
This is a postprint version of the following published document:

de Vleeschauwer, D., Baranda, J., Mangues-Bafalluy, J., Chiasserini, 
C. F., Malinverno, M., Puligheddu, C., Magoula, L., Martín-Pérez, J., 
Barmpounakis, S., Kondepu, K., Valcarenzhi, L., Li, X., Papagianni, 
C. & Garcia-Saavedra, A. (8-11 June 2021). 5Growth data-driven 
AI-based scaling [proceedings]. 2021 Joint European Conference on 
Networks and Communications & 6G Summit (EuCNC/6G Summit), 
Porto, Portugal.

DOI: 10.1109/EuCNC/6GSummit51104.2021.9482476

 © 2021 IEEE. Personal use of this material is permitted. Permission 
from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, 
for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482476


5Growth Data-driven AI-based Scaling
Danny De Vleeschauwer∗, Jorge Baranda†, Josep Mangues-Bafalluy†, Carla Fabiana Chiasserini‡,

Marco Malinverno‡, Corrado Puligheddu‡, Lina Magoula§, Jorge Martı́n-Pérez¶, Sokratis Barmpounakis§,
Koteswararao Kondepu‖, Luca Valcarenghi‖, Xi Li∗∗, Chrysa Papagianni††∗, Andres Garcia-Saavedra∗∗

∗Nokia Bell Labs, †Centre Tecnològic de Telecomunicacions de Catalunya, ‡Politecnico di Torino,
§National and Kapodistrian University of Athens, ¶Universidad Carlos III de Madrid, ‖Scuola Superiore Sant’Anna,

∗∗NEC Laboratories Europe, ††University of Amsterdam

Abstract—This paper presents a data-driven approach leverag-
ing AI/ML models to automate the service scaling operation and,
in this way, meet the service requirements while minimizing the
consumption of network, computing, and storage resources. This
approach is integrated into the 5Growth service management
software platform. In particular, a prototype was developed to
demonstrate how the novel 5Growth AI/ML platform can be used
in a closed-loop automation system to support the automated
service scaling operation. Furthermore, a number of additional
ML-based approaches are developed in the context of eMBB
and V2N scenarios, which can be embedded into the system for
handling more complex use cases.

I. INTRODUCTION

5G is set out to enable a broad set of diversified and
heterogeneous services with potentially conflicting demands.
Towards that end a flexible, adaptable, and programmable ar-
chitecture based on network slicing, is proposed and gradually
adopted, capable of delivering tailored services to distinct ver-
ticals and use cases. Network softwarization, using Software-
Defined Networking (SDN) and Network Function Virtual-
ization (NFV) are key technologies enabling programmable
control and flexible management in 5G networks.

In this emerging framework, resources elasticity [1] and net-
work slice elasticity [2] are deemed essential for making effi-
cient use of the computational and networking resources while
guarantying service performance and meeting Service-Level-
Agreements (SLAs) [3]. In the 5Growth context, a service can
be mapped onto one or multiple network slices, and hence,
scaling of a service implies scaling of its composed service
instances and resource allocation of the associated network
slice(s). However, the automated assurance of service quality
under the dynamics of the available infrastructure resources
and varying service demands poses additional challenges in
closed-loop service orchestration, dynamic resource allocation
and automated service scaling. To ensure that slices support
the explicit service requirements expressed by specific SLAs,
communication service providers need to employ service and
network intelligence and slice context awareness.

Towards that end, Artificial Intelligence (AI) and Machine
Learning (ML) are evolving into built-in architectural features,
enabling autonomous networks driven by AI/ML. Standard-
ization groups, such as the ITU Focus Group on Machine
Learning for Future Networks including 5G [4], the ETSI Zero
touch network & Service Management (ZSM) [5] and the
Experiential Networked Intelligence (ENI) [6], are currently

working in this direction, although no complete working solu-
tion is yet available. In particular, ETSI ZSM envisions a new
end-to-end architecture framework designed for closed-loop
automation and optimized for data-driven AI/ML algorithms,
while ETSI ENI focuses on the use of AI for the management
of network slices as well as of security issues. AI is also one
of the pillars of the efforts pursued by the O-RAN alliance1

for the radio access network in 5G and beyond. O-RAN
alliance strives to leverage emerging learning techniques to
embed intelligence in every layer of the Radio Access Network
(RAN) architecture [7].

In the same direction, the EU 5Growth (5Gr) project
[8] extends the service platform developed in the EU 5G-
Transformer (5GT) project [9] towards an AI-driven automated
service and network management platform for 5G, with the
addition of a novel AI/ML platform (5Gr-AIMLP). Its inte-
gration in the 5Gr architecture extends the 5Gr platform with
a closed-loop automation and zero-touch service and network
management system. A description of its first prototype is
available in [10].

In the following, we presents the architecture of the 5Gr
platform (Sec. II). The main contribution of this paper is the
design of the novel AI/ML platform and its integration in the
5Gr software platform for a closed-loop automation system,
demonstrated with the scaling of a network service of an
Industry 4.0 use case (Sec. III). Furthermore, we propose a
number of additional (ML-based) approaches for auto-scaling
elastic resources and service instances of network slice(s), in
the context of eMBB (Sec. IV) and V2N scenarios (Sec. V).

II. 5GROWTH ARCHITECTURE

The 5Gr project aims at developing a modular platform
that is fully automated and yet highly flexible. The 5Gr
architecture is composed of three core building blocks, namely
the Vertical Slicer (5Gr-VS), Service Orchestrator (5Gr-SO)
and Resource Layer (5Gr-RL), complemented by the Vertical-
oriented Monitoring System (5Gr-VoMS) and the AI/ML
Platform (5Gr-AIMLP). These building blocks interact with
each other, creating a closed-loop control of the system.

The 5Gr-VS acts as a single point of entry for verticals
requesting 5G network services, through a simplified and
vertical-oriented northbound interface. Through this interface,

1https://www.o-ran.org/

1



service requests can be submitted, while the 5Gr-VS maps the
requested vertical services to network slices, which are de-
ployed as NFV network services (NFV-NSs) forwarding their
request to the 5Gr-SO. The 5Gr-SO provides network service
and resource orchestration capabilities to support end-to-end
orchestration of NFV-NSs and their lifecycle management
(including scaling). Moreover, the 5Gr-SO offers the 5Gr-VS
an integrated view of the end-to-end services. The 5Gr-RL
is a customizable SDN/NFV-based transport and computing
platform capable of supporting a diverse range of computing
and networking requirements. A single 5Gr-RL can integrate
several Virtual Infrastructure Managers (VIM) and Wide-Area
Infrastructure Manager (WIM) from different technological
domains, exposing a unified abstracted view to the upper
layers, which makes the design more scalable. The 5Gr-VoMS
extends the 5GT monitoring platform by integrating vertical-
application level monitoring probes and providing enhanced
monitoring to support innovative mechanisms related to relia-
bility (via self-healing and auto-scaling), control-loop stability,
and analytical features (such as, forecasting and anomaly
detection). The 5Gr-AIMLP will be presented in detail in
Sec. III. It is designed to support different 5Growth layers to
run AI/ML algorithms for their decision-making processes.

III. FRAMEWORK FOR CLOSED-LOOP AUTOMATION

A. System design

5Growth introduces a new building block in its architecture,
the 5Gr-AIML platform, in charge of model lifecycle manage-
ment (including model uploading, catalog building, and model
training). First, its main functionalities are explained, and then,
its integration with the rest of building blocks of the 5Growth
system.

1) 5Gr-AIML platform: We have designed an AIML as a
Service (AIMLaaS) platform, the 5Gr-AIMLP, that allows for
the exploitation of AI/ML models for the various decision-
making processes necessary in a 5G management and orches-
tration stack, among which NFV-NS scaling. The models can
be uploaded to the 5Gr-AIMLP by any authorized external
user. Such models can be already trained and onboarded
to then perform inference, or they can be yet-to-be-trained
models. In the latter case, the user can provide a suitable data
set to be exploited for the training phase. In both cases, the
user can specify (i) the scope of the model, i.e., the type
of decision-making process to be used for, such as service
scaling, and (ii) the type of service the model/dataset should be
used for, such as digital twin. When the external user uploads
a yet-to-be-trained model, it is the platform that takes care
of the training and records the corresponding timestamp and,
potentially, a validity time lapse. If no dataset is uploaded
along with the yet-to-be-trained model, the 5Gr-AIMLP can
exploit the data collected through the 5Gr-VoMS platform
about network/computing resource utilization or performance.
The configuration of the monitoring platform to gather the
monitored data, its aggregation (e.g., through Kafka), and their
feeding as input for real-time model execution in the corre-
sponding 5Growth building block also need to be properly set

up. Models stored in the 5Gr-AIMLP can be accessed by a
5Growth architecture entity through a Representational State
Transfer (REST) interface.

Beside a web interface for the interaction with authorized
external users, the 5Gr-AIMLP includes the following main
components:

• the Model Registry, which records the models uploaded
to the platform, their metadata, and pointers to the stored
models and associated files;

• the Lifecycle Manager, which is in charge of the models
lifecycle. Upon the uploading of a new model, it adds the
corresponding entry to the Model Registry and, if it is
a yet-to-be-trained model, it triggers the training process
using the appropriate AI/ML framework. After a model is
trained, the Lifecycle Manager monitors its status: it can
trigger a new training job either periodically, or whenever
new data are available from the monitoring platform;

• the Interface Manager, which processes the requests for
AIML models coming from the architectural stack and
forwards them to the proper block inside the computing
cluster.

• the Computing cluster is based on Apache Hadoop2, and
leverages Yet-Another-Resource-Negotiator (YARN) for
the computing resources management, and the Hadoop
Distributed File System (HDFS) for the storage of
datasets and models. The YARN cluster nodes have
access to different AI/ML frameworks, according to the
requested model type. Spark3 is used to train classic
supervised and unsupervised models, BigDL4 is used
for deep neural networks, and Ray5 can be used for
reinforcement learning models.

2) Integration in the 5Growth system: The 5Gr-AIMLP
has been integrated into the 5Growth system (which includes
the 5Growth MANagement and Orchestration (MANO) stack,
the monitoring platform and the infrastructure) by defining a
workflow aiming at SLA fulfillment of the services under de-
ployment as well as at the correct operation of the underlying
infrastructure. In fact, the AIMLaaS offering provided by the
5Gr-AIMLP can be exploited at any layer of the 5Growth stack
where decision-making is required (e.g., for slice arbitration at
the 5Gr-VS, for automated NFV-NS scaling at the 5Gr-SO, or
for automated path restoration at the 5Gr-RL). To do so, the
following elements have been developed in the framework.

First, a complete data engineering pipeline must be de-
ployed. For instance, in the automated scaling SLA manage-
ment case, data collection is done at the virtual machines
(VMs) to monitor relevant ey Performance Indicators (KPIs)
(e.g., CPU load) that are gathered by the 5Gr-VoMS. Data
ingestion schemes should also be in place (e.g., Kafka) to
aggregate in a Kafka topic collected data of interest for the
problem to be consumed by the model, which will analyze the

2https://hadoop.apache.org/
3https://spark.apache.org/
4https://bigdl-project.github.io/
5https://ray.io/

2



data to make an operational decision. A high-level design of
this step was first presented in [11].

Second, the data consumption needs are offered through the
5Gr-VoMS. As part of the instantiation process of an NFV-NS,
the 5Gr-SO parses its Network Slice Descriptor (NSD), which
includes an information element (IE) with the list of metrics
to monitor. The 5Gr-SO creates a monitoring job in the 5Gr-
VoMS, which will eventually request the exporters in the VMs
to start collecting data. Another IE of the NSD lists the metrics
that are needed for a given problem (e.g., scaling) to which
an AI/ML model is applied. Therefore, the 5Gr-SO creates the
relevant Kafka topic that, by interacting with the 5Gr-VoMS,
is fed with all relevant metrics for the problem at hand. A
preliminary design and implementation thereof was presented
in [10].

Finally, the model matching the problem needs for the
NFV-NS being deployed is requested to the 5Gr-AIMLP,
downloaded (together with auxiliary files to make it run), and
installed in the SLA manager of the 5Gr-SO. After that, the
SLA manager subscribes to the relevant Kafka topic for this
problem and starts feeding the AI/ML model with it towards
real-time decision-making (e.g., to modify the instantiation
level (IL) of the NFV-NS). In this sense, this paper improves
the previous steps and adds the full integration with the 5Gr-
AIMLP to realize a full-fledged operational platform with all
the components and APIs that enable their interactions.

Once the AI/ML model is running, the SLA manager
compares the current IL of the service with that inferred by the
AI/ML model (i.e., the one the NFV-NS should be running to
deal with a given CPU load) and, in case there is a difference,
a scaling operation is triggered (e.g., scale out/in if more/less
resources are needed). When this happens, the system takes
care automatically of stopping/starting/reconfiguring the data
engineering pipeline and monitoring jobs as needed.

We remark that the 5Gr-AIMLP is designed to run multiple
AIML models (e.g., supervised or reinforcement learning).
Below, we provide an example of the integrated operation of
all the building blocks, including the 5Gr-AIMLP, 5Gr MANO
stack, and 5Gr-VoMS, acting over the shared infrastructure
towards SLA fulfilment through a supervised learning model
running at the 5Gr-SO.

B. Testbed results for the digital twin use case

We now look at the interaction between the 5Gr-AIMLP and
the 5Gr-SO for service scaling, and assess the corresponding
latency (a preliminary analysis was presented in [10]). To run
the experiments, we use a complete implementation of the
5Growth platform where we deploy a Digital Twin (DT) NFV-
NS, as relevant representative of Industry 4.0 services [12].
The DT application is composed of two VNFs. VNF1 creates
a rendering of the connected robots based on the geographical
coordinates received from the robots themselves, allowing
a human user to control the robots’ movements through a
joystick. VNF2 translates the commands inserted by the human
user into instructions for the robots. Between the two, VNF2 is
the most critical, as its processing time must be below 60 ms

to ensure a timely delivery to the robots of the movement
instructions.

To meet such target latency, NFV-NS presents multiple ILs,
each corresponding to a different number of VNF2 instances.
At deployment-time, the DT NFV-NS consists of one instance
per VNF, i.e., IL=1. However, as the number of robots to
control increases, so does the CPU load and the processing
latency of VNF2, the NFV-NS IL must be properly scaled out
to balance the CPU load over multiple instances of VNF2 and
keep its processing time below the target values. Likewise, as
the CPU load decreases, the NFV-NS IL should be scaled in
to save computational resources. A real-time decision on the
IL to adopt is therefore required, so as to trigger a scaling
(out/in) operation as needed.

The 5Gr-SO does so by using an AI/ML model (a random
forest algorithm) that is downloaded from the 5Gr-AIMLP
during NFV-NS instantiation and that is fed with the real-
time CPU load values provided by the 5Gr-VoMS all the way
through the data pipeline. The AI/ML model is trained offline
within the 5Gr-AIMLP using Apache MLlib and a training
dataset with 318K entries (total size: 20.2 MB). The resulting
model is packed in a zip archive of 86.5KB (46.4 KB are
devoted to the auxiliary file needed for inference).

TABLE I: 5Gr-AIMLP operation and interaction with 5Gr-SO

5Gr Entity Operation Measured Time

5Gr-AIMLP Dataset upload (offline) 10.3± 2.0 s
Training (offline) 35.6± 2.5 s

5Gr-SO Model/Aux file Downl. (instant.) 281.9± 20.4ms
AIML-related ops. (instant.) 1367± 40.9ms

Tab. I presents the measured times (average and standard
deviation) over 10 repetitions of the experiments In general,
the time required by the 5Gr-AIMLP to upload and train the
model (offline process) depends on the file size and the server
used; under the above settings and using an Intel i7-4790
CPU with a 32 GB-RAM, it is around 46 ± 4.52 s. During
NFV-NS instantiation, the 5Gr-SO requires 281.9± 20.38ms
to download the files from the 5Gr-AIMLP (online process),
which represents a total of 20.6% of the average time devoted
by the 5Gr-SO to set up the data engineering pipeline for
AI/ML-based scaling operations [10], which in this evaluation
is 1367±40.9ms . However, configuring the pipeline is just a
small part of the instantiation process, with VNF deployment
being instead the most time-consuming step [9]. In fact, the
impact of AIML-related operations on the whole instantiation
process is limited to about 3.5% of the total average instanti-
ation time measured at the 5Gr-SO (39.78± 3.24 s) (the unit
in this case is s and not ms).

TABLE II: AIML-based scaling operation in 5Growth

Operation Measured Time AIML impact
Scaling out 26.72± 2.75 s 9.55%
Scaling in 24.54± 2.58 s 10.32%

Next, we focus on the impact of AIML operations during
subsequent scaling operations at the 5Gr-SO. When the real-

3



time inference process notifies the SLA Manager with a dif-
ferent IL, the scaling workflow is started, as described in [10].
Note that during scaling, there is no need for interaction
with the 5Gr-AIMLP. Table II presents the time required to
perform a scaling out/in operation, i.e., moving from one
to two instances of VNF2 and from two to one instance,
respectively, and the percentage of time devoted to AIML
operations in the scaling workflow. The impact of AIML
operations is now around 10%, i.e., much more than in the
case of instantiation. This is mainly due to the time it takes
to stop the inference process while a new VNF instance is
created/removed and the rest of the NFV-NS (connections
and monitoring jobs) is updated accordingly. Stopping such
process takes around 2.49±0.17 s and it is performed to avoid
overruling of a decision on the IL in the middle of a scaling
workflow execution (i.e., in a transient period).

IV. AI-DRIVEN SCALING OF EMBB SERVICES

The continuously changing network dynamics of 5G and
beyond networks call for continuous monitoring of the network
traffic load and scaling accordingly the network services.
To this end, the current section proposes a Deep Neural
Network (DNN)-based scheme, and specifically a Multi-Layer
Perceptron (MLP)-based one, for proactively scaling services,
focusing on eMBB, according to the respective network re-
quirements and real-time traffic load. The proposed MLP-
based scheme predicts the Instantiation Level (IL), in terms
of the number of required VNF instances per VNF type, in
order to accommodate the traffic load changes ahead of time
and satisfy the respective network service demands.

A. Control Model

The current work investigates how to map traffic load
statistics Xs of a service s ∈ S served via a specific base
station, to instantiation levels Ys of the VNF, in a supervised
manner. Let traffic load statistics xt ∈ Xs, s ∈ S, denote a
vector consisting of traffic load measurements, as well as user
equipment (UE)-related information, in a specific period of
time t. In addition, let yt ∈ Ys, s ∈ S, denote the IL required
in order to proactively accommodate traffic load demands of
the next time period t+1. The target of the MLP model is to
learn a function f : Xs → Ys so that f(x) accurately predicts
the corresponding value of y.

The proposed MLP-based scheme, which is based on [13],
considers a set of data features (Xs), related to the traffic load
of each eMBB service and how this load evolves over time.
The selected features are listed below:

• 5G New Radio gNodeB Base Station ID (denoted gNB
ID)

• Average number of associated, active UEs
• Traffic load in packets and bytes (for each gNB ID) for

five time periods ([t− 2, t+ 2])
• Change in traffic load in packets and bytes (received by

cell) for the five aforementioned time periods.
For each eMBB service s, an MLP model is deployed in

order to identify relevant patterns, while mapping features Xs

to autoscaling decisions Ys. The output class of each MLP
model refers to the service IL required to meet traffic demands
until the next scaling decision (after 5 time periods). In case
the host does not have enough capacity to meet the predicted
service IL for the VM, then the maximum supported IL is
selected.

B. Results

In order to validate the performance of the proposed model,
the ns-3 discrete-event network simulator was used. The
deployed scenario, with total duration equal to 12000 sec,
includes 12 UEs connected to a specific gNB, running two
simulated eMBB services (Fast Browsing (FB), UHD Video
Streaming (UHDVS)), with different data rates and traffic
volumes. The base station is interconnected with a MEC
server, hosting one Virtual Machine (VM) with predefined
specifications (i.e., number of vCPUs, memory and disk size,
CPU speed, etc.). This study applies the proposed scheme to a
part of an eMBB service, represented by a pre-configured VNF
type (see Table III). Service-related measurement traces (e.g.,
packet time interval, packet size, packets/bytes received from
a cell, etc.) are logged in the form of time-series information,
while the logging frequency is set to 1 second. The time period
t is set to 5 seconds.

Parameter FB UHDVS
VNF type vnf1 vnf2
VNF Throughput (packets/sec) 250 150
Packet Interval (ms) 20 10
Packet Size (bytes) 300 1000

TABLE III: Service Template

Since, ns-3 currently does not support the modeling of VNF
instances, the correlation between the simulated data and ILs is
modeled under a threshold-based logic. More specifically, it is
assumed that the traffic load (in packets) is equally distributed
among the VNF instances running on a VM host. Each VNF
instance is able to handle specific throughput (packets/sec).
Every 1 second, given the traffic load in packets (produced by
ns-3), the CPU load of each VNF instance is defined by the
division of the traffic load by the VNF throughput. In addition,
every second, the described algorithm verifies whether the
average cpu load of all running VNF instances is greater
than a predefined upscale threshold thrup (set to 0.8) or less
than/equal to a predefined downscale threshold thrdw (set to
0.5) of the VNFs’ throughput in order to upscale or downscale
to the appropriate IL (by dividing the CPU load of each VNF
instance by thrup/dw). The resulted ILs comprise the set Ys
that is provided as a new extracted label set to the respective
MLP model.

In order to increase the performance of the MLP models,
the Stochastic Gradient Descent (SGD) with momentum was
selected, with learning rate equal to η = 0.001. All models
used L2 (weight decay) regularisers with regularization factor
of 10−4. The split ratio for the dataset is set to 0.8. Figure
1 illustrates the two timelines of the predicted and the real
(ground truth) labels of the test set for both VNF types. As it

4



can be inferred, the predicted and actual timelines present high
similarity for both VNF types. The latter is validated by Table
IV, which depicts the performance of the two MLP models
using accuracy and f1-score as metrics. More precisely, the
accuracy is equal to 88.98% and 90.38% respectively, while
the f1-score amounts to 88.89% and 90.14% for VNF1 and
VNF2 respectively.

Fig. 1: Prediction - Groundtruth Timeline for vnf types: VNF1 (up)
and VNF2 (down).

VNF type Accuracy F1-Score
vnf1 88.98% 88.89%
vnf2 90.38% 90.14%

TABLE IV: Model Performance

V. AI-DRIVEN SCALING OF V2N SERVICES

In this section we consider a C-V2N (cellular vehicle-to-
network) environment where cars exchange information with
the cloud via Points of Presence (PoPs) that are located
throughout a city. Whenever a car enters into the neighborhood
served by a PoP, its workload needs to be supported by the
computational resources of that PoP. These resources come in
discrete chunks expressed as the number N of CPUs (central
processing unit) that have been activated at a certain moment
in time. It is the job of the 5Gr-RL to determine that number
of CPUs, as cars travel through the city, and hence, as the
workload that is presented to that PoP fluctuates over time.

In the simulation that we discuss in this section, the number
of cars that enter the neighborhood of a PoP is driven by a
trace that was taken in Torino (Italy) from January 2020 to
October 2020, counting the number of cars that passed certain
measuring points over consecutive intervals of 5 minutes. The
trace contains over 100 measuring points, but in this paper we
only use one. The complete trace was divided in a training
trace spanning the first 80% of the trace and a test trace
spanning the remaining 20%. The training trace is used to
determine the variables of the controllers, while the test trace
is used to assess its performance.

We assume that each car brings the same amount of work
and that the total workload W brought by all cars (during a
5 minute interval) is distributed over the N currently active
CPUs with weights that randomly deviate a little from 1

N .
If more work is brought than the N CPUs can handle (in

this 5 minute interval) a backlog is created that impairs the
performance of the application. Consequently, if no backlog
is built up, the load on each CPU is on average W

N . This
performance is expressed in a reward function that depends
on the CPU loads and the backlog. The reward function has
the property that it increases as the CPU loads increase, but
decreases as the backlogs increase.

The aim of the 5Gr-RL is to maximize the long term reward
by setting the number N (i.e., the IL) of CPUs adequately. To
make that decision the controller is provided with information
from the monitoring system associated to the PoP as input.
In particular, the algorithms discussed below use as input a
subset of the CPU loads, the backlogs, and the work that was
presented to the PoP in the previous 5 minute slot.

A. Scaling Approaches

We consider three classes of scaling algorithms:
• Classical algorithms, which observe (via the monitoring

system) the load of the heaviest loaded CPU and try to
keep this load around a given threshold by setting N
appropriately.

• Prediction algorithms, which observe the evolution of the
amount of work over time, make a prediction for the
amount of work in the next slot and use this prediction
to set N .

• Reinforcement learning algorithms, which learn the long-
term reward that actions (which determine N ) yield in a
certain state and gradually choose the actions that yield
the largest long-term reward.

B. Results

As benchmark we use a simulation (labelled with ’CNST’)
in which the number N of CPUs is kept constant over time.
Simulations over the training trace with various values of N
revealed that N = 21 yielded the best average reward.

As classical algorithm we use a Proportional Integral
(PI) controller [14]. It aims to keep the load of the
heaviest loaded CPU ρ to a threshold ρtgt. Therefore,
it first calculates δ(t) = α(ρ(t)− ρtgt) + β(ρ(t)− ρ(t− 1))
and then adjusts the number of CPUs for the next slot to
N(t+ 1) = N(t) + δ(t), suitably bounded below by a min-
imum number of CPUs and above by a maximum number
of CPUs. Via simulations on the training trace we concluded
that values ρtgt = 0.6, α = β = 5.0 bring the highest average
reward. We used these values on the test trace.

As prediction algorithm we use a LSTM (long short-term
memory) predictor [15] with 2 layers with 4 cells each and we
use a look back of 3 slots (i.e., a prediction is made based on
the 3 previous values). The LSTM predictor takes as input the
amount of work W (t) brought in a 5 minute slot t. The LSTM
predictor is trained based on the evolution of that amount of
work that it sees during the training trace. Subsequently, for
the test trace, it predicts the amount of work W̃ (t+1) expected
in the next slot and sets the number of CPUs for the next slot
as N(t+ 1) =

˜W (t+1)
ρtgt

. Via simulation on the training set we
concluded that ρtgt = 0.5 is a good value.

5



The reinforcement learning (RL) algorithm [16] also uses
the amount of work W (t) brought in the current slot, but
truncates this to the nearest integer. This truncated value
together with the number N(t) of CPUs during the current
interval forms the “state” of the RL algorithm. We define
three “actions”: increase N(t) by 1, decrease N(t) by 1 and
keep N(t) the same. By taking an action in a certain state
the RL algorithm collects a reward. It adds this reward to the
long-term discounted reward it received up to now (with a
discounting factor γ) to obtain the new value of the long-term
reward. By running through the training trace (as many times
as is needed for convergence) the RL algorithm maximizes
this long-term reward. The discount factor is set as γ = 0.9.

Figure 2 illustrates how the four algorithms perform over a
period of two days (or equivalently, 576 5-minute intervals).
The RL controller is the most conservative: it is reluctant to
decrease the number of processors, but it hardly ever overloads
any CPU. The PI controller is the most aggressive: it activates
a sufficient number of CPUs and while frequently a CPU
gets overloaded, this is mostly of short duration. Thus the
backlog incurred does not usually lead to a low reward. The
LSTM controller has a behaviour between these both extremes.
Figure 3 compares the average reward the controllers get to
the average number of CPUs they activate over the test trace.
Based on these metrics the LSTM controller performs best.

(a) Number of CPUs.

(b) CPU load.

Fig. 2: Evolution of performance metrics over time.

(a) Number of CPUs. (b) Reward.

Fig. 3: Average performance metrics.

VI. CONCLUSION

This paper presents a novel design of the AI/ML platform
and its integration into the 5Growth service management soft-

ware platform for a closed-loop service automation system. As
a proof-of-concept, we develop a data-driven AI-based service
scaling prototype to automate the service scaling operation to
meet the service requirements while minimizing the consump-
tion of resources. The developed prototype was demonstrated
with a network service of an Industry 4.0 use case. The
results show the impact of the AIML-related operations on
the total service operation time is below 10%. Furthermore, a
number of additional ML-based approaches are designed for
auto-scaling elastic resources and service instances of network
slice(s), which can be embedded to the system for handling
more complex use cases such as eMBB and V2N scenarios.

ACKNOWLEDGMENTS

This work has been partially supported by EC H2020
5GPPP 5Growth project (Grant 856709).

REFERENCES

[1] D. M. Gutierrez-Estevez et al., “Artificial intelligence for elastic manage-
ment and orchestration of 5g networks,” IEEE Wireless Communications,
vol. 26, no. 5, pp. 134–141, 2019.

[2] D. Tsolkas and S.-A. Charismiadis, “Managing computational elasticity
for 5g networks,” Wiley 5G Ref: The Essential 5G Reference Online, pp.
1–18, 2019.

[3] L. Zanzi et al., “Ovnes: Demonstrating 5g network slicing overbooking
on real deployments,” in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications Workshops. IEEE, 2018, pp. 1–2.

[4] International Telecommunication Union (ITU) - Focus Group on Ma-
chine Learning for Future Networks including 5G. https://www.itu.int/
en/ITU-T/focusgroups/ml5g/Pages/default.aspx/. Accessed on: 15 Jan-
uary. 2021.

[5] ETSI Zero touch network and Service Management (ZSM). https:
//www.etsi.org/technologies/zero-touch-network-service-management/.
Accessed on: 15 January. 2021.

[6] ETSI Experiential Network Intelligence (ENI). https://www.etsi.org/
technologies/experiential-networked-intelligence/. Accessed on: 15 Jan-
uary. 2021.

[7] J. A. Ayala-Romero et al., “vrAIn: A Deep Learning Approach Tailoring
Computing and Radio Resources in Virtualized RANs,” in Proc. of ACM
MobiCom 2019.

[8] EU 5G-PPP 5Growth Project: 5G-enabled Growth in Vertical Industries.
https://5growth.eu/.

[9] X. Li, T. Deiss et al., “Automating vertical services deployments over
the 5gt platform,” IEEE Communications Magazine, vol. 58, no. 7, pp.
44–50, 2020.

[10] J. Baranda et al., “On the integration of ai/ml-based scaling operations in
the 5growth platform,” in 2020 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN). IEEE, 2020,
pp. 105–109.

[11] C. Papagianni et al., “5Growth: AI-driven 5G for Automation in
Vertical Industries,” in 2020 European Conference on Networks and
Communications (EuCNC), 15-18 June 2020, Dubrovnik, Croatia, Jun.
2020. [Online]. Available: https://doi.org/10.1109/EuCNC48522.2020.
9200919

[12] L. Girletti, M. Groshev and C. Guimarães and Carlos J. Bernardos and
Antonio de la Oliva, “An intelligent edge-based digital twin for robotics,”
in 2020 IEEE Globecom Workshop on Advanced Technology for 5G Plus
(GC 2020 Workshop - AT5Gp), Taipei, Taiwan, Dec. 2020.

[13] T. Subramanya and R. Riggio, “Machine learning-driven scaling and
placement of virtual network functions at the network edges,” in 2019
IEEE Conference on Network Softwarization (NetSoft), 2019, pp. 414–
422.

[14] Kiam Heong Ang, G. Chong, and Yun Li, “PID control system anal-
ysis, design, and technology,” IEEE Transactions on Control Systems
Technology, vol. 13, no. 4, pp. 559–576, 2005.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[16] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, May 1992.

6




