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Abstract—Network slicing is well-recognized as a core 5G
technology to enable heterogeneous vertical services sharing the
same infrastructure. In this context, the H2020 5Growth project
extends baseline 5G management and orchestration platforms
to manage the life-cycle of real end-to-end, reliable, and secure
network slices with performance guarantees. In this paper, we
present 5Growth’s approaches to (i) attain isolation across net-
work slices, (ii) provide secure interfaces towards third parties,
and (iii) exploit AI/ML to achieve reliability through automated
anomaly detection. In our quest towards validating full-fledged
5G pilots, we demonstrate our slicing mechanisms in PoCs that
include interacting with ICT-17 infrastructure.

I. INTRODUCTION

One of the main goals of 5G is to make its infrastructure
available to vertical industries that have traditionally been alien
to the telco industry (e.g., automotive, health, construction) as
a means to enable new services and boost revenue. In this
way, verticals would deploy and deliver their services on top
of shared 5G infrastructure. To this end, 5G shall support a
comprehensive set of heterogeneous use cases, ranging from e-
Health applications, with stringent low latency constraints, to
streaming services, with substantial bandwidth requirements.
Therefore, it is crucial to provide verticals with a secure and
isolated environment that is tailored to their needs.

In this way, network slicing arises as a critical technology
in 5G. Specifically, network slicing fits into the Infrastructure-
as-a-Service (IaaS) paradigm, which enables partitioning 5G
infrastructure into multiple virtual networks (a.k.a. “slices”)
that are tailored to the different services’ requirements. Net-
work slicing exposes tenants to a standard interface to deploy
and configure their services, virtualizing the different network
components using Network Functions Virtualization (NFV)
and exploiting programmability enabled by Software Defined
Networking (SDN). This enables fast deployment and simple
lifecycle management of the network slices deployed.

However, network slicing is not only about virtualiza-
tion [1]. To start with, performance guarantees and isolation
across slices are required. For example, a resource-voracious
slice should not exhaust other slices’ resources, disrupting their
performance. Moreover, network slices shall also intercon-
nect different domains, potentially owned by different parties,

Fig. 1: 5Growth High-Level Architecture

which puts their security at risk. In summary, network slicing
should provide mechanisms that enforce resource guarantees,
attain security, and detect/resolve anomalies.

To this end, the EU project 5Growth extends the 5G-
Transformer’s platform providing such additional mechanisms
for network slicing. In this paper, we present three different
mechanisms that 5Growth has integrated into its platform to
(i) provide bandwidth guarantees and limits for different slices
while increasing the degree of isolation between them (ii);
provide an additional layer of security when connecting other
domains that belong to different stakeholders; and (iii) provide
a method for anomaly detection for fast recovery.

II. BACKGROUND

The 5Growth platform comprises three main building blocks
(Fig. 1): (i) the Vertical Slicer (5Gr-VS), (ii) the Service
Orchestrator (5Gr-SO), and (iii) the Resource Layer (5Gr-RL).

The 5Gr-RL layer interacts directly with the underlying in-
frastructure to provide all the different resources (e.g., comput-
ing, networking, storage) to network slices. Multiple plugins
are used to this end, including: a WIM plugin to control the
underlying transport networking, a VIM plugin to govern the
available computing resources, a Radio plugin to manage the
radio resources, and a MEC plugin to configure MEC services.
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The 5Gr-RL abstracts the underlying infrastructure as a Single
Logical Point of Contact (SLPOC), so any operation goes
through the same standard IFA005-motivated interface.

The 5Gr-SO enables resource and service orchestration and
lifecycle management for the deployed network services. In
detail, the SO handles the placement, configuration, scaling,
and termination of deployed network services interacting with
the 5Gr-RL to configure a network service correctly. It also
controls the interaction with other administrative domains
working all together with neighbor Service Orchestrators.
Finally, 5Gr-SO offers an end-to-end view of the deployed
service to the 5Gr-VS through its northbound API.

Finally, the 5Gr-Vs is the main point of interaction with
vertical parties. Once a vertical party requests the vertical
service deployment, the 5Gr-VS maps it to a network slice
instance, which provisions all the associated network services
interacting with the 5Gr-SO.

Additional building blocks, namely the Vertical-oriented
Monitoring System (5Gr-VoMS) and the AI/ML Platform
(5Gr-AIMLP), are worth mentioning [2]. The 5Gr-VoMS in-
tegrates vertical service monitoring (gathering and storing ser-
vice metrics) to support new mechanisms such as self-healing
and service scaling. In turn, the AI/ML platform enables the
management of AI/ML models as a service (e.g., training) to
support novel mechanisms such as anomaly detection.

III. TRAFFIC AND BANDWIDTH ISOLATION

The concept of isolation between network slices is a central
point for 5G and network slicing. Several possible levels of
isolation between network slices exist. Network slice isolation
can be considered in areas such as [3] (i) isolation of traffic,
meaning that network slices should ensure that the data flow
of one slice does not move to another slice sharing the
same infrastructure; and (ii) isolation of bandwidth, which
implies that slices are allocated a certain bandwidth and
should not utilize any assigned to other slices. Going one
step further, performance isolation among slices means that
service-specific performance requirements are always met on
each slice, regardless of the traffic activities and workloads
of other slice instances running concurrently. In this study,
we focus on the solution adopted for traffic and bandwidth
isolation in 5Growth. Moreover, we describe the corresponding
extensions of the 5Growth stack to facilitate various levels of
network slice isolation. Finally, we validate the efficiency of
the proposed framework for traffic and bandwidth isolation in
a PoC setup of the 5Growth architecture.

A. Traffic and Bandwidth isolation

This paper considers Layer-2 traffic isolation via the Virtual
Private LAN Service (VPLS), a service providing pseudowires
based on Ethernet multi-point to multi-point communications.
VPLS enables sharing a common broadcast domain among
the peers in a virtual private LAN, over the shared network
infrastructure. Using VPLS in the transport network has been
integrated by making use of the VPLS native ONOS appli-
cation, which already provides an interface to deploy and

manage the lifecycle of multiple VPLSs in SDN/Openflow-
based layer 2 networks. However, the current implementation
of the application (version 2.4) does not support P4 out of the
box, so a re-engineering of the P4 data plane was required
to be cross-compatible with OpenFlow switches. Specifically,
the P4 pipeline was reduced to a single forwarding table and
a single action, representing a chain of actions.

Bandwidth isolation per slice in 5Growth is guaranteed
via applying existing OpenFlow [4] or P4 [5] meter-based
solutions, depending on the programmability level of the
shared data plane. In particular, the per-flow metering can
measure and control the data rate of each flow. The adopted
solutions ensure bandwidth isolation by rate-limiting the set
of flows on a per slice basis, which enables network services
planning for the transport network and ensures a rate for every
slice. Despite the aforementioned, metering is desirable at the
data plane, but the ONOS core can only set up meters over
OpenFlow. In contrast, ONOS P4 drivers as of today (version
2.4) are not capable of creating and managing the stateful
P4 objects of a P4-programmable data plane dynamically.
Therefore, in 5GROWTH, we also introduce P4 metering
capabilities at the ONOS level, providing bandwidth isolation
seamlessly under a mix of P4 and OpenFlow switches.

B. 5Growth Integration

5Gr RL extensions. The current release of 5Gr-RL [6] is
extended to support slice isolation. Specifically, the SLPOC
abstract view is connected to an internal slicing isolation
algorithm that maps the selected abstract resources to a
QoS policy characterizing the network slice. A sample QoS
policy for bandwidth management may include parameters
like maximum/minimum bandwidth. The 5Gr-RL uses such a
policy to allocate the transport resources via the WIM plugin.
Therefore the southbound interface is extended accordingly to
communicate the QoS policy parameters to the WIM plugin
that is responsible for configuring the transport infrastructure.
5Gr WIM plugin. The WIM plugin allows for the interaction
between the RL southbound interface and the ONOS SDN
controller responsible for managing the network resources
in the transport SDN-based network. In fact, the plugin al-
lows to (i) check the current status of the network and (ii)
enforce the necessary parameters to create isolated slices.
More specifically, the WIM plugin is able to expose a set
of parameters to the 5GR-RL that, upon request, can retrieve
information regarding the status of the virtualized network
resources characterizing the SDN network (e.g., virtual links,
available bandwidth, total bandwidth). On the other hand, it
also allows for requesting the virtualized network resources’
allocation over one or more virtual links used for deploying a
specific network service.

Regarding the previous release [7], the plugin has been
extended to handle requests that aim to set up network slices
with specific QoS characteristics and enforce the bandwidth
isolation feature. To do so, new parameters characterizing the
slices have been considered for the allocation operation, such
as the maximum and minimum bandwidth and the maximum
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Fig. 2: Performance isolation validation scenario

burst size. Once those parameters are extracted from the
request, the plugin interacts with the SDN controller to set
up the slice and then enforce the QoS guarantees.
5Gr VIM plugin. The RL manages VIM resources - com-
puting and communication resources inside specific VIM -
through the VIM plugin. In the particular example, Kubernetes
was used as a VIM, and the corresponding Kubernetes plugin
for the 5Gr-RL was utilized. The VIM plugin receives the
5Gr-RL’s requests to create compute resources, translates, and
sends them to Kubernetes, creating pods inside the Kubernetes
cluster. The initial version of the Kubernetes plugin did not
support VLAN based networks. Kubernetes must use different
container network interfaces (CNI) to support different net-
work technologies. Multus [8] CNI is used to connect the
pods to the transport network’s external WIM. Multus is a
CNI plugin for Kubernetes that enables attaching multiple
network interfaces to pods. It provides the possibility to create
a VLAN-based network that connects a physical port to the
pod. The VIM plugin was extended accordingly to provide the
interface for managing the Multus CNI.

C. PoC: Preliminary Results

To validate traffic and bandwidth isolation in the 5Growth,
we deploy the network topology depicted in Fig. 2 composed
of four Points-of-Presence (PoP), interconnected using net-
work infrastructure including both P4 reference software bmv2
(behavioral model version 2) switches and OpenFlow Virtual
Switches (OVSs). Each PoP manages its virtual resources on
the control plane using Kubernetes (VIM), controlled by its
own 5Gr VIM plugin. The network infrastructure is controlled
by a single instance of ONOS SDN controller (WIM), using
the 5Gr WIM ONOS plugin. Note that the mixed data path net-
work infrastructure is emulated using Mininet utility. Finally,
the 5Gr-RL interacts with the whole set of plugins gluing the
whole workflow to deploy isolated network slices.
Monitoring. To gather real-time data plane information (e.g.,
throughput), we use network probes at the PoP endpoints based
on the pmacct set of monitoring tools (www.pmacct.net). Thus,
we monitor the active data flows and forward monitoring
information through a Kafka broker (https://kafka.apache.org),
where a flow monitoring data processor calculates the through-
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Fig. 3: Bandwidth isolation results
put per flow. Eventually, this information is scraped and stored
by the Prometheus monitoring platform (https://prometheus.io)
and visualized by the Grafana tool (https://grafana.com).
Validation scenario. Leveraging the aforementioned topology
and real-time monitoring system in place, we deploy two
network slices, as depicted in Fig. 2. The QoS policy employed
for both slices enforces traffic policing. For each slice, we
dynamically enable/disable the policer and observe the impact
on their individual performance. In more detail, we generate
UDP traffic at saturation rate (˜100 Mb/s) from (i) PoP
A to PoP C (Slice A), and (ii) PoP B to PoC B (Slice
B). Considering the first common link across both slices as
bottleneck, a rate-limit of 30 Mb/s (slice A) and 60 Mb/s
(slice B) is applied respectively to validate the approach’s
efficiency for both P4 and OpenFlow solutions. These values
are selected so that the sum for both slices falls within the
mean capacity of thetransport network (i.e., 100 Mb/s). In the
following, we sequentially disable the QoS policy for Slice A
and B, while we observe the impact of having policed and/or
unpoliced slices running on the shared infrastructure. Finally,
we re-enabled the policer for the slices sequentially (Slice A
and then B) to validate fast convergence to the target rate.
Results. Fig. 3 depicts the results from the bandwidth isola-
tion scenario by executing the above validation process. We
observe that traffic policing has been successfully enforced on
both data-paths, seamlessly activating the corresponding rate-
limit solution over OVS or bmv2 switches (from 90 to 150 s).
Slices coexist without any noticeable interference. However,
when we disable the QoS policy in one of the slices, we notice
how the un-policed slice (Slice A) consumes resources from
the policed slice (Slice B); the throughput of the policed slice
is diminished up to one-third of its target rate (from 150 to
180 s). Next, we also disable the policer for slice B and see
traffic fluctuations when two un-policed slices coexist (form
180 to 220 s). In the result, we can see that both slices start
competing for resources at around 200 s. Finally, we enable
the QoS policy for slice A at 220 s, where slice B achieves
its peak rate, and also for slice B at 250 s, where the slices
resume their isolated operation.

IV. INTERDOMAIN SECURITY

The 5Growth stack is designed to span across different
administrative domains connected through a network. The
ongoing 5Growth demonstrators at the pilot sites, much like
other real-world deployments, have different levels of trust
between the participating domains. Fig. 4 shows an overview
of the control of the different systems in the 5Growth Aveiro
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pilot site. The site has three main stakeholders: the vertical cus-
tomer, the ICT-17 infrastructure of 5G-VINNI, and the other
domain (a private cloud). Each dashed rectangle represents an
administrative domain. We highlight in Fig. 4 two types of
trust boundaries. In red, we have the critical trust boundary
across different domains through untrusted networks. This
trust boundary is caused by the 5Growth stack’s objectives
and is fundamental for its integrity. In gray, we have the
already existing trust boundaries of the typical management
interactions within the administrative domains. In this article,
we will focus on the boundaries created by the 5Growth stack.

A closer inspection reveals that the communications going
through the untrusted network are all client-server interactions
with a single 3GPP TS 28.531 compliant API. Therefore, the
interdomain communications’ attack surface can be reduced
to a single server socket in each domain that must expose that
API (i.e., the Network Slice as a Service (NSaaS) Providers).
Furthermore, the interdomain communications over untrusted
networks fit a threat model and resolved defenses that first
depend on perimeter defenses. The most commonly used
model to describe the attack process under a perimeter defense
setting is the Cyber Kill Chain (CKC) [9].

The CKC consists of 7 sequential stages. During stage
(1) reconnaissance, the attacker enumerates the endpoints,
finds its targets, and discovers their characteristics. After
acquiring sufficient information during the reconnaissance,
the attacker starts the (2) weaponization stage. The service
characteristics are used to identify a vulnerability and then
devise a tailored payload to exploit that vulnerability. Once
the payload is built, the attacker enters the (3) delivery stage,
where that payload must be transferred into the target. After
successfully delivering the payload, the attacker can enter the
(4) exploitation stage where that payload is executed in the
target system. That execution gives a foothold to the attacker
that allows the (5) installation of a more reliable backdoor
communication channel. After establishing the more reliable
channel, the attacker can embed the victim machine into a (6)
Command & Control (C2) such as a botnet system. Lastly, the
attacker can now perform (7) actions upon his objectives.

Various approaches already exist to thwart each of the
actionable stages of the CKC. For instance, deploying an
Intrusion Detection System (IDS)/Intrusion Protection System
(IPS) and suitable access control (e.g., firewall or others)
is effective against reconnaissance, delivery, and subsequent
exploitation stages. The weaponization stage is not actionable.
The defender cannot stop the offline payload development
done with the knowledge acquired during the reconnaissance
stage. The later stages of the CKC depend on the success of
the earlier ones. Detecting and defending against adversary
activity in those stages goes beyond perimeter defense. A
defense-in-depth approach would involve various types of
endpoint protection and malware identification.

Our primary focus is the critical trust boundary of inter-
domain communications through untrusted networks in the
5Growth stack. We must first address the network bound
challenges before proceeding to the defense-in-depth. The

Fig. 4: Trust boundaries

5Growth stack already minimizes the attack surface to its
minimum, a single API socket that must be exposed to autho-
rized parties. Nevertheless, the attack surface can never be zero
(i.e., we need to expose that socket to deliver functionality),
neither are any of the existing defense systems completely
failure-proof. Our main contribution has this fallibility in mind
and thus researches complementary defense mechanisms that
increase the resilience against an attack. Because the attack
surface cannot be reduced any further, the next step is using
Moving Target Defense (MTD) mechanisms to make that
irreducible surface unpredictable to the attacker.

The server’s API socket is characterized by three network
parameters within TCP/IP network headers: the transport pro-
tocol (e.g., TCP), the listening IP address of the host, and
the listening port. The application protocol (e.g., REST) and
the data that can inflict impactful system changes are in the
packet payload. However, delivering that payload depends on
the headers mentioned above. The main objective is to counter
two main threat types: attacks carried-out by actors that do not
have inside knowledge and the attacks performed by advanced
threats that can acquire inside information through other
intelligence sources. Actors without inside knowledge of the
system rely heavily on the reconnaissance processes to acquire
actionable intelligence. When the attackers already have some
inside knowledge of the system and its vulnerabilities, we
must disrupt the malicious payload delivery, thus stopping our
stack’s further exploitation through this vector. We devised
an interdomain communications approach inspired by the
framework that used MTD to set network slicing security as
a KPI [10]. Our MTD mechanism relies on HMAC [11] to
produce reliable mutations that can only be reversed by the
authorized parties (i.e., those who hold the shared secret).

The evaluation was done through a PoC using the Aveiro
pilot’s facilities. We have measured the typical SONATA API
request time for the LCM interactions and determined that (on
average) the response took a little over ≈ 30 ms. Therefore,
we have set the MTD mechanism to perform a mutation
every 30 ms. The SONATA API performance values shown in
Fig. 5 are within the 95% confidence interval. The bars show
the calculated average, and the wishers show the distance to
the min-max. The response time measurement was conducted
in 500K runs for each of the two cases. We used siege to
carry-out the load-test. The load-test values were gathered in
100 runs, each run having 10 workers that will perform 100
requests in parallel, making a total of 100K datapoints. We
have also experimented with different parallelism levels, find-
ing that the Sonata performance results were similar despite
the changed parameters. We have determined that the MTD
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Fig. 6: Anomaly Detection Algorithm Process

mechanism has a measurable impact on the SONATA API’s
performance, making the average request time ≈ 19.53%
slower, and reduced the number of requests attainable per
second by ≈ 15.21%. Despite the initial impressions caused
by those numbers, the impact over the average request time
(≈ +6.16 ms) is not significant to the management processes
done through that interface. Furthermore, while there is an
impact to the maximum requests per second attainable when
stress-testing the SONATA API (≈ −5.29 req./s), that is hardly
a typical scenario in the 5Growth stack. We found that the
MTD performance is well within the pilots’ requirements.

In turn, the security benefits of the MTD mechanism were
well noticeable. We have placed an attacker that attempts to
exploit an information disclosure vulnerability in the SONATA
API. All authentication mechanisms were disabled, leaving
just the MTD solution as the only line of defense. We have
carried-out 500K runs of an exploit attempt of the SONATA
API using the best strategy available (a random port). In Fig. 5,
we show that the detection rate was ≈ 99.9958%. In the
few instances where the attacker evaded detection, we did
not record any exploitation: the connection reseted midway
because the mutation period was so fast (30 ms) and below
the average request time (≈ 37.67 ms with MTD).

V. ANOMALY DETECTION

Due to the heterogeneity of the services that 5G and
beyond network environments will support, the current work
proposes an AI-based module in order to help administrators
and slice tenants to detect and diagnose anomalies among the
services of the different slices deployed on the virtualized
infrastructure. The proposed AI framework is capable of
analyzing aggregated and fine-grained data, such as resource-
level data, RAN measurements, service KPIs, as well as traffic
and mobility patterns [12], [?], in order to identify potential
network anomalies.

A. Algorithm description

The proposed algorithm comprises three main phases (Fig.
6). The first phase involves pre-processing the input data, along
with the feature extraction step. Table I illustrates the features
of the training dataset.

Feature Name Description
lost packets # of lost packets, per service per user

ul delay Uplink delay (ms)
dl delay Downlink delay (ms)

rsrp RSRP (dB)
transfer protocol TCP or UDP encoded [0,1]

ulrx cell UE Bytes received from the Cell

TABLE I: Network KPIs used as Features for the Training Set

Fig. 7: Indicative network KPIs for clustering evaluation

Next, a clustering method is performed using an Unsuper-
vised Machine Learning Clustering model, where outliers and
abnormal patterns of the time series are grouped together.
The algorithm used for this step is Hierarchical Density-
Based Spatial Clustering (HDBSCAN), which is an extension
to DBSCAN by converting it into a hierarchical clustering
algorithm. HDBSCAN is a robust clustering approach for
anomaly detection in time series, which can capture, as well as
predict, clusters of varying densities. The number of clusters
is determined beforehand and is based on how many severity
levels a network administrator targets, thus increasing the
granularity of the prediction. Therefore, by adjusting the
epsilon value of the distance metric of the Model, the number
of clusters formed is also changed (e.g., a large distance
value generates two clusters [-1,1], which means that samples
with assigned cluster 1 are normal and -1 anomalies). Fig. 7
illustrates the training dataset’s time series, along with its
assigned cluster; three potential clusters are defined, namely
[C1: normal, C2: moderate, C3: anomalous] behavior. Some
KPIs have been selected, namely lost packets, ul delay, and
dl delay, to illustrate the validity of the clustering algorithm
by comparing the variance of the selected KPIs with the
assigned cluster, for each time-step.

Finally, a feed-Forward Deep Neural Network (DNN) is
exploited, to perform a classification task, with the training
dataset as input, along with each Cluster as the Label/Target
value for each sample, as assigned by the previous phase.
More specifically, the DNN model consists of 5 layers X ×
64 × 64 × 32 × Y , where X is the number of features in
each sample and Y the number of clusters determined by
the clustering algorithm (one-hot encoded), ReLU activation
function, and categorical cross-entropy as a loss function. The
aforementioned classification scheme is then used to predict
the Anomaly and assign a Cluster to new and unseen data in
real-time and hence detect potential system anomalies.
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Parameter Service 1 Service 2
Transfer Protocol TCP UDP
Packet interval DL/UL 2/200 ms 1000/3 ms
Packet size DL/UL 500/50 bytes 12/1200 bytes

TABLE II: Service Modeling for the normal behavior UE
Parameter Idle Mode Overload Mode
Packet interval DL/UL 5000/5000 ms 1/1 ms
Packet size DL/UL 12/12 bytes 1400/1400 bytes

TABLE III: Traffic Load Modeling of the two modes

B. Preliminary results

We perform the evaluation using the NS-3 discrete event
simulator. The simulation duration is set to 600 seconds. The
logging frequency of the monitored data is set to 1 second.
The area of experiments in which the simulation was executed
is equal to 200x100 m2, at the center of which a femtocell
is placed. The UEs follow a Random-Walk mobility model,
with medium or high velocities, uniformly distributed in the
range of (0.2, 1.2] m/s and (1.2, 2] m/s respectively. Table IV
summarizes the NS-3 parameters used in the scenario.

Overall, 31 UEs are simulated, one of which is considered
the test UE and operates under Normal behavior running two
types of services. The traffic models of the test UE are in
Table II. The rest UEs are used in order to increase/decrease
the network load to simulate anomalous network conditions;
the 30 loaded UEs operate in 2 modes (Idle and Overload) in
order to control the varying traffic load of the network (see
Table III), under the following configuration:

• The UEs become active at t=60s
• Every 30 seconds, each UE chooses a random mode.
• For a specific 60 second time period [420,480]s all UEs

operate in a fixed Overload mode.
• There are 3x30 second time periods [150,180], [270,300],

[480,510] in which, all the UEs are in Idle mode.
The evaluation of the proposed scheme involves assigning a

cluster to a new unseen and pre-processed (as in phase 1) test
dataset, using the already trained Clustering algorithm to act
as the ground-truth. The trained DNN model classifies each
sample of the test set. The proposed scheme’s accuracy is
defined by calculating the percentage of correctly classified
samples over the clusters assigned in the previous step. The
classifier’s accuracy varies based on the number of clusters
determined at the beginning of the process. Figure 8 shows the
accuracy score of the DNN Classifier over the different number
of clusters defined, where the y axis shows the percentage of
correctly classified samples, averaging out in approximately
87.51% accuracy score. It is worth noting that as the number
of clusters increases – and hence, the algorithm’s granularity –
a trade-off can be observed in the accuracy of the classification
prediction. More specifically, for the 2-cluster configuration,
the prediction accuracy reaches 89,5%, while increasing to a
6-cluster configuration, the prediction scheme’s performance
decreases to 82%, i.e., an 8,3% loss. Thus, the configuration
in terms of the number of clusters should be dependent on the
specific use case and the granularity (i.e., number of levels)
of the [normal-anomalous] behavior range that the network
administrator targets to identify.

Parameter Description Default Value
# of Normal Behavior UEs 1
# of Traffic Control UEs 30

# of FemtoCells 1
Mobility States 2 (Medium, High)

UEs’ Transmission Power 20 dBm
Femto Cells’ Transmission Power 20 dBm

Femto Cells Downlink and Uplink Bandwidth 20 MHz

TABLE IV: Parameters Used in the ns-3 Simulated Scenario

Fig. 8: Anomaly Prediction Accuracy Percentage

VI. CONCLUSION

This paper introduced a set of innovations that the 5Growth
project proposes for better isolation and life cycle manage-
ment of network slices. Specifically, we have presented how
5Growth (i) isolates traffic between network slices, which
enables providing bandwidth guarantees per slice, (ii) securely
interconnects different domains for end-to-end network slices,
and (iii) exploits AI/ML to integrate anomaly detection in
deployed slices. Our results using experimental PoCs at pilot
sites, also interacting with ICT-17 infrastructure, validate our
approach towards network slicing.
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