
A light reasoning infrastructure to enable context-
aware mobile applications

Josué Iglesias, Ana M. Bernardos

Universidad Politécnica de Madrid
Madrid, Spain

jjosue, abernardos} @grpss.ssr.upm.es

Abstract — This paper presents a light inference system for
context management, ready to perform reasoning tasks in
resource-constrained devices. The inference system is part of a
service-oriented mobile software framework which runs on Java-
enabled handheld devices. This framework serves to facilítate the
creation of context-aware applications, as it decouples sensor's
data acquisition and context processing from the application
logic itself. The inference architecture is composed by different
modules; some of them encapsulate existing tools (ujena and
Bossam) that have been adapted to the mobile working
environment. The (rule-based) reasoning is prepared to use a
general ontology. Both applications and the framework's
components may configure the query set in order to retrieve the
information they need from the inference system. In the paper, a
validation example shows how this process is done.

Keywords - Context-awareness; data modeling; light ontology
management; reasoning; service-oriented architectures

I. INTRODUCTION

Mobile applications are increasingly capable of adapting
their performance to the changing situation of their users. This
is mainly possible thanks to the data retrieved from different
sensors embedded in the mobile devices, which may provide a
lot of information about the user's context if adequately
processed.

In order to manage context information, many frameworks
have been proposed to date. Some of them make use of off-the-
shelf toolkits designed to parse data models and perform
automatic reasoning. Most of them are unable to be deployed
in mobile devices, as the toolkits they rely on are not targeted
at resource-constrained devices. There are some proposals
which work in mobile environments, but they usually lack
flexibility as they are adhoc solutions. In this paper, we
propose a reasoning system to be integrated in the PIRAmIDE
mobile framework (PIRAmIDE states for 'Personalizable
Interactions with Resources in AmI-enabled mobile Dynamic
Environments'), a service-oriented architecture conceived to
accelerate the development of context-aware applications. The
objective is to provide both applications and modules in the
framework with a light and multi-domain infrastructure to
perform automatic reasoning, in order to alleviate them of
accomplishing these tasks.

Section II reviews existing embedded toolkits for data
model management and reasoning. Section III briefly presents
the framework PIRAmIDE, in which we have integrated our
reasoning system. The framework's reasoning needs, together

Alejandro Álvarez, Marcos Sacristán

Treelogic
Asturias, Spain

{alejandro.alvarez, marcos.sacristán}@treelogic.com

with its general data model are detailed in Section IV. Our
embedded reasoning system and an example for validation are
presented in Sections V and VI. Section VII concludes the
paper with an analysis of the drawbacks and key issues we
have identified when designing and building the reasoning
system.

II. STATE-OF-THE-ART: MOBILE REASONING SYSTEMS

Most of the existing proposals for context management and
reasoning (see [1], [2] for a survey) rely on server-based
architectures which minimize the need for mobile devices to
have any internal reasoning capability (e.g. [3], [4]). Of course,
this centralized approach avoids to handle the restrictions
imposed by mobile devices (limited e.g. in terms of processing,
storage and batteries), but require permanent connectivity,
which may lead to increasing response times, power
consumption, security problems or service unavailability. On
the contrary, device-embedded strategies for reasoning avoid
permanent exchange of context information, securizing and
accelerating the inference process.

Although scarce when comparing with general context
management systems, some light tools enabling reasoning in
resource-constrained devices have already been described in
literature. Crivellaro et al. [5] developed [iJena, which serves to
manage ontologies stored in mobile devices although does not
face ontological reasoning. LOnt [6] is another custom
implementation of Jena API for mobile devices. Its main
features are its small size and low memory fingerprint, which
make it suitable to be used in J2ME mobile devices. Kleeman
et al. [7] intégrate the mobile Pocket KRHyper reasoner [8] for
user's profile management and decision-making tasks. Pocket
KRHyper is a powerñil reasoning system for Java-enabled
mobile devices, but it does not support any of the standard
ontology languages (OWL, SWRL, etc.).

In [9], a mobile framework to support ontology processing
and reasoning is proposed. The reasoning engine contains only
a forward chaining rule-based inference engine which can be
used to trigger the desired actions based on the rules that are
explicitly defined, but it only supports a subset of OWL
ontology inference rules. In this framework, a lightweight
RDQL query engine supporting a subset of RDQL syntax is
also developed. The juOR reasoner [10] is introduced as a part
of a framework for developing AmI-based medical devices. At
the moment it only reasons over a subset of OWL-Lite
entailments. Vázquez [11] implements a 'MiniOwl and
MiniRule' embedded reasoner, powered with ontologies and

http://ssr.upm.es
http://eelogic.com

domain rules that can successfully interpret situations that were
not previously solved without reasoning. This proposal only
implements a subset of OWL Lite, too. Finally, Bossam [12]
has native support for reasoning over OWL/SWRL ontologies
and RuleML rules. Its runtime size is about 750Kb, running on
J2ME CDC/PP platforms as well as J2SE platform of JDK 1.3
or later.

A transitional solution between server-based approaches
and device-oriented ones are hybrid architectures. In
MobileOntoDB [13], a real-time evaluation strategy is
proposed: any query performed in the device is initially
analyzed and, if it exceeds the device capabilities, it is then sent
to a central reasoning server. A distributed case-based
reasoning mechanism is used in AmbieSense [14], an agent-
based infrastructure for context-based information delivery for
mobile users, in which on-line reasoning resides on the user's
mobile device, while off-line reasoning is done in the user's
backbone system.

As previously stated, most of the proposals above are adhoc
solutions to specific problems, hardly scalable or configurable.
Up to our experience, the most feasible and versatile tools for
data model management and reasoning are [iJena, Pocket
KRHyper and Bossam (see Section VII).

III. PIRÁMIDE FRAMEWORK: FUNCTIONAL DESCRIPTION

AND ARCHITECTURE

The light framework 'PIRAmIDE' aims at providing a set
of standard features to build context-aware mobile applications,
in order to support and accelerate their design and development
life cycle.

PIRAmIDE provides easy access to the information
acquired from a number of sensors, both embedded in the
mobile device (accelerometers, gyroscopes, RFID readers,
camera, etc.) or deployed within the user's environment
(ambient sensors, QR codes, etc.). Additionally, the framework
is also prepared to intégrate context information from third
parties (coming from virtual sensors, e.g. in-the-cloud
calendars). Built on these sensing enablers, PIRAmIDE offers
a set of application-independent services which may be used by
the applications deployed on top of the framework to capture
context data. Horizontal services are, for example, related to
the physical detection of points of interest (through wireless
technologies), the management of position estimation (based
on GPS when outdoors and on WiFi, ZigBee and Bluetooth
systems when indoors), image-based decoding of
bidimensional codes and automatic reasoning.

PIRAmIDE is based on a service-oriented software
architecture [15] composed by three main building blocks:
Sensing Subsystem, Context Management Subsystem and Core
Subsystem (Figure 1). The Sensing Subsystem decouples the
access to embedded and external sensors from upper
processing levéis by wrapping sensor specific characteristics
inside software units, which deals with low-level hardware
information retrieval. The Context Management Subsystem is
composed by a number of modules that process data coming
from sensors (or from other modules), fuse them, and infer
complex context parameters. Finally, the Core Subsystem
provides several features to intégrate software modules into the

middleware, such as discovery and registry management of
new elements and some common utility libraries. Applications
consume context information provided by enablers using the
features provided by PIRAmIDE Core Subsystem. Enablers
and applications use an (asynchronous) event-based
communication strategy, also leaded by the Core Subsystem, in
order to exchange context data.

Sensing Subsystem | I I] • [

Figure 1. PIRAmIDE: mobile service-oriented framework architecture

PIRAmIDE has been developed using mobile OSGi
(mOSGi). mOSGi is a Dynamic Module System for Java,
handling modules referred as bundles (PIRAmIDE's enablers):
cohesive, self-contained units, which explicitly define their
dependencies to other modules/services and their external
APIs. mOSGi improves encapsulation and reusability,
simplifying the implementation of a modular system.
Additionally, it is dynamically configurable in real time
operation. Regarding its core functionalities, mOSGi enables a
set of software tools useful for general service management
and, particularly, for a fast and dynamic development of new
services (automatic service registration, event management,
logging service, etc.). PIRAmIDE middleware is currently
implemented in Java, running on a mOSGi platform based on
J9 Virtual Machine inside a Windows Mobile device.
However, several implementations of mOSGi framework are
available for other mobile operative systems such as Symbian
or Android, so migration should be possible at a reasonable
coding cost.

At present, the set of PIRAmIDE's sensors and horizontal
enablers are being extended. Particularly, this paper refers to
the design, development and integration of a new enabler
providing reasoning services: a flexible and configurable tool
to discharge applications of periodic reasoning tasks which
may otherwise imply a higher cost both in terms of resources
and quality of service.

IV. REASONING NEEDS IN P I R A M I D E

A. Requirements for a embeddable reasoning infrastructure

PIRAmIDE's reasoning system will initially rely on a
generic data model which will offer support to the reasoning
procedures of the horizontal services. The reasoning
functionality is initially thought to be accessible from every
PIRAmIDE component, although applications will be able to
directly access the reasoning service too.

In order to build the reasoning system, PIRAmIDE needs a
common data model, which needs to be:

• Scalable, allowing dynamic updates of the knowledgebase
to include new context sources.

• Flexible, allowing standard access from different
components in order to associate context information at
different levéis of abstraction.

• Syntactic and semantically explicit and formal, facilitating
consistency checking when including new entities and
concepts.

• Sharable and reusable among different types of systems,
and prepared to support future distributed reasoning
processes.

• Light, to be easily managed by resource-constrained
mobile devices, ensuring limited reasoning response times.

• Particularizable/extensible for different knowledge
domains, as PIRAmIDE is intended to support a wide
range of heterogeneous applications. In particular, the
eHealthleWellbeing and the elnclusion reference domains
have been chosen to bind the system validation.

On this data model, to be implemented by using an
ontological approach (Section IV.B), a light reasoner will offer
its functionalities to PIRAmIDE's components. The reasoner is
required to offer:

• Ontology model support. The reasoner must be able to
infer new context information from the constructions and
expressions defined according the common ontological
data model.

• Rule-based reasoning support. The reasoner must allow
managing different sets of rules and apply them to the
knowledgebase.

• Query management. Different sets of queries, to be
answered by the reasoner about the inferred information,
should be managed.

• Standard-oriented. The ontology model, the rule set and
the queries need to be defined when possible by using
standard formats in order to ensure 'shareability' and
reusability.

• In the same way as the data model, the reasoner must be
light enough to be deployed in resource-constrained
mobile devices, ensuring bounded response times.

B. General overview of PIRAmIDE 's data model

Taking into account the requirements above, PIRAmIDE's
data model is being implemented by means of ontologies, as
this approach is assumed to result in a versatile structure in
terms of distribution, validation, formalization and
completeness [16]. First of all, a general ontology considering
common concepts has been defined. This ontology is to be
extended with a number of sub-ontologies in order to cope with
the particular aspects for each domain of application that
PIRAmIDE could consider.

Figure 2. Classes and relations in Context Package

The general ontology aims at defining its main concepts to
support context inference and persistence processes. Initially,
five packages of classes are defined: User, Device, Context,
Service and Event. Figure 2 highlights the classes and
relationships modeled in the Context Package and the
relationships among some of the most important concepts in
other packages:

1) The user package considers explicit and non-dynamic
characteristics of the user. For example, personal data
(userName, userBirthDate, userGender, etc.), profile
information (e.g. including disabilities) and preferences are
included in this package. Generally, these data are manually
entered into the system, directly through the user or a system
administrator.

2) The context package models different features defining
the situation of the user. This information is extracted from in-
device or environment sensors, and offered to the applications
over PIRAmIDE through different services. This package
includes concepts such as Location, Environmental
Conditions, user Activity or near Networked Resources.

3) The device package specifies particular features
describing the user's mobile device. They include both,
software (operatingSystem, audioPlayerFormat, etc.) and
hardware features (totalMemory, keyboardType, etc.). The list
of available services and device sensors is also modeled here.

4) The service package mainly defines the attributes
characterizing the structure of PIRAmIDE's services, that is:
the context information they offer and how to access this
information.

5) The information offered by PIRAmIDE's enablers is
usually modeled as events. Different types of events are
modeled in the Event package (e.g. calendar appointments,
points of interest, networked resources, etc.).

C. Adapting PIRAmIDE's data model to a lightweight
infrastructure

OWL -a W3C standard language widely used in data
modeling- has been chosen to implement the ontology. It has

three increasing expressive sublanguages: OWL-Lite, OWL-
DL, and OWL-Full. Following the analysis in [17], we have
opted for OWL-Lite as the language to develop PIRAmlDE's
ontology. OWL-Lite supports a classification hierarchy and
simple constraints; classes and properties can be defined as
equivalent, making possible schema-matching and ontology
alignment. In addition, OWL-Lite allows properties to be made
optional or required. Obviously, OWL-Lite is less complex
than OWL-DL, a fact that can have a positive impact on the
efficiency of reasoners [17].

However, in the initial stages of the ontology (and sub-
ontologies) design, we aimed at fulfilling OWL-DL
expressiveness, as the data model could also be used in a
centralized infrastructure environment. OWL-DL is an
extensión to OWL-Lite, a subset of OWL that has
computational completeness and decidability (which means
that all computations are guaranteed to be computable within
finite time). In PIRAmlDE, the initial OWL-DL models were
transfonned to accomplish OWL-Lite features. To the best of
our knowledge, no automatic software tool exists that
automatically performs this OWL-DL to OWL-Lite
conversión, so it had to be done manually. In this process,
some logical assertions, those available in OWL-DL but not in
OWL-Lite, had to be removed (e.g. múltiple cardinality
restrictions), but not the main relations between concepts (and
their attributes and data types constraints). Protege 3.4.4 utility
was used to develop every ontology, and also to verify that the
resulting ontologies accomplished OWL-Lite expressiveness
level.

Although OWL-Lite does support importing third parties'
ontologies, external models available in the OWL-DL
developments were removed in the OWL-Lite versión, once
more to free the mobile device from extra processing tasks.
This issue will be revisited in future extensions of the 'lite
ontology', after individually assessing if it is reasonable to
process each of the external ontologies in the mobile
infrastructure (regarding its size, expressiveness, etc.).

V. A N EMBEDDABLE INFRASTRUCTURE TO ENABLE

DYNAMIC REASONING

This Section describes our proposal for a reasoning
architecture (an ontological manager and an ontological and
rule-based reasoner) ready to be integrated into the framework
PIRAmlDE. The architecture needs two integration elements to
be implemented: 1) first, it is necessary to develop a new
enabler, which will encapsulate the reasoner itself {Inference
Enabler in Figure 3); 2) next, each new enabler willing to use
the reasoning services needs to include an Ontology Manager
module in its own structure in order to be able to communicate
with the Inference Enabler (Figure 3 shows a Generic Enabler
integrating this module).

Our particular development uses Bossam [12], a rule engine
extended to support OWL and SWRL reasoning capabilities, as
the ontology (and rule-based) reasoner wrapped inside
Inference Enabler. [iJena [5], an ontology management API for
mobile clients, has been used in order to manage PIRAmlDE's
ontologies inside those enablers needing to use reasoning
services.

PIRAmlDE's light data model is used as the common
language for PIRAmlDE's components to exchange
information. In this sense, the Ontology Manager needs to
exchange three documents with the Inference Enabler in order
to feed the reasoning system: 1) an OWL document containing
the knowledgebase subset to reason over, 2) the set of rules to
apply in the reasoning process and 3) a specification of the
queries the reasoner needs to answer.

%<
n %

Application
/ \

] External Context Manager

^ External Context Handlers

(jJena
(Ontology Manager)

4a 4b Ac

OutputAdapter

ZÉ

J 1
.dapter

¡ OWU SWRL] SQWRÜ ¡

A

Enabler 1

5 Bossam
(Ontology Reasoner)

Inference Enabler

O
Enabler infernal data exchange
PIRAmlDE Core Subsystem event exchange

Figure 3. Software structures and information flow for building intelligent
services based on ontological reasoning over PIRAmlDE

The use of the reasoning system is explained throughout the
following data flow, which starts when an application asks the
framework PIRAmlDE for some context information to be
provided by a Generic Enabler through the use of sensors and
other services in the framework:

1) An application demands information on a context
parameter: the framework PIRAmlDE dynamically discovers
the enabler providing this information {Generic Enabler in
Figure 3) and starts and configures it to fulfill the application
requirements.

2) Obtaining external context data: the Generic Enabler
may need information coming from other enablers or sensors;
it can then subscribe or query other PIRAmlDE components in
order to get this information (by using its External Context
Manager).

3) Handling different types of context parameters: each
type of context data received from sensors and/or enablers will
be managed by different External Context Handlers. Context
data may be independently pre-processed here.

4) Preparing context information for reasoning processes:
information handled by the Generic Enabler needs to be
shaped in an ontological way in order to be understood by the
Inference Enabler. This is performed by the Ontology
Manager, leading to:

a) Model instantiation: context data acquired from other
enablers or sensors need to be instantiated according to the

ontology model. [iJena will genérate an OWL-Lite document
(in N-TRIPLE serialization format) as a temporal
knowledgebase (KB) to feed the reasoner.

b) Rules configuration: if the reasoner needs to be fed
with any rule, a new rule ontology (based on SWRL standard)
will be also generated at this point. Currently, just static
SWRL files are used, as [iJena does not support this standard
yet.

c) Queries definition: finally, it is necessary to state the
specific queries the reasoner needs to solve. A popular
ontological query language, as SQWRL (or SPARQL, RDQL,
etc.) is supposed to be used at this point, but currently a
proprietary one, just managed by the reasoner, is actually
used.

5) Reasoning: Bossam is used as ontology and rule-based
reasoner. It reasons about the set of facts obtained from
merging both, OWL and SWRL ontologies, returning the
answers to the (SQWRL) queries.

6) Context aggregation: the Generic Enabler may also
need to fuse different context data (some from the reasoning
process, some directly coming from other enablers/sensors).

7) Service output adjustment: finally, the Generic Enabler
output is adapted to meet the application requirements.

To clarify the process previously described, an example of
reasoning service is following reviewed.

VI. VALIDATION

Some location-based applications usually need to transíate
the Cartesian position information (coordinates <x,y>),
provided by localization systems, into symbolic information
(e.g. "living room"), describing the zone or área where the user
is moving. This process, usually referred as reverse geocoding,
may be configured and automated into PIRAmIDE by using its
reasoning capabilities, preventing the internal services or
applications from independently and redundantly compute the
information once and again.

In this case, three different enablers have been implemented
(Figure 4): 1) the Inference Enabler, as described in previous
Section; 2) a Location Enabler, that obtains an accurate
estimation of the location of a mobile device, by fusing
information acquired from different positioning technologies
(GPS, WiFi and Bluetooth); and 3) a Location Mapping
Enabler, which encapsulates the necessary logic to provide the
mapping service: subscription to the needed sensors/enablers,
ontology model instantiation, rules and queries management,
etc. This last enabler follows the architecture defined for the
Generic Enabler in the previous Section.

Figure 4 shows these three components and the exchanged
information flow: 1) the application requests subscription to the
symbolicZone measurements and PIRAmIDE addresses this
subscription towards the service in charge of that kind of
measure: the Location Mapping Enabler, 2a) this enabler
knows it needs to settle a subscription to the Location Enabler;
2b) at the same time, the Inference Enabler is initially
configured (in this particular case, the Location Mapping
Enabler already knows the SWRL rules and -SQWRL-
queries to apply); 3) Location Enabler starts generating events,

that PIRAmIDE will address to the subscribed components; 4)
Location Mapping Enabler updates the OWL KB according to
the information received from the Location Enabler; 5) the
updated KB is used, together with the set of rules and queries,
in order to determine the symbolic position of the user; and 6)
the Location Mapping Enabler finally offers the user's
symbolic location to the application.

^

Application

L
LocationMapping

Enabler

2aJ~lT 3

LocationEnabler
(GPS.WiFI, BT, ...)

2b 5 Inference
Enabler

PIRAmIDE platform

4
'symbolicZone' subscription
'[x,y] location' subscription
initial reasoner configuration
periodic [x,y] measure
updated ontology [OWL]
reasoner response
'symbolicZone' response

Figure 4. Cartesian to symbolic location mapping service overview.

Figure 5 partially shows the data handled by the reasoner
(and those provided by the mapping service). In particular it
shows: the model instantiation of a number of symbolic zones
(rectangles defined by opposite corners; Figure 5.1) and the
Cartesian position of the user (Figure 5.2), the rule applied to
infer the symbolic location (Figure 5.3) and the final result of
the inference process (Figure 5.4).

< S y m b o l i c Z o n e r d f : I D - " z o n e A " >
< x l r d f : d a t a t y p e - " & x s d ; i n t " > 2 3 < / x l >
< y l r d f : d a t a t y p e = " & x s d ; i n t " > 2 7 < / y l >

•i \ <x2 r d f : d a t a t y p e - " & x s d ; i n t " > 4 3 < / x 2 >
<y2 r d f : d a t a t y p e = " & x s d ; i n t " > 5 4 < / y 2 >

< / S y m b o l i c Z o n e >
< S y m b o l i c Z o n e r d f : I D - " z o n e B " > [. . .] < / S y m b o l i c Z o n e >
< S y m b o l i c Z o n e r d f : I D - " z o n e C " > [. . .] < / S y m b o l i c Z o n e >

[• • •]

+
<Location rdf:ID-"userLoc">

_. <x rdf : da ta type-"&xsd; i n t " > 3 K / x >
' <y r d f : d a t a t y p e = " S x s d ; i n t " > 4 2 < / y >

</Locat ion>
+

L o c a t i o n (? p) , S y m b o l i c Z o n e (? z) , x (? p , ? p x) , x l (? z , ? z x l) , x2(
3j ? z , ? z x 2) , y (? p , ? p y) , y l (? z , ? z y l) , y 2 (? z , ? z y 2) , g r e a t e r T h a n (

? p x , ? z x l) , g r e a t e r T h a n (? p y , ? z y l) , l e s s T h a n (? p x , ? z x 2) , l e s s
Than(?py,?zy2) -> hasSymbol icLocat ion(?p , ?z)

<Location rdf:ID="userLoc">
4) <hasSymbolicLocation rdf:resource="#zoneA"/>

</Location>

Figure 5. Excerpt of the ontology data exchanged between the Location
Mapping Enabler and the Inference Enabler.

VIL DlSCUSSION AND FUTURE WORK

This paper presents a proposal for a mobile reasoning
system, ready to be developed and integrated in a service-
oriented framework for context management. The system is
built on available tools for data model management and
ontology rule-based reasoning, which have been adapted to
work properly.

Following, we comment on some relevant aspects of the
design and development experience. We aimed at defining a
reasoning system: 1) capable of dealing with ontology data, 2)

using standard formats and 3) working in resource-constrained
mobile devices. On the one hand, nowadays it is easy to find
implementations just satisfying requirements #1 and #2 (Jena,
OWLAPI, Pellet, HermiT, etc.) but they are not really
developed to be deployed in any kind of mobile device (we
even tried to do so with most of them, without success). On the
other hand, state-of-the-art analysis reveáis a (limited) number
of developments just meeting #3 prerequisite. So, as far as we
are concerned, [üena (as ontology manager) and Bossam (as
ontology and rule-based reasoner) are the only ones satisfying
all three key requirements. Nevertheless, their integration
inside the PIRAmIDE framework has not been smooth.

It is important to note that both [iJena and Bossam are
research developments and cannot be taken as fully-operative
systems. One of their main drawbacks is their lack of
integration: most of the infrastructure ontology reasoners
(Pellet, HermiT, etc.) are directly coupled with Jena and/or
OWLAPI in order to manage the models they reason over.
However, Bossam just can load data models from the file
system. This limitation breaks the process of updating the
knowledgebase before inferring new information: in our
particular implementation, [üena and Bossam communicates
between them by exchanging documents stored in the mobile
file system (see Figure 3.4), an error prone practice that
definitely increases time responses. This is, from our point of
view, Bossam ’s main drawback.

Moreover, [iJena lacks flexibility regarding the supported
standard formats. Although future extensions are planned, at
present it just can read OWL ontologies coded in N-TRIPLE
syntax. No report about the performance of this syntax in
mobile devices has been found, but updated references
regarding this issue ([6], [7]) point out to Manchester or KRSS
syntax as some of the most appropriate for resource-
constrained devices. In addition, [üena lacks support to any
rule or query language standard; besides, it does not allow
external ontologies to be imported.

There still exists few developments capable of dealing with
ontology management and reasoning in mobile devices, and the
existing ones are still far from maturity. From our point of view
there is a need of a common ontology management strategy (as
Jena or OWLAPI for infrastructure environments) to be
integrated in mobile reasoners. It is also worth mentioning that,
as far as we are concerned, no one of the ‘well-known’
ontological reasoners (Pellet, FaCT++, RacerPro, etc.) are
planned to be migrated to mobile environments.

Regarding the development of our PIRAmIDE light
framework for context management, we are currently testing
the feasibility of using the Inference Enabler simultaneously
from different Service Enablers. Performance tests to evalúate
the computational load of the reasoning solution will be done.
We are also starting to face some of the main limitations of the
employed tools, mainly the file system dependency and the
dynamic SWRL and SQWRL management support.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish Ministry of
Industry, Tourism and Commerce and the European Fund for
Regional Development through the Avanza I+D
subprogramme, under grant TSI020301-2008-2. The authors
also acknowledge enriching discussions with other partners of
the PIRAmIDE consortium.

REFERENCES

[I] M . Baldauf, S . Dustdar, F . Rosenberg, “A Survey on Context-Aware
systems”, International Journal of Ad Hoc and Ubiquitous Computing,
2007, Vol. 2, Is. 4, pp. 263-277.

[2] M . Perttunen, J. Riekki, O . Lassila, “Context representation and
reasoning in pervasive computing: a review”, International Journal of
Multimedia and Ubiquitous Engineering, 2009, 4(4):l-28.

[3] T . Gu, H . K . Pung, D . Q . Zhang, “Toward an OSGi-based infrastructure
for context-aware applications”, I E E E Pervasive Computing, 2004, Vol.
3, pp. 66-74.

[4] P . Fahy, S . Clarke “ C A S S - a middleware for mobile context-aware
applications”, 2004, Procs. of the Workshop on Context Awareness,
Mobisys, 2004.

[5] F . Crivellaro, "(iJena: Gestione di ontologie sui dispositivi mobili”, MsC
Thesis, 2007, Politécnico di Milano.

[6] M . Koziuk, J. Domaszewicz, R . O . Schoeneich, M . Jablonowski, P .
Boetzel, “Mobile Context-Addressable Messaging with DL-Lite Domain
Model”, L C N S Smart Sensing and Context, 2008, Vol. 5279/2008, pp.

168-181.

[7] T . Kleemann, A . Sinner, “Description logic based matchmaking on
mobile devices”. Procs. lst Workshop on Knowledge Engineering and
Software Engineering, 2005, pp. 37-48.

[8] A . Sinner, T . Kleeman, “KRHyper - In Your Pocket”, L C N S Automated
Deduction - C A D E - 2 0 , 2005, Vol. 3632/2005, pp. 452-457.

[9] T . Gu, Z . Kwok, K . K . Koh, H . K . Pung, “A Mobile Framework
Supporting Ontology Processing and Reasoning”, Proc. of the 2nd
Workshop on Requirements and Solutions for Pervasive Software
Infrastructures, 2007.

[10] S . Ali, S . Kiefer, "uOR - A micro owl description logic reasoner for
ambient intelligent devices”, L C N S - Advances in Grid and Pervasive
Computing, 2009, Volume 5529/2009, pp. 305-316.

[II] J . I . Vázquez. “A reactive behavioural model for context-aware semantic
devices. PhD Thesis, 2007, Univesidad de Deusto, Bilbao, Spain.

[12] M . Jang, J - C Sohn, “Bossam: An Extended Rule Engine for O W L
Inferencing”, L C N S Rules and Rule Markup Languages for the

Semantic Web, 2004, Vol. 3323/2004, pp. 128-138.

[13] G . Specht, T . Weithoner, “Context-Aware Processing of Ontologies in
Mobile Environments”, Procs. of the I E E E Int. Conf. on Mobile Data
Management, 2006, I E E E Computer Society, pp. 86.

[14] H . Myrhaug, N . Whitehead, A . Goker, T . E . Faegri, T . C . Lech
“AmbieSense - A System and Reference Architecture for Personalised
Context-Sensitive Information Services for Mobile Users”, L C N S
Ambient Intelligence, 2006, Vol. 3295/2004, pp. 327-338.

[15] O A S I S Standard, “Reference Model for Service Oriented Architecture
1.0. 2006.

[16] A - C . Boury-Brisset, “Ontology-based Approach for Information
Fusión”, Proc. of the 6th Int. Conference on Information Fusión, 2003,
522 - 529.

[17] “ O W L Web Ontology Language Overview, W 3 C Recommendation, 10
February 2004, http://www.w3.org/TR/owl-features/.

391

http://www.w3.org/TR/owl-features/

