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Abstract — In this paper, machine learning solutions have been 

investigated to improve the decision of packet duplication in a 

multi-connectivity cellular network to optimize the satisfaction of 

delay and reliability in 5G. A multi-agent deep reinforcement 

learning scheme with sequential actor-critic model has been 

developed to improve the decision of packet duplication from 

observations of radio environment including channel state, 

interference and load. A multi-objective reward function has been 

developed to minimize the transmission delay, error rate and 

maximize satisfaction of the URLLC targets. System-level 

simulations have been carried out in a heterogeneous network by 

utilizing dual connectivity between macro and small cells. Our 

deep reinforcement learning scheme is shown to prioritize packet 

duplication to the UE where it gains from lower queueing and 

interference. Comparing with standard 5G multi-connectivity, it 

reduces the overall packet error rate and delay, with increased 

satisfaction rate of URLLC targets. Furthermore, it improves the 

network throughput and resource efficiency in dynamic user 

traffic with lower redundancy.  

Keywords – Multi-Connectivity, Packet Duplication, Deep 

Reinforcement Learning    

I. INTRODUCTION  

Dual-Connectivity (DC) has been introduced in 3GPP LTE 
system to enable the connection of a User Equipment (UE) to 
two Base Stations (BSs) in order to improve network capacity 
and throughput by splitting the data across two separate 
connections. 5G New Radio (NR) system has introduced the 
support of Ultra-Reliability Low-Latency Communications 
(URLLC) with a target of six nines (99.9999%) packet 
transmission reliability at a latency of 1 ms. This is used to 
support industrial and time sensitive applications [1]. In order to 
meet this target, 3GPP Release-15 proposes to exploit DC for 
packet duplication to improve reliably by utilizing spatial 
diversity. It also extends DC to four connections (named as legs), 
including two component carriers (CC) on each of the two BSs 
(named as gNBs) [2]. The gNB and UE can transmit up to four 
copies of the same packet payload. This can potentially reduce 
the packet error rate (PER) if secondary legs provide better 
channel quality and lower interference, or reduce packet delay if 
secondary cells have more resources and lower buffered traffic 
[3]. On the other hand, packet duplication generates redundant 
data transmissions which reduce the spectral efficiency of the 5G 
system [4]. In the situation where the secondary cell has limited 
resources or is highly loaded, packet duplication can 
significantly increase delay to the connected UEs. Moreover, 
transmitting duplicated packets can increase interference to the 
adjacent UEs allocated with the same resources, particularly 
when the density of gNBs and UEs is high. Therefore, to 
optimize reliability and delay for multiple UEs with the best 

spectral efficiency is challenging for using packet duplication in 
multi-connectivity. Since the network performance is affected 
by multi-leg transmission at each UE, we will have to deal with 
a combinatorial optimization problem if it is solved in a 
centralized manner. On the other hand, if the duplication 
decision is made locally at each UE, then a multi-agent 
optimization problem must be solved, which requires careful 
coordination between all the agents.  

In this paper, we study the challenge on how to effectively 
utilize packet duplication to maximize the Quality of Service 
(QoS) satisfaction of delay and reliability of multiple UEs in the 
network, according to the dynamics of radio and traffic 
environment. In the Release-15 specification [5], the Cell-Range 
Extension (CRE) offset is used in HetNet to enable DC for UEs 
in an area where the Reference Signal Received Power (RSRP) 
differences of macro and small cells are within a certain range. 
Moreover, a DC range parameter has been introduced to control 
the amount of UEs using packet duplication. With this 
parameter, a UE can duplicate packets only if the following 
condition is satisfied: 

 ��������� + 
���
�� > ��������� + ���   (1) 

In this context, packet duplication is enabled to UEs only if the 
macro cell RSRP is high enough with respect to the small cell 
RSRP. This disables DC to UEs where the leg channel quality is 
poor, which reduces unnecessary duplication. An improved 
scheme is proposed in [6], which duplicates packet only when 
the first attempt of transmission on the primary leg fails, This is 
based on the assumption that primary leg is more reliable.  
However, these schemes have constraints in the following 
aspects: 1) The impacts of interference, traffic load, scheduled 
resources are not considered, which largely affects the QoS; 2) 
The QoS target changes with different services, and modeling 
the correlation between QoS and RSRP offset is difficult; 3) The 
channel and traffic fluctuate in time, where the threshold based 
scheme cannot capture the long term QoS impact of duplication; 
4) The interactions of multiple UE transmission affects the 
network level QoS, which is not considered.  

In order to cope with these problems, we propose a Deep 
Reinforcement Learning (DRL) [7] solution to decide packet 
duplication by observing the long term impact of signal strength, 
interference, traffic, and load with respect to delay and 
reliability. We design a sequential actor-critic deep neural 
network model that predicts the potential best decision policy of 
packet duplication, under the states that represents different 
system and environment conditions. A reward function of delay 
and reliability is defined with respect to the targeted value of 
URLLC services. The model is trained in the network by 
combining the rewards of multiple UEs taking actions at the 



same time, such that the model maximizes the system-wide QoS 
rather than an individual UE.  

The rest of this paper is organized as follows. Section II 
discusses the related work. Section III illustrates the system 
model of packet duplication in multi-connectivity. Section IV 
describes our deep reinforcement learning solution. Section V 
Section IV presents the system level simulation and discusses 
the results. We finally conclude this paper in Section VI. 

II. RELATED WORK 

Machine learning (ML) has been extensively investigated to 
solve multi-agent interactive problems in wireless 
communications. Reinforcement Learning (RL) is recognized as 
an effective model-free approach to provide optimal decision 
policies from trial-and-error experience. Multi-Armed Bandit 
(MAB) is a simple distributed RL algorithm that selects action 
with largest utility and observes reward from the system [9]. The 
utility of each action is modeled as a random variable with 
unknown mean, and estimated using the upper bound of 
confidence interval computed from the observed outcomes of 
actions taken during time. MAB converges fast in a static 
scenario. However, the changes of environment will force the 
agent to explore other actions until sufficiently large iterations 
are performed to change the decision policy. This is unrealistic 
in radio network where the channel, traffic, mobility are 
constantly changing.  

Conventional RL consider the problem as Markov Decision 
Process (MDP), which explores the optimal state transitions that 
leads to maximum accumulated rewards. Q-learning is a well-
known RL, where a finite set of states is used to model the 
environment [6]. An action changes the system into a new state, 
and a Q value is computed for each action based on the 
accumulated reward of current state, discounted by the best 
action of the next state. In this context, Q-learning is an off-
policy approach that searches for actions maximizing future 
rewards. However, the states for modeling radio environment 
can be large and continuous. The Q table is unable to capture 
complex state transitions, and the exploration is challenging.  

Deep learning (DL) has been exploited as an effective 
approach to model complex environments. It can be used to 
predict the channel quality, traffic, mobility based on the past 
observations [10]. Deep neural network (DNN) is a well-known 
DL, that can use back propagation algorithm to optimize the 
hyper-parameters, which minimizes the loss of predicted 
outcome. However, it is difficult to capture all possible features 
affecting the QoS performance in radio network, because there 
are many underlying operations in lower layers, and interactive 
behavior from multiple users. To train a DNN model predicting 
the QoS requires a large number of radio parameter collection, 
and it is difficult to guarantee the accuracy due to the complex 
radio environment.  

III. SYSTEM MODEL  

In this paper, we consider a HetNet scenario where UEs with 
DC can be connected to macro and small cells. The UEs located 
in the area satisfying RSRP criteria (1) is enabled with DC, 
which is shown in the grey area in Fig. 1.  

The UE is connected to a Primary Cell (PCell) having the 
strongest RSRP. In downlink the Master gNB (MgNB) hosts the 
SDAP layer receiving packets from the core network and 
passing them to the PDCP layer, which controls the duplication 
of packets. The MgNB activates a set of Secondary Cells (SCell) 
hosted at a Secondary gNB (SgNB). The MgNB and SgNB are 
connected through the Xn interface, which is used to forward 
duplicated PDCP packets from the MgNB to the SgNB. A 
similar procedure exists in the uplink where the duplicated 
packets are transmitted by the UE to multiple cells. The general 
architecture for downlink transmissions is illustrated in Fig. 2. 

IV. DEEP REINFORCEMENT LEARNING 

We propose a ML agent implemented at the PDCP layer to 
decide which secondary legs to use to duplicate and transmit the 
packet for the UE within the DC range. Our ML agent predicts 
the impacts of channel and traffic conditions as well as 
interference and congestion on the QoS experienced by a packet 
transmission on the available legs. Based on the predicted QoS, 
the ML agent decide the best combination of legs to use to 
duplicate the PDCP packet.  

A. Sequential Actor-Critic Model 

The ML agent has the potential to model radio environment 
with DL and multi-user interactions through RL. We propose 
here a DRL model to combine states, actions, rewards obtained 
from multiple users to learn the joint optimal decision policy. A 
high-level architecture is illustrated in Fig. 3. 

 

Fig. 1. Example DC range configuration (reproduced from [6]) 

 

Fig. 2. PDCP duplication in Multi-Connectivty Archtiecture 

 

Fig. 3. Deep Reinforcement Learning for Packet Duplication  



The DL model takes as input the radio states �� of each cell. 
The state includes the RSRP measured at the UE, the buffered 
traffic in the cell, the location of the gNB, and the antenna 
direction of the leg. It generates the optimized probability of 
selecting an action by turning on or off packet duplication under 
the state condition �(�|�, �), which is used by the PDCP layer to 
duplicate packets. When the packet is acknowledged by the 
receiver as delivered or lost, the model collects the delay 
 and 
error rate � and compute a reward from a function that defines 
the optimization objective. The delay measured at the PDCP 
layer includes both the packet queueing delay and the 
transmission time over physical channel. The error rate is 
reported by the UE, which is computed from the measured error 
rate of the received transport blocks during the packet 
transmission. For duplicated transmissions to UE � , the 
probability �� is the defined as the joint error probability while 
the delay 
� is the minimum delay across multiple legs: 

  �� = 1 − ∏ $%��� &'(�()* +�∈-. ,  (2) 

 
� = min &∑ 3� 456(1 + '(�()* )�∈-. +78
, (3) 

where 9�6�  are transmit power, channel/antenna gain of leg 4, :;  is thermal noise, 3  is the transmission efficiency which 
depends on the modulation and coding scheme selected by the 
link adaptation algorithm.  

We observe that state variables like RSRP and load change 
during the packet transmission due to the dynamics of the radio 
channel and user traffic. Similarly, the gNB location and antenna 
direction relative to the UE position change when the UE is 
moving across different cells. Thus the state changes can be 
affected by the environment in addition to the action. In order to 
capture such behaviour, we use a sequential model to predict the 
variation of channel and traffic during next packet transmission, 
which improves accuracy of reward prediction. 

A Long Short-Term Memory (LSTM) neural network is 
used for �(�) that uses multiple observed states of current and < 
past packets to infer the decision for the next packet. The 
probability of taking an action on UE � for packet = is: 

  �(�)>,� = �(�
,�|�
,�, … �
7@,�, �) (4) 

In order to model the interaction between multiple UEs and 
learn the set of individual UE decisions that affects the network 
performance, we propose a hierarchical actor-critic RL. It 
contains a critic predicting the long-term accumulated reward of 
each action, and an actor predicting the optimal decision policy. 
The critic uses a value-based RL model A(��|��; �C)  that 
indicates the impact of an individual UE action on the overall 
network performance. This is achieved by combining the 
rewards observed from multiple UEs sending their packets at the 
same TTI, with Stochastic Gradient Descend (SGD) applied to 
optimize �C, as follows:   

 �D ← �D − F ∑ GH�I,�I,�I − A(�I|�I; �D)J2
�I∈� . (5) 

This way the model maximizes the cumulative performance 
of the entire network rather than the performance of a single UE. 
For each packet transmission, the critic computes a time-
difference (TD) value between the output of the value function 

A(��|��; �C) and the observed reward of a UE H�M,�M  as indicated 

in equation (6). This indicates the difference between UE 
individual performance and the network target 

 N�M,�M = H�M,�M − A(��|��; �C). (6) 

The actor uses policy RL model �(�|�� , �O) to indicate the 

probability of duplicating a packet on a selected leg. The TD 
value is used to optimize �O, such that �(�|�� , �O) converges to 

an action that maximizes the value function A(��|��; �C) and the 
long-term reward of the network. The optimization of the 
parameter �O  is achieved though the policy gradient update as 

follows: 

 �P = �P + N�I,�I log �(�|�I, �P). (7) 

The sequential actor-critic model can be implemented in a 
semi-centralized architecture. The network periodically collects 
a batch of samples composed of the triple {state, action, reward} 
from multiple gNBs and UEs and train the critic that predicts the 
network performance of each action. The TD values are sent to 
each gNB, which trains the actor. After that the gNB and UE can 
use the local actor to decide duplication for each packet, without 
communication with the network.  

B. Multi-Objective Reward Function 

The reward function is a key component of reinforcement 
learning since it defines the objective of the decision policy, 
which eventually steers the operational point of the controlled 
system. Conventional rewards are usually defined to optimize a 
single performance metric. However, in a 5G network there are 
multiple services from different users which require different 
level of delay and reliability targets. In this context, a novel 
multi-objective reward function has been designed to capture 
both the delay and reliability targets. The objective is to allow 
operators to easily tune the reward function, such that the ML 
model can optimize the performance in the targeted range. 
Indeed, delay and reliability are two completely different 
metrics. In packet duplication, a higher reliability (lower error 
probability) can be achieved by assigning more resources from 
multiple legs. However, this causes more redundant traffic to the 
cells, which increases the system load and eventually the delay 
experienced by data connections. The ML algorithm is supposed 
to maximize the satisfaction rate of delay and reliability target 
for all the users in the network. To this end, we developed 
negative log functions to map the metrics in configured targets 
on reward.  

The reward of PER is defined as follows: 

 H' = T 1−U' log �             � < �8otherwise (8)  

�8  is defined as the targeted PER of a 5G service, which 
enables the DRL to minimize PER towards the targeted level. It 
can be derived as follows 

 �8 = exp &−_U'`78+. (9)  

The reward of packet delay is defined as follows: 

 Ha = b 10−Uad log Uae
          
 < 
8
 > 
fotherwise (10)  




8  is defined as the target delay of a 5G service, which 
enables the DRL to minimize delay towards the targeted level, 
when it is below the upper bound 
f. They can be derived as 

 g
8 = _Uae`78 ∙ exp &−_Uad`78+

f = _Uae`78  (11)  

The final reward function combining PER and delay is as 
follows: 

 � = H' ∙ Ha . (12)  

Fig. 4 illustrates the contour plot of the reward function (12) 
when target error rate and delay are set equal to �8 = 1078; and 
8 = 0.02 ms, respectively. It can be observed that the reward 
stays at 1 when PER and delay is below �8 and 
8, respectively. 
The reward decreases exponentially as each QoS metric 
increases to 1. This forces the DRL agent to select an action if it 
receives delay or error rate closer to the target and stops 
exploration when the target is achieved.  

V. PERFORMANCE EVALUATION 

In this section, a system level simulation of the proposed 
sequential actor-critic DRL with multi-objective reward 
function is demonstrated. The scenario is based on a HetNet 
defined in [11] and previously utilized in [5], [6]. It comprises 7 
macro gNBs with 3 sectors each, and 4 clustered small cells per 
macro cell sector. The macro and small cell layers operate at 
separated frequency of 2 GHz and 3.5 GHz, respectively, with 
10 MHz bandwidth for each. The cell selection of each UE is 
based on RSRP measurement, with a 15 dB CRE and 10 dB DC 
range to enable DC between macro and small cells. There are 
288 UEs randomly placed in the converge area. The offered 
traffic to the network is FTP3, with an arrival rate of 100 
packets/s of each UE in downlink. We change the packet size 
from 25 to 600 bytes to evaluate performance at different traffic 
levels. The key parameters are listed in TABLE I.  

The network layout is illustrated in Fig. 5. Note that the UE 
location is changed randomly at each simulation round, and the 
performance metrics are averaged across multiple random drops 
of the UEs. The proposed solution is compared with standard 
where PDCP duplication is enabled for UE in DC range.  

We first investigate the performance of PER and delay 
distributions on different users. The packet size is set to 600 
bytes with UE traffic at 60 MB/s.  

In the PER evaluation we set the lower bound PER �8 =i1078;, 107jk, which corresponds to U' = i0.1, 0.2k according 

to (9). Fig. 6 illustrates the cumulative density function (CDF) 
of the PER. It can be observed that the DRL schemes achieve 
significant lower PER than no duplication due to enhanced SINR 
from two legs, and lower PER than full duplication due to 
reduced transmission on low quality legs which causes 
interference. With reward configuration of  �8 = 1078; , it 

 

Fig. 4. Reward function of packet error rate and delay 

TABLE I. SYSTEM SIMUALTION PARAMETERS 

Parameters Values 

Number of macro cells 7, with 3 sectors each 

Number of small cell 84, with 4 cells each macro sector 

Number of UEs 288, uniformly placed 

Carrier frequency Macro: 2 GHz, Small: 3.5 GHz 

Bandwidth Macro: 10 MHz, Small: 10 MHz 

Traffic model FTP, 100 packets/s, 25 – 600 Kbytes 

Cell range extension 15 dB (small to macro) 

Dual Connectivity range 10 dB (macro to small) 

Simulation length 21000 TTIs by 10 rounds 

Height Macro: 32 m, Small: 10 m, UE: 1.5 m 

Transmit power Macro: 46 dBm, Small: 30 dBm 

Channel model Urban macro (UMa) and micro (UMi) 

Subcarrier spacing 15 kHz 

 

 

Fig. 5. Example heterogeneous network layout 

 

Fig. 6. Packet Error Rate Distribution 



provides lower PER compared to �8 = 107j . The DRL 
increases duplication to further reduce PER below 107j, such 
that more users are satisfied with lower PER. 

In the delay evaluation, we set the lower bound of packet 
delay at 
8 = i0.5, 10k ms and we fix the upper bound at 
f =50 ms. This corresponds to Uad = i0.5, 1.5k  and Uae = 0.02, 

according to (11). Fig. 7 shows the CDF of packet delay. It can 
be observed that the DRL schemes achieve lower delay than no 
duplication by gaining from a leg that has lower buffered data 
and higher SINR. It also reduces the delay above 1 ms than full 
duplication, which is achieved from reduced redundant traffic 
that creates queueing for other users. Moreover, the CDF of 
packets above 10 ms shows that the DRL with reward target of 
8 = 0.5 reduces the delay by half compared to 
8 = 10, and 
10 times compared to no and full duplication.  

We can conclude from the above analysis of the empirical 
distributions of the PER and delay that the proposed DRL 
scheme provides QoS gain compared to full and no duplication. 
With configured reward function, a higher PER satisfaction or 
lower delay level is achieved with respect to the targeted QoS. 

We investigate the performance of DRL under various 
network traffic conditions and compare it against baseline 
schemes that enable or disable packet duplications for UEs in the 

DC range. The traffic is tuned by changing the packet size while 
keeping the same arrival rate, as detailed in TABLE I. The DRL 
scheme is evaluated with parameters �8 = i1078;, 107jk  and 
8 = i0.5, 10k for the reward function. 

Fig. 8 presents the percentage of user satisfaction of 2 sets of 
delay and PER target: (0.5 ms, 1078;) and (0.5 ms, 107j). The 
DRL schemes provide significantly higher satisfaction than no 
duplication. With the target of delay at 0.5 ms and PER at 1078;, 
it provides higher satisfaction than full duplication. On the other 
hand, with a relaxed target of delay at 10 ms and PER at 107j, 
a similar satisfaction probability is achieved. This shows that 
DRL further optimizes the ultra-low delay and PER over 
standard duplication in DC, by reducing interference and 
redundant load from unnecessary duplication that provides no 
gains to the performance. 

Fig. 9 shows that our DRL schemes significantly reduce 
delay when the network traffic increases above 40 MB/s/UE. No 
duplication has higher delay over all because of limited 
resources and lower SINR provided in a single cell. The delay 
of full duplication is lower, but it increases significantly at 
higher traffic. This is because the redundant traffic in SCells 
causing higher queueing delay to the adjacent UEs, which 
overloads the network. On the other hand, the DRL scheme 
selects the packet to duplicate only when the SCell has lower 
buffered bytes, and the UE receives higher SINR. It gives the 
priority of duplication to the UEs that has delay gain from 
SCells, which avoids overloading the network.   

The performance of network throughput measured by the 
rate of delivered packets is shown in Fig. 10. It can be observed 
that the DRL scheme maximizes the throughput under different 
traffic conditions. The throughput of full duplication largely 
decreases when traffic becomes higher than 20 MB/s/UE. The 
DRL schemes limit the throughput drop by duplicating only a 
subset of packets, thus reducing congestion. With lower delay 
and PER target configured, the throughput gets higher. This 
aligns with the delay performance in Fig. 9 that redundant traffic 
and interference is effectively controlled. 

Fig. 11 presents the percentage of allocated resources for 
packet transmission. It can be observed that DRL decreases the 
resource usage assigned for duplicated packets when network 
traffic is above 20 MB/s/UE. This reduces redundant load in the 

 

Fig. 7. Packet Delay Distribution 

 

Fig. 8. Probaiblity of PER < � and Delay < 
 ms 

 

 

Fig. 9.  Average Packet Delay 
 



network, which permits to minimize delay and maximize 
throughput. The reward configuration with targeted delay 0.5 ms 
and PER 1078; has 10% higher duplication probability than that 
with 10 ms and 107j. This is because DRL attempts to further 
reduce PER and delay by duplicating traffic at lightly loaded 
SCells, and it does not degrade network throughput as shown in 
Fig. 10. Furthermore, the DRL schemes is shown to reduce more 
than 25% to 33% redundant duplicated packets than full 
duplication, while providing higher delay and PER satisfaction 
probability as shown in Fig. 8. This proves that DRL largely 
improves the network resource efficiency with targeted QoS 
provided.  

VI. CONLUSION 

In this paper, we have presented a deep reinforcement 
learning solution to autonomously optimize the decision of 
packet duplication in 5G multi-connectivity scenarios. An actor-
critic reinforcement learning algorithm is proposed to coordinate 
multiple UEs duplication decisions to maximize long-term 
network level QoS performance. A sequential deep neural 
network is used to predict the optimal decisions by observing the 
state of the radio channel and traffic load of the cells where UEs 
are connected to. A multi-objective reward function is developed 

to maximize the delay and reliability satisfaction probability 
according to the targets of URLLC.   

System-level simulation in a standard 5G HetNet shows that 
our proposed deep reinforcement learning solution largely 
reduces the overall packet error rate and delay at different traffic 
compared to standard dual connectivity. Furthermore, it largely 
improves network throughput and resource efficiency, with 
higher QoS target satisfaction provided. The solution can be 
applied for multiple services by configuring different QoS 
targets in the reward function, and for UE connecting to multiple 
base stations, component carriers and frequency bands.  

ACKNOWLEDGEMENT 

This work was supported by the Academy of Finland 
6Genesis Flagship (grant 318927), and in part by 5G-FORCE 
project. 

REFERENCES 

[1] 3GPP, “NR; NR ad NG-RAN overall description; Stage 2 (Release 15),” 
TSG-RAN, Tech. Spec. 38.300 V15.5.0, Mar. 2019. 

[2] 3GPP, “E-UTRA and NR; Multi-connectivity; Stage 2 (Release 15),” 
TSG-RAN, Tech. Spec. 37.340 V15.5.0, Mar. 2019. 

[3] J. Rao and S. Vrzic, “Packet duplication for URLLC in 5G dual 
connectivity architecture,” in Proc. IEEE WCNC, Barcelona, Spain, Apr. 
2018. 

[4] N. Mahmood et al., “On the resource utilization of multi-connectivity 
transmission for URLLC services in 5G New Radio,” in Proc. IEEE 
WCNC, Marrakech, Morocco, Apr. 2019. 

[5] N. Mahmood et al., “Reliability oriented dual connectivity for URLLC 
services in 5G New Radio,” in Proc. ISWCS, Lisbon, Portugal, Aug. 
2018. 

[6] M. Centenaro, D. Laselva, J. Steiner, K. Pedersen and P. Mogensen, 
"Resource-Efficient Dual Connectivity for Ultra-Reliable Low-Latency 
Communication," 2020 IEEE 91st Vehicular Technology Conference 
(VTC2020-Spring), Antwerp, Belgium, 2020, pp. 1-5. 

[7] R. Li et al., "Deep Reinforcement Learning for Resource Management in 
Network Slicing," in IEEE Access, vol. 6, pp. 74429-74441, 2018, doi: 
10.1109/ACCESS.2018.2881964. 

[8] R. S. Sutton, and A. G. Barto, “Reinforcement Learning: An 
Introduction”, (2nd ed.), The MIT Press, Cambridge, Massachusetts, 
London, England. 

[9] Carpentier, A., Lazaric, A., Ghavamzadeh, M., Munos, R. and Auer, P., 
2011, October. Upper-confidence-bound algorithms for active learning in 
multi-armed bandits. In International Conference on Algorithmic 
Learning Theory (pp. 189-203). Springer, Berlin, Heidelberg. 

[10] C. Zhang, P. Patras and H. Haddadi, "Deep Learning in Mobile and 
Wireless Networking: A Survey," in IEEE Communications Surveys & 
Tutorials, vol. 21, no. 3, pp. 2224-2287, thirdquarter 2019, doi: 
10.1109/COMST.2019.2904897. 

[11] 3GPP, “Small cell enhancements for E-UTRA and E-UTRAN – physical 
layer aspects (Release 12),” TSG-RAN, Tech. Rep. 36.872 V12.1.0, Dec. 
2013. 
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