) for each of the cores we perform core wrapper de-
sign using the algorithm proposed in [14] for bus widths
w = 8. . .128, and map the test set obtained in the previous
step accordingly;(iii) we useXNet(w) on the mapped test
sets and determine theacbandat pl for each test set for each
test bus; and finally(iv) for eachw, the averageat pl andacb
among the cores is computed.

The results forw = 32 are plotted in Figure 4(b). In
order for these results to be useful in a TAM design al-
gorithm where theacb may be different than the ones ob-
tained above, we performed curve fitting for each test bus
using the functionat plw(x) = aw ·x3 +bw ·x2 +cw ·x+dw.
The plot corresponding tow = 32 is also illustrated in the
figure. To illustrate that (1) provides a good estimate of
the external test time, we compute thetimeext for the 32
bit bus system in Example 1. Hence,timeXNet

32 = 15200·
(1+ at pl32(2.64079)) = 41482.47, which, in comparison
to timeext = 41554 (see Example 1), is a good estimation.
In addition, we implemented a random test set generator,
where the care bit density can be specified, and compared
the computed (XNet(w)) and the estimated (timeXNet

w) test
times. While in generaltimeXNet

w overestimatesXNet(w),
this behavior is consistent, and hence the two are strongly
correlated (see Figure 4(c)). Hence, the estimation function
can be used to drive a TAM design heuristic.

To summarize this section, it becomes apparent that re-
ducingtimeXNet

w is based on minimizing two conflicting pa-
rameters. On the one side, one would increasew to reduce
to a minimum the number of WSC loads, hencetimew, on
the other hand, with the increase inw we have an increase
in acb and hencetimeXNet

w may actually increase. In the
following section we propose an iterative TAM design al-
gorithm which based on the findings in Sections 3 and 4,
provides an integrated TDC-TAM design solution.

5. Compression-driven TAM design
Corresponding to theTAM add-on–TDC scenario (see

Figure 1(c)) we define the TDC–TAM problem for core
based SoC test.

TDC–TAM Given a SoC with Nc cores, and a maximum
external test bus of Wext determine an internal TAM design
for the SoC such that when used in conjunction with a com-
pression method the external test time is minimized.

The problem is NP-hard, which can be shown by restrict-
ing it to the TAM design problem introduced in [20]. Since
the considered TDC method requires only 2 inputs, in the
remainder of this workWext = 2. We illustrate next an iter-
ative approach to the TDC-TAM problem, and extend the
TAM design algorithm from [20] toward a compression-
driven solution.

The main body of the algorithm is illustrated in Algo-
rithm 1. The inputs to the algorithm are the maximum ac-
ceptable internal TAM width (Wmax

int), and the cores (C, with
|C| = Nc). For each core we compute the Pareto-points (Pc)
(line 2). For each Pareto-point we generate a test set (Tc,wi)
which is then characterized in order to determineacbc,wi

(lines 4 and 5). And, for eachwint = 8. . .Wmax
int we ap-

ply the compression-driven TAM design algorithm based on
the work from [20] (line 9). After each compression-driven
TAM design, the compound test set is generated and com-
pressed usingXNet(wint). The obtainedtimeext is stored,
and the solution with minimum time andw returned.

The work in [20] introducesk− tuplesas a mean for
large search space exploration. Starting from thek− tuples
two constraint graphs are generated: a horizontal constraint
graph and a vertical constraint graph; where the nodes rep-
resent cores. Two nodes are connected with a directed edge
iff there is a given order relationship between the cores in
the k− tuplesrepresentation. The weight of each edge in
the graphs corresponds to the test time and test bus width
of the starting node, respectively. The longest paths in the
two graphs corresponds to the test bus width and test time of
the TAM assignment, respectively. The TAM design heuris-
tic in [20] comprises four main steps:(1) initialization -
where the initial TAM assignment is generated;(2) generate
next assignment- where based on the current assignment, a
new TAM assignment is generated;(3) validate assignment
- which ensures that the generated assignment meets thewint

constraint, by reducingwi for the cores which will suffer the
smallest penalty in test time; and(4) improve assignment-
where for the cores that are not on the longest vertical path,

Algorithm 1 TDC–TAM heuristic

INPUT : Wmax
int ,C OUTPUT: timeext,w

1. foreachc = 1. . .Nc do
2. Pc = ComputeParetoOptimumPoints(Cc)
3. foreachwi ∈ Pc do
4. Tc,wi = GenerateTestSet(c,wi)
5. acbc,wi = CharacterizeTestSet(Tc,wi)
6. done
7. done
8. foreachwint = 8. . .Wmax

int do
9. πwint =PerformCompressionDrivenTAMDesign(wint)
10. Twint =GenerateCompoundTestSet(πwint)
11. store(XNet(wint)(Twint))
12.done

wi is increased. Step(2), (3) and(4) are executed for a num-
ber of iterations, and the best assignment chosen as the TAM
design solution.

To extend this approach toward compression-driven
TAM design we performed two changes. Firstly, we re-
placed the edge value in the horizontal constraint graph with
timeXNet

wint
(acbc,wi ∗wint/wi), i.e., we compute the external

test time per core as if it was the only one driven by the
decoder. And secondly, we enhanced step(3) and(4) as fol-
lows. In step(3) we reduced the test bus width of the core
which has the smallest penalty in test time and the biggest
reduction inacb– to obtain a valid solution with the small-
estacb; while in step(4) we reduced the width of the cores
which are not on the critical horizontal path – to achieve
further reduction inacbwithout penalties in test time.

Note that the test time estimation function integrates
smoothly with the heuristic from [20]. Hence, it is expected
that other TAM design approaches (e.g. [8, 15, 22]), can also
be easily extended toward a TDC-TAM solution.

6. Experimental results
In order to confirm the need for compression-driven

TAM design, we implemented the heuristics described
in Section 5 in C++ and we chose 3 SoCs based on
ISCAS89 benchmark circuits [4] as follows: S1 =
{s5378,s9234,s13207,s15850,s35932,s38417,s38584},
S2 = 2xS1 andS3 = 3xS2. The TDC-TAM heuristic has been
evaluated for core test sets with different care bit densities,
obtained as illustrated in Section 4, on anAMD Athlonat
1.2 Ghzwith 1Gbof RAM. In all the cases the TAM design
algorithms have run for 10000 iterations.

The results are reported in Figure 5. Figure 5(a) il-
lustrates the results forS1. As expected, the internal test
time obtained with TAM design (timeint(TAM)) steadily de-
creases with the increase inwint . The corresponding ex-
ternal test time for this case (timeext(TAM)) is also shown
in the figure. It can be clearly seen that minimumtimeext

is not obtained for the maximumwint = 128 but rather
for wint = 40. For the TDC-TAM algorithm, we note that
the timeint(TDC−TAM) is greater than thetimeint(TAM),
however thetimeext(TDC−TAM) is generally smaller. For
example forw = 60, reduction from 250k to 150k in test

time is obtained. Overall, a reduction of≈ 20k in test time
is obtained by using the TDC-TAM approach. Figures 5(b)
and 5(c) show the results for systemS2 andS3, respectively.
Similar to Figure 5(a), thetimeint(TAM) steadily decreases
with the increase inwint , while timeext(TAM) has signifi-
cant test time penalties. The performance of the TDC-TAM
heuristic appears to be better for these two cases (S2 and
S3), since external test time (timeext(TDC−TAM)) reduc-
tion of ≈ 200k is obtained in both cases, with a 2x reduc-
tion in internal test bus width (from 128 to 64). There
are two interesting features common to Figures 5(a)–5(c),
the timeext(TDC− TAM) plot exhibits a zigzag behavior,
and the minimum external test time is usually found in the
neighborhood ofwint = 64. The first feature can be at-
tributed to the random element, part of the TAM design al-
gorithm, i.e., the generation of the next assignment is based
on using a random function [20]. The second feature can be
attributed to (1) (see Section 4), where thetimeext is a func-
tion of bothtimeint andacb. While, as shown in Figure 5(d),
the TDC-TAM design obtains overall smaller care bit den-
sity than TAM design, theacbdoes increase with thewint .
With timeint decreasing andacb increasing, for the consid-
ered systems, the minimumtimeext is obtained forwint in
the neighborhood of 64.

Figure 5(e) plots the computational time for the two ap-
proaches (Total(TAM+ XNet) andTotal(TDC−TAM+
XNet)) in seconds. It can be noted that the differences are
very small (< 10s), and in generalTotal(TAM+XNet) >
Total(TDC− TAM+ XNet). This is due to the fact that
the higher theacb, the longer it will take to find the cor-
rect SRvalues (see Section 3). Also plotted in the figure
are the computational times of TDC-TAM and XNet. It is
clear from the figure thatXNet takes considerably longer
than TDC-TAM whenacb increases.

While the above experiments have been performed for
maximum compacted test sets (e.g.B= 2000), we also con-
sidered cases with very small care bit density (B= 50). The
results forS1 andB= 50 is given in Figure 5(f). It is impor-
tant to note that even for small care bit density, there is a sig-
nificant difference betweentimeint andtimeext, ≈ 2x. While
the TDC-TAM heuristic does not perform well for these
cases, based on these experiments we believe that in core
based SoC test, where the system integrator is restrained
from performing ATPG, even if the cores are delivered with
small care bit density test sets, the system integrator should
employ a compression-driven TAM design to efficiently ex-
ploit the test bus resources and reduce the test time.

7. Conclusions
When compression methods which aresensitiveto the

test bus width are used on-top of existing TAM design ap-
proaches, the result may exhibit inefficient test bus usage
and test time penalties. Therefore, in this paper we il-
lustrated the importance of considering the TDC method’s

50k

100k

150k

200k

250k

0 20 40 60 80 100 120 140

T
es

t t
im

e
(t

im
e i

nt
/ti

m
e e

xt
)

Internal test bus width (wint)

timeint(TAM)
timeext(TAM)

timeint(TDC-TAM)
timeext(TDC-TAM)

(a)S1 case

50k

200k

300k

400k

500k

550k

600k

0 20 40 60 80 100 120 140

T
es

t t
im

e
(t

im
e i

nt
/ti

m
e e

xt
)

Internal test bus width (wint)

timeint(TAM)
timeext(TAM)

timeint(TDC-TAM)
timeext(TDC-TAM)

(b) S2 case

100k

200k

400k

500k

600k

700k

800k

900k

0 20 40 60 80 100 120 140

T
es

t t
im

e
(t

im
e i

nt
/ti

m
e e

xt
)

Internal test bus width (wint)

timeint(TAM)
timeext(TAM)

timeint(TDC-TAM)
timeext(TDC-TAM)

(c) S3 case

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140

A
ve

ra
ge

 c
ar

e
bi

ts
 (a

cb
)

Test bus width (w)

TAM design
TDC-TAM design

(d) S3 average care bits analysis

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

C
om

pu
ta

tio
na

l t
im

e
(s

)

Test bus width (w)

TDC-TAM design
XNet

Total (TDC-TAM + XNet)
Total (TAM + XNet)

(e)S2 computational time comparison

325k
400k
525k
600k

800k

1200k

1400k

1800k

2000k

2400k

0 20 40 60 80 100 120 140

T
es

t t
im

e
(t

im
e i

nt
/ti

m
e e

xt
)

Internal test bus width (wint)

timeint(TAM)
timeext(TAM)

timeint(TDC-TAM)
timeext(TDC-TAM)

(f) S1 case for(B = 50)
Figure 5. Experimental results

characteristics in the TAM design and we provided a sys-
tematic approach for deriving a test time estimation func-
tion based on the test set’s care bit density. Finally, we in-
troduced a compression-driven TAM design heuristic to re-
duce external test time and improve test bus resource usage.
Based on experimental validation this paper showed that
for test bussensitivecompression methods a compression-
driven TAM design exhibits better resource usage in com-
parison to a compression-unaware approach. Therefore, this
paper contributes toward test resource optimization when
TDC is considered. Future work will analyze the possibility
of TDC-TAM integration of cores with multiple compres-
sion schemes and fully specified test sets.

References
[1] Virginia Polytechnic Institute and State University.

http://www.ee.vt.edu/˜ha/cadtools/cadtools.html.
[2] Bernd Koenemann et al. A SmartBIST Variant with Guaranteed

Encoding. InATS, pp 325–330, Nov. 2001.
[3] B. Bottoms. The third millennium’s test dilemma.IEEE Design &

Test of Computers, 15(4):7–11, Oct. 1998.
[4] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of

sequential benchmark circuits. InISCAS, pp 1929–1934, May 1989.
[5] A. Chandra and K. Chakrabarty. System-on-a-Chip Test Data

Compression and Decompression Architectures Based on Golomb
Codes.IEEE TCAD, 20:113–120, Mar. 2001.

[6] R. Dorsch and H.-J. Wunderlich. Tailoring ATPG for Embedded
Testing. InITC, pp 530–537, Oct. 2001.

[7] Erik Jan Marinissen et al. A Structured And Scalable Mechanism
for Test Access to Embedded Reusable Cores. InITC, pp 284–293,
Oct. 1998.

[8] S. K. Goel and E. Marinissen. Layout-Driven SOC Test Architecture
Design for Test Time and Wire Length Minimization. InDATE, pp
738–743, Mar. 2003.

[9] P. T. Gonciari, B. Al-Hashimi, and N. Nicolici. Integrated Test Data
Decompression and Core Wrapper Design for Low-Cost System-
on-a-Chip Testing. InITC, pp 64–73, Oct. 2002.

[10] P. T. Gonciari, B. Al-Hashimi, and N. Nicolici. Reducing Synchro-
nization Overhead in Test Data Compression Environments. InDi-
gest of Papers ETW, pp 147–152, May 2002.

[11] P. T. Gonciari, B. Al-Hashimi, and N. Nicolici. Test Data Compres-
sion: The System Integrator’s Perspective. InDATE, pp 726–731,
Mar. 2003.

[12] P. T. Gonciari, B. Al-Hashimi, and N. Nicolici. Variable-length
Input Huffman Coding for System-on-a-Chip Test.IEEE TCAD,
22:783–796, June 2003.

[13] ITRS. The International Technology Roadmap for Semiconductors,
2001 Edition. http://public.itrs.net/.

[14] V. Iyengar, K. Chakrabarty, and E. J. Marinissen. Co-Optimization
of Test Wrapper and Test Access Architecture for Embedded Cores.
In ITC, pp 1023–1032, Oct. 2001.

[15] V. Iyengar, K. Chakrabarty, and E. J. Marinissen. On Using Rectan-
gle Packing for SOC Wrapper/TAM Co-Optimization. InVTS, pp
253–258, Apr. 2002.

[16] V. Iyengar, A. Chandra, S. Schweizer, and K. Chakrabarty. A Uni-
fied Approach for SOC Testing Using Test Data Compression and
TAM Optimization. InDATE, pp 1188–1189, Mar. 2003.

[17] Janusz Rajski et al. Embedded Deterministic Test for Low Cost
Manufacturing Test. InITC, pp 301–310, Oct. 2002.

[18] A. Jas, J. Ghosh-Dastidar, and N. A. Touba. Scan Vector Compres-
sion/Decompression Using Statistical Coding. InVTS, pp 114–121,
Apr. 1999.

[19] A. Khoche and J. Rivoir. I/O Bandwidth Bottleneck for Test: Is it
Real ? InProceedings of Test Resource Partitioning Workshop, pp
2.3–1–2.3–6, Nov. 2000.

[20] S. Koranne and V. Iyengar. On the Use ofk− tuplesfor SoC Test
Schedule Representation. InITC, pp 539–548, Oct. 2002.

[21] L. Li and K. Chakrabarty. Test Data Compression Using Dictionar-
ies with Fixed-Length Indices. InVTS, pp 219–224, Apr. 2003.

[22] E. J. Marinissen and S. K. Goel. Control-aware test architecture
design for modular SOC testing. InProceedings IEEE European
Test Workshop (ETW), pp 57–62, May 2003.

[23] E. J. Marinissen, R. Kapur, M. Lousberg, T. McLaurin, M. Ricchetti,
and Y. Zorian. On IEEE P1500’s Standard for Embedded Core Test.
JETTA, 18(4):365–383, Aug. 2002.

[24] Y. Zorian and E. J. Marinissen. System Chip Test: How Will It
Impact Your Design? InDAC, pp 136–142, June 2000.

