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Abstract — This paper presents a light inference system for 
context management, ready to perform reasoning tasks in 
resource-constrained devices. The inference system is part of a 
service-oriented mobile software framework which runs on Java-
enabled handheld devices. This framework serves to facilítate the 
creation of context-aware applications, as it decouples sensor's 
data acquisition and context processing from the application 
logic itself. The inference architecture is composed by different 
modules; some of them encapsulate existing tools (ujena and 
Bossam) that have been adapted to the mobile working 
environment. The (rule-based) reasoning is prepared to use a 
general ontology. Both applications and the framework's 
components may configure the query set in order to retrieve the 
information they need from the inference system. In the paper, a 
validation example shows how this process is done. 

Keywords - Context-awareness; data modeling; light ontology 
management; reasoning; service-oriented architectures 

I. INTRODUCTION 

Mobile applications are increasingly capable of adapting 
their performance to the changing situation of their users. This 
is mainly possible thanks to the data retrieved from different 
sensors embedded in the mobile devices, which may provide a 
lot of information about the user's context if adequately 
processed. 

In order to manage context information, many frameworks 
have been proposed to date. Some of them make use of off-the-
shelf toolkits designed to parse data models and perform 
automatic reasoning. Most of them are unable to be deployed 
in mobile devices, as the toolkits they rely on are not targeted 
at resource-constrained devices. There are some proposals 
which work in mobile environments, but they usually lack 
flexibility as they are adhoc solutions. In this paper, we 
propose a reasoning system to be integrated in the PIRAmIDE 
mobile framework (PIRAmIDE states for 'Personalizable 
Interactions with Resources in AmI-enabled mobile Dynamic 
Environments'), a service-oriented architecture conceived to 
accelerate the development of context-aware applications. The 
objective is to provide both applications and modules in the 
framework with a light and multi-domain infrastructure to 
perform automatic reasoning, in order to alleviate them of 
accomplishing these tasks. 

Section II reviews existing embedded toolkits for data 
model management and reasoning. Section III briefly presents 
the framework PIRAmIDE, in which we have integrated our 
reasoning system. The framework's reasoning needs, together 
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with its general data model are detailed in Section IV. Our 
embedded reasoning system and an example for validation are 
presented in Sections V and VI. Section VII concludes the 
paper with an analysis of the drawbacks and key issues we 
have identified when designing and building the reasoning 
system. 

II. STATE-OF-THE-ART: MOBILE REASONING SYSTEMS 

Most of the existing proposals for context management and 
reasoning (see [1], [2] for a survey) rely on server-based 
architectures which minimize the need for mobile devices to 
have any internal reasoning capability (e.g. [3], [4]). Of course, 
this centralized approach avoids to handle the restrictions 
imposed by mobile devices (limited e.g. in terms of processing, 
storage and batteries), but require permanent connectivity, 
which may lead to increasing response times, power 
consumption, security problems or service unavailability. On 
the contrary, device-embedded strategies for reasoning avoid 
permanent exchange of context information, securizing and 
accelerating the inference process. 

Although scarce when comparing with general context 
management systems, some light tools enabling reasoning in 
resource-constrained devices have already been described in 
literature. Crivellaro et al. [5] developed [iJena, which serves to 
manage ontologies stored in mobile devices although does not 
face ontological reasoning. LOnt [6] is another custom 
implementation of Jena API for mobile devices. Its main 
features are its small size and low memory fingerprint, which 
make it suitable to be used in J2ME mobile devices. Kleeman 
et al. [7] intégrate the mobile Pocket KRHyper reasoner [8] for 
user's profile management and decision-making tasks. Pocket 
KRHyper is a powerñil reasoning system for Java-enabled 
mobile devices, but it does not support any of the standard 
ontology languages (OWL, SWRL, etc.). 

In [9], a mobile framework to support ontology processing 
and reasoning is proposed. The reasoning engine contains only 
a forward chaining rule-based inference engine which can be 
used to trigger the desired actions based on the rules that are 
explicitly defined, but it only supports a subset of OWL 
ontology inference rules. In this framework, a lightweight 
RDQL query engine supporting a subset of RDQL syntax is 
also developed. The juOR reasoner [10] is introduced as a part 
of a framework for developing AmI-based medical devices. At 
the moment it only reasons over a subset of OWL-Lite 
entailments. Vázquez [11] implements a 'MiniOwl and 
MiniRule' embedded reasoner, powered with ontologies and 
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domain rules that can successfully interpret situations that were 
not previously solved without reasoning. This proposal only 
implements a subset of OWL Lite, too. Finally, Bossam [12] 
has native support for reasoning over OWL/SWRL ontologies 
and RuleML rules. Its runtime size is about 750Kb, running on 
J2ME CDC/PP platforms as well as J2SE platform of JDK 1.3 
or later. 

A transitional solution between server-based approaches 
and device-oriented ones are hybrid architectures. In 
MobileOntoDB [13], a real-time evaluation strategy is 
proposed: any query performed in the device is initially 
analyzed and, if it exceeds the device capabilities, it is then sent 
to a central reasoning server. A distributed case-based 
reasoning mechanism is used in AmbieSense [14], an agent-
based infrastructure for context-based information delivery for 
mobile users, in which on-line reasoning resides on the user's 
mobile device, while off-line reasoning is done in the user's 
backbone system. 

As previously stated, most of the proposals above are adhoc 
solutions to specific problems, hardly scalable or configurable. 
Up to our experience, the most feasible and versatile tools for 
data model management and reasoning are [iJena, Pocket 
KRHyper and Bossam (see Section VII). 

III. PIRÁMIDE FRAMEWORK: FUNCTIONAL DESCRIPTION 

AND ARCHITECTURE 

The light framework 'PIRAmIDE' aims at providing a set 
of standard features to build context-aware mobile applications, 
in order to support and accelerate their design and development 
life cycle. 

PIRAmIDE provides easy access to the information 
acquired from a number of sensors, both embedded in the 
mobile device (accelerometers, gyroscopes, RFID readers, 
camera, etc.) or deployed within the user's environment 
(ambient sensors, QR codes, etc.). Additionally, the framework 
is also prepared to intégrate context information from third 
parties (coming from virtual sensors, e.g. in-the-cloud 
calendars). Built on these sensing enablers, PIRAmIDE offers 
a set of application-independent services which may be used by 
the applications deployed on top of the framework to capture 
context data. Horizontal services are, for example, related to 
the physical detection of points of interest (through wireless 
technologies), the management of position estimation (based 
on GPS when outdoors and on WiFi, ZigBee and Bluetooth 
systems when indoors), image-based decoding of 
bidimensional codes and automatic reasoning. 

PIRAmIDE is based on a service-oriented software 
architecture [15] composed by three main building blocks: 
Sensing Subsystem, Context Management Subsystem and Core 
Subsystem (Figure 1). The Sensing Subsystem decouples the 
access to embedded and external sensors from upper 
processing levéis by wrapping sensor specific characteristics 
inside software units, which deals with low-level hardware 
information retrieval. The Context Management Subsystem is 
composed by a number of modules that process data coming 
from sensors (or from other modules), fuse them, and infer 
complex context parameters. Finally, the Core Subsystem 
provides several features to intégrate software modules into the 

middleware, such as discovery and registry management of 
new elements and some common utility libraries. Applications 
consume context information provided by enablers using the 
features provided by PIRAmIDE Core Subsystem. Enablers 
and applications use an (asynchronous) event-based 
communication strategy, also leaded by the Core Subsystem, in 
order to exchange context data. 

Sensing Subsystem | I I ] • [ 

Figure 1. PIRAmIDE: mobile service-oriented framework architecture 

PIRAmIDE has been developed using mobile OSGi 
(mOSGi). mOSGi is a Dynamic Module System for Java, 
handling modules referred as bundles (PIRAmIDE's enablers): 
cohesive, self-contained units, which explicitly define their 
dependencies to other modules/services and their external 
APIs. mOSGi improves encapsulation and reusability, 
simplifying the implementation of a modular system. 
Additionally, it is dynamically configurable in real time 
operation. Regarding its core functionalities, mOSGi enables a 
set of software tools useful for general service management 
and, particularly, for a fast and dynamic development of new 
services (automatic service registration, event management, 
logging service, etc.). PIRAmIDE middleware is currently 
implemented in Java, running on a mOSGi platform based on 
J9 Virtual Machine inside a Windows Mobile device. 
However, several implementations of mOSGi framework are 
available for other mobile operative systems such as Symbian 
or Android, so migration should be possible at a reasonable 
coding cost. 

At present, the set of PIRAmIDE's sensors and horizontal 
enablers are being extended. Particularly, this paper refers to 
the design, development and integration of a new enabler 
providing reasoning services: a flexible and configurable tool 
to discharge applications of periodic reasoning tasks which 
may otherwise imply a higher cost both in terms of resources 
and quality of service. 

IV. REASONING NEEDS IN P I R A M I D E 

A. Requirements for a embeddable reasoning infrastructure 

PIRAmIDE's reasoning system will initially rely on a 
generic data model which will offer support to the reasoning 
procedures of the horizontal services. The reasoning 
functionality is initially thought to be accessible from every 
PIRAmIDE component, although applications will be able to 
directly access the reasoning service too. 



In order to build the reasoning system, PIRAmIDE needs a 
common data model, which needs to be: 

• Scalable, allowing dynamic updates of the knowledgebase 
to include new context sources. 

• Flexible, allowing standard access from different 
components in order to associate context information at 
different levéis of abstraction. 

• Syntactic and semantically explicit and formal, facilitating 
consistency checking when including new entities and 
concepts. 

• Sharable and reusable among different types of systems, 
and prepared to support future distributed reasoning 
processes. 

• Light, to be easily managed by resource-constrained 
mobile devices, ensuring limited reasoning response times. 

• Particularizable/extensible for different knowledge 
domains, as PIRAmIDE is intended to support a wide 
range of heterogeneous applications. In particular, the 
eHealthleWellbeing and the elnclusion reference domains 
have been chosen to bind the system validation. 

On this data model, to be implemented by using an 
ontological approach (Section IV.B), a light reasoner will offer 
its functionalities to PIRAmIDE's components. The reasoner is 
required to offer: 

• Ontology model support. The reasoner must be able to 
infer new context information from the constructions and 
expressions defined according the common ontological 
data model. 

• Rule-based reasoning support. The reasoner must allow 
managing different sets of rules and apply them to the 
knowledgebase. 

• Query management. Different sets of queries, to be 
answered by the reasoner about the inferred information, 
should be managed. 

• Standard-oriented. The ontology model, the rule set and 
the queries need to be defined when possible by using 
standard formats in order to ensure 'shareability' and 
reusability. 

• In the same way as the data model, the reasoner must be 
light enough to be deployed in resource-constrained 
mobile devices, ensuring bounded response times. 

B. General overview of PIRAmIDE 's data model 

Taking into account the requirements above, PIRAmIDE's 
data model is being implemented by means of ontologies, as 
this approach is assumed to result in a versatile structure in 
terms of distribution, validation, formalization and 
completeness [16]. First of all, a general ontology considering 
common concepts has been defined. This ontology is to be 
extended with a number of sub-ontologies in order to cope with 
the particular aspects for each domain of application that 
PIRAmIDE could consider. 

Figure 2. Classes and relations in Context Package 

The general ontology aims at defining its main concepts to 
support context inference and persistence processes. Initially, 
five packages of classes are defined: User, Device, Context, 
Service and Event. Figure 2 highlights the classes and 
relationships modeled in the Context Package and the 
relationships among some of the most important concepts in 
other packages: 

1) The user package considers explicit and non-dynamic 
characteristics of the user. For example, personal data 
(userName, userBirthDate, userGender, etc.), profile 
information (e.g. including disabilities) and preferences are 
included in this package. Generally, these data are manually 
entered into the system, directly through the user or a system 
administrator. 

2) The context package models different features defining 
the situation of the user. This information is extracted from in-
device or environment sensors, and offered to the applications 
over PIRAmIDE through different services. This package 
includes concepts such as Location, Environmental 
Conditions, user Activity or near Networked Resources. 

3) The device package specifies particular features 
describing the user's mobile device. They include both, 
software (operatingSystem, audioPlayerFormat, etc.) and 
hardware features (totalMemory, keyboardType, etc.). The list 
of available services and device sensors is also modeled here. 

4) The service package mainly defines the attributes 
characterizing the structure of PIRAmIDE's services, that is: 
the context information they offer and how to access this 
information. 

5) The information offered by PIRAmIDE's enablers is 
usually modeled as events. Different types of events are 
modeled in the Event package (e.g. calendar appointments, 
points of interest, networked resources, etc.). 

C. Adapting PIRAmIDE's data model to a lightweight 
infrastructure 

OWL -a W3C standard language widely used in data 
modeling- has been chosen to implement the ontology. It has 



three increasing expressive sublanguages: OWL-Lite, OWL-
DL, and OWL-Full. Following the analysis in [17], we have 
opted for OWL-Lite as the language to develop PIRAmlDE's 
ontology. OWL-Lite supports a classification hierarchy and 
simple constraints; classes and properties can be defined as 
equivalent, making possible schema-matching and ontology 
alignment. In addition, OWL-Lite allows properties to be made 
optional or required. Obviously, OWL-Lite is less complex 
than OWL-DL, a fact that can have a positive impact on the 
efficiency of reasoners [17]. 

However, in the initial stages of the ontology (and sub-
ontologies) design, we aimed at fulfilling OWL-DL 
expressiveness, as the data model could also be used in a 
centralized infrastructure environment. OWL-DL is an 
extensión to OWL-Lite, a subset of OWL that has 
computational completeness and decidability (which means 
that all computations are guaranteed to be computable within 
finite time). In PIRAmlDE, the initial OWL-DL models were 
transfonned to accomplish OWL-Lite features. To the best of 
our knowledge, no automatic software tool exists that 
automatically performs this OWL-DL to OWL-Lite 
conversión, so it had to be done manually. In this process, 
some logical assertions, those available in OWL-DL but not in 
OWL-Lite, had to be removed (e.g. múltiple cardinality 
restrictions), but not the main relations between concepts (and 
their attributes and data types constraints). Protege 3.4.4 utility 
was used to develop every ontology, and also to verify that the 
resulting ontologies accomplished OWL-Lite expressiveness 
level. 

Although OWL-Lite does support importing third parties' 
ontologies, external models available in the OWL-DL 
developments were removed in the OWL-Lite versión, once 
more to free the mobile device from extra processing tasks. 
This issue will be revisited in future extensions of the 'lite 
ontology', after individually assessing if it is reasonable to 
process each of the external ontologies in the mobile 
infrastructure (regarding its size, expressiveness, etc.). 

V. A N EMBEDDABLE INFRASTRUCTURE TO ENABLE 

DYNAMIC REASONING 

This Section describes our proposal for a reasoning 
architecture (an ontological manager and an ontological and 
rule-based reasoner) ready to be integrated into the framework 
PIRAmlDE. The architecture needs two integration elements to 
be implemented: 1) first, it is necessary to develop a new 
enabler, which will encapsulate the reasoner itself {Inference 
Enabler in Figure 3); 2) next, each new enabler willing to use 
the reasoning services needs to include an Ontology Manager 
module in its own structure in order to be able to communicate 
with the Inference Enabler (Figure 3 shows a Generic Enabler 
integrating this module). 

Our particular development uses Bossam [12], a rule engine 
extended to support OWL and SWRL reasoning capabilities, as 
the ontology (and rule-based) reasoner wrapped inside 
Inference Enabler. [iJena [5], an ontology management API for 
mobile clients, has been used in order to manage PIRAmlDE's 
ontologies inside those enablers needing to use reasoning 
services. 

PIRAmlDE's light data model is used as the common 
language for PIRAmlDE's components to exchange 
information. In this sense, the Ontology Manager needs to 
exchange three documents with the Inference Enabler in order 
to feed the reasoning system: 1) an OWL document containing 
the knowledgebase subset to reason over, 2) the set of rules to 
apply in the reasoning process and 3) a specification of the 
queries the reasoner needs to answer. 
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Figure 3. Software structures and information flow for building intelligent 
services based on ontological reasoning over PIRAmlDE 

The use of the reasoning system is explained throughout the 
following data flow, which starts when an application asks the 
framework PIRAmlDE for some context information to be 
provided by a Generic Enabler through the use of sensors and 
other services in the framework: 

1) An application demands information on a context 
parameter: the framework PIRAmlDE dynamically discovers 
the enabler providing this information {Generic Enabler in 
Figure 3) and starts and configures it to fulfill the application 
requirements. 

2) Obtaining external context data: the Generic Enabler 
may need information coming from other enablers or sensors; 
it can then subscribe or query other PIRAmlDE components in 
order to get this information (by using its External Context 
Manager). 

3) Handling different types of context parameters: each 
type of context data received from sensors and/or enablers will 
be managed by different External Context Handlers. Context 
data may be independently pre-processed here. 

4) Preparing context information for reasoning processes: 
information handled by the Generic Enabler needs to be 
shaped in an ontological way in order to be understood by the 
Inference Enabler. This is performed by the Ontology 
Manager, leading to: 

a) Model instantiation: context data acquired from other 
enablers or sensors need to be instantiated according to the 



ontology model. [iJena will genérate an OWL-Lite document 
(in N-TRIPLE serialization format) as a temporal 
knowledgebase (KB) to feed the reasoner. 

b) Rules configuration: if the reasoner needs to be fed 
with any rule, a new rule ontology (based on SWRL standard) 
will be also generated at this point. Currently, just static 
SWRL files are used, as [iJena does not support this standard 
yet. 

c) Queries definition: finally, it is necessary to state the 
specific queries the reasoner needs to solve. A popular 
ontological query language, as SQWRL (or SPARQL, RDQL, 
etc.) is supposed to be used at this point, but currently a 
proprietary one, just managed by the reasoner, is actually 
used. 

5) Reasoning: Bossam is used as ontology and rule-based 
reasoner. It reasons about the set of facts obtained from 
merging both, OWL and SWRL ontologies, returning the 
answers to the (SQWRL) queries. 

6) Context aggregation: the Generic Enabler may also 
need to fuse different context data (some from the reasoning 
process, some directly coming from other enablers/sensors). 

7) Service output adjustment: finally, the Generic Enabler 
output is adapted to meet the application requirements. 

To clarify the process previously described, an example of 
reasoning service is following reviewed. 

VI. VALIDATION 

Some location-based applications usually need to transíate 
the Cartesian position information (coordinates <x,y>), 
provided by localization systems, into symbolic information 
(e.g. "living room"), describing the zone or área where the user 
is moving. This process, usually referred as reverse geocoding, 
may be configured and automated into PIRAmIDE by using its 
reasoning capabilities, preventing the internal services or 
applications from independently and redundantly compute the 
information once and again. 

In this case, three different enablers have been implemented 
(Figure 4): 1) the Inference Enabler, as described in previous 
Section; 2) a Location Enabler, that obtains an accurate 
estimation of the location of a mobile device, by fusing 
information acquired from different positioning technologies 
(GPS, WiFi and Bluetooth); and 3) a Location Mapping 
Enabler, which encapsulates the necessary logic to provide the 
mapping service: subscription to the needed sensors/enablers, 
ontology model instantiation, rules and queries management, 
etc. This last enabler follows the architecture defined for the 
Generic Enabler in the previous Section. 

Figure 4 shows these three components and the exchanged 
information flow: 1) the application requests subscription to the 
symbolicZone measurements and PIRAmIDE addresses this 
subscription towards the service in charge of that kind of 
measure: the Location Mapping Enabler, 2a) this enabler 
knows it needs to settle a subscription to the Location Enabler; 
2b) at the same time, the Inference Enabler is initially 
configured (in this particular case, the Location Mapping 
Enabler already knows the SWRL rules and -SQWRL-
queries to apply); 3) Location Enabler starts generating events, 

that PIRAmIDE will address to the subscribed components; 4) 
Location Mapping Enabler updates the OWL KB according to 
the information received from the Location Enabler; 5) the 
updated KB is used, together with the set of rules and queries, 
in order to determine the symbolic position of the user; and 6) 
the Location Mapping Enabler finally offers the user's 
symbolic location to the application. 
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Figure 4. Cartesian to symbolic location mapping service overview. 

Figure 5 partially shows the data handled by the reasoner 
(and those provided by the mapping service). In particular it 
shows: the model instantiation of a number of symbolic zones 
(rectangles defined by opposite corners; Figure 5.1) and the 
Cartesian position of the user (Figure 5.2), the rule applied to 
infer the symbolic location (Figure 5.3) and the final result of 
the inference process (Figure 5.4). 
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Figure 5. Excerpt of the ontology data exchanged between the Location 
Mapping Enabler and the Inference Enabler. 

VIL DlSCUSSION AND FUTURE WORK 

This paper presents a proposal for a mobile reasoning 
system, ready to be developed and integrated in a service-
oriented framework for context management. The system is 
built on available tools for data model management and 
ontology rule-based reasoning, which have been adapted to 
work properly. 

Following, we comment on some relevant aspects of the 
design and development experience. We aimed at defining a 
reasoning system: 1) capable of dealing with ontology data, 2) 



using standard formats and 3) working in resource-constrained 
mobile devices. On the one hand, nowadays it is easy to find 
implementations just satisfying requirements #1 and #2 (Jena, 
OWLAPI, Pellet, HermiT, etc.) but they are not really 
developed to be deployed in any kind of mobile device (we 
even tried to do so with most of them, without success). On the 
other hand, state-of-the-art analysis reveáis a (limited) number 
of developments just meeting #3 prerequisite. So, as far as we 
are concerned, [üena (as ontology manager) and Bossam (as 
ontology and rule-based reasoner) are the only ones satisfying 
all three key requirements. Nevertheless, their integration 
inside the PIRAmIDE framework has not been smooth. 

It is important to note that both [iJena and Bossam are 
research developments and cannot be taken as fully-operative 
systems. One of their main drawbacks is their lack of 
integration: most of the infrastructure ontology reasoners 
(Pellet, HermiT, etc.) are directly coupled with Jena and/or 
OWLAPI in order to manage the models they reason over. 
However, Bossam just can load data models from the file 
system. This limitation breaks the process of updating the 
knowledgebase before inferring new information: in our 
particular implementation, [üena and Bossam communicates 
between them by exchanging documents stored in the mobile 
file system (see Figure 3.4), an error prone practice that 
definitely increases time responses. This is, from our point of 
view, Bossam ’s main drawback. 

Moreover, [iJena lacks flexibility regarding the supported 
standard formats. Although future extensions are planned, at 
present it just can read OWL ontologies coded in N-TRIPLE 
syntax. No report about the performance of this syntax in 
mobile devices has been found, but updated references 
regarding this issue ([6], [7]) point out to Manchester or KRSS 
syntax as some of the most appropriate for resource-
constrained devices. In addition, [üena lacks support to any 
rule or query language standard; besides, it does not allow 
external ontologies to be imported. 

There still exists few developments capable of dealing with 
ontology management and reasoning in mobile devices, and the 
existing ones are still far from maturity. From our point of view 
there is a need of a common ontology management strategy (as 
Jena or OWLAPI for infrastructure environments) to be 
integrated in mobile reasoners. It is also worth mentioning that, 
as far as we are concerned, no one of the ‘well-known’ 
ontological reasoners (Pellet, FaCT++, RacerPro, etc.) are 
planned to be migrated to mobile environments. 

Regarding the development of our PIRAmIDE light 
framework for context management, we are currently testing 
the feasibility of using the Inference Enabler simultaneously 
from different Service Enablers. Performance tests to evalúate 
the computational load of the reasoning solution will be done. 
We are also starting to face some of the main limitations of the 
employed tools, mainly the file system dependency and the 
dynamic SWRL and SQWRL management support. 
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