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Abstract—Many emerging Internet of Things (IoT) applications
rely on information collected by sensor nodes where the freshness
of information is an important criterion. Age of Information
(Aol) is a metric that quantifies information timeliness, i.e., the
freshness of the received information or status update. This work
considers a setup of deployed sensors in an IoT network, where
multiple unmanned aerial vehicles (UAVs) serve as mobile relay
nodes between the sensors and the base station. We formulate an
optimization problem to jointly plan the UAVs’ trajectory, while
minimizing the Aol of the received messages. This ensures that the
received information at the base station is as fresh as possible. The
complex optimization problem is efficiently solved using a deep
reinforcement learning (DRL) algorithm. In particular, we propose
a deep Q-network, which works as a function approximation to
estimate the state-action value function. The proposed scheme is
quick to converge and results in a lower Aol than the random
walk scheme. Our proposed algorithm reduces the average age by
approximately 25% and requires down to 50% less energy when
compared to the baseline scheme.

Index Terms—Age of Information, deep reinforcement learning,
energy efficiency, Internet of Things, unmanned aerial vehicles.

I. INTRODUCTION

The Internet of Things (IoT) has enabled the deployment
of sensor nodes (SN) to collect real-time information in var-
ious scenarios. This allows implementing many time-sensitive
applications that operate on fresh information to improve the
performance and the efficiency of the underlying use case.
Use cases include, e.g., human safety applications such as
intelligent transportation and prediction for physical safety, or
event monitoring applications such as temperature and humidity
sensing in smart agriculture [1].

Meanwhile, the age of information (Aol) is a metric that
quantifies the freshness of information about a remote system.
Aol is defined as the time elapsed since the generation of the
packet that was most recently delivered to the destination [2].
Minimizing the Aol in IoT applications has attracted lots of
attention recently in many applications. For instance, reducing
the Aol in vehicular communications (e.g., state of traffic
lights, vehicles, and road sensor states, etc ...) could prevent
the occurrence of accidents. There is also a special interest
in scenarios with power-limited SNs, and their communication
with the base station (BS) is difficult or even infeasible most
times [3], [4]. The SNs in such scenarios might not transmit
the signals with sufficient power and hence will not achieve
the signal-to-interference plus noise ratios (SINR) required to
decode the data at the BS.

A potential solution to solve the aforementioned problem
is the use of mobile nodes, such as unmanned aerial vehicles

(UAV), with low operational costs and flexible deployment
capabilities to collect information from end devices and re-
transmit it to the BS [5]. In addition, UAVs also offer the
possibility of reaching high altitudes while flying, hence, in-
creasing the probability of line-of-sight (LOS) with both BS
and ground users. Their hovering capabilities allow them to stay
stationary at certain positions over the surface for a given time
period [6]. These characteristics make UAVs a suitable option
for implementing of efficient Aol minimization methods.

Determining the optimal UAVs trajectory to minimize the
Aol considering the activation pattern of the IoT nodes is
among the key design challenges. This has been addressed in
the literature by formulating an optimization problems, which
are then solved using optimal or heuristic algorithms, such
as dynamic programming and ant colony optimization [5].
However, the complexity of the original problem requires
significant simplifications to switch it to a feasible optimization
problem, reducing its practical appeal. An alternative option to
find the optimal trajectory is the implementation of learning
methods such as reinforcement learning (RL), which allows
the agents (UAVs) to learn the environment and determine the
optimal flight policy.

A. Related Literature

Several works have considered UAV-assisted communication
for Aol minimization using learning methods [7]-[10]. For
instance, the work in [7] investigated an online Aol-based tra-
jectory planning for a UAV-assisted IoT network with unknown
traffic generation and device topology. The Aol minimization
problem was formulated as a Markov decision process (MDP)
and solved using deep reinforcement learning (DRL). The
authors in [8] considered discrete battery levels where one UAV
assists the communication of sensors with energy constraints.
They proposed an age-optimal policy for optimizing the UAV’s
flight trajectory and Sensors scheduling, and implemented it
using DRL. The proposed algorithm showed better results in
terms of average sum-Aol when compared to random walk
(RW) and distance-based policies. A similar approach was
presented in [9] where the authors formulated an MDP to find
the optimal trajectory of the UAV together with the optimal
transmission scheduling of the SNs that minimizes the weighted
Aol, with UAV battery guarantees. They proposed an UAV-
assisted data collection algorithm that outperformed distance-
based and Aol-based approaches. Similar to previous works,
the authors of [10] addressed the minimization of the average
Aol of all deployed sensors by optimizing the UAV’s flight



trajectory, while keeping the packet drop rate as low as possible.
The SNs were assumed to sample information with either fixed
or random rates. Authors cast the Aol minimization problem
as a finite-horizon MDP and propose a DRL algorithm to find
the optimal solution. However, most of these works assumed a
single UAV, constrained UAV mobility options, and a limited
number of SNs in their system model.

B. Contributions

The major contributions of this paper are:

o We address the problem of the average Aol minimization
of randomly deployed IoT devices with multiple UAVs as-
sisting the communication, unlike the single UAV scenario
in most existing literature.

e We propose a DRL algorithm for finding the optimal
policy for the UAV’s trajectories with five and nine degrees
of freedom

e We show that our proposed DRL approach improves
average Aol and energy consumption when compared to
baseline approaches such as RW.

o We numerically validate the proposed algorithm with up to
10 deployed SNs, which represents an improvement over
previous works where the number of IoT nodes is usually
fewer.

Applications of our model include but are not limited to the
field of environmental monitoring, e.g., UAV-based forest fire
surveillance [11], where one or more UAVs might be deployed
to collect real-time information which is critical in disaster
prevention.

C. Outline

Section II presents the system model. The proposed DRL
algorithm is detailed and numerically evaluated in Sections III
and IV, respectively. Finally, Section V concludes the paper
and discusses potential future works.

II. SYSTEM LAYOUT AND PROBLEM FORMULATION
A. System Layout

We consider a large area with a set D = {1,2,---,D} of
D low-power single-antenna IoT devices randomly deployed
in the 2D plane to monitor different physical processes as
in [8], [9]. The location of each device d € D is given by
Lg = (xq,yq)- A BS is located at the center of the area (i.e,
at (0,0)). Asetd = {1,2,--- ,U} of U rotary-wing UAVs is
dispatched to collect information from all the deployed devices
by flying over different spots within the service area. The main
objective is to gather information from the devices in a way
which reduces the weighted sum of Aol while reducing the
energy consumption for each IoT device. Each UAV then relays
the information from the IoT devices to the BS at the center of
the map. A set of UAV charging depots C = {1,2,--- ,C} is
conveniently deployed at fixed positions around this area (for
example, at the corners). The position of each charging depot
¢ € C is given by b. = (x., Yc)-

Without loss of generality, a discrete-time system is assumed,
where time is divided into slots of unit length such that each
time slot ¢ > 1 corresponds to the time duration [t — 1,¢].
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Fig. 1: The system model comprises a set D of IoT devices served by a set U
of rotary-wing UAV. Each UAV relays the information from the IoT devices
to the BS in the middle of the map.

The position of the UAV wu at time slot ¢ is fully given by
its projection on the 2D plane p,(t) = (2 (t), y.(t)) and its
altitude h,. It is reasonable to say that a UAV must start its
trip from a charging depot and at the end of a trip, it should
head for a charging depot to charge its battery before starting
the next trip. Then, the movement of a UAV in one trip w is
described as a sequence of projections on the ground at each
time slot ¢ such that L, (t) = [l,(1),1,(2),1.(3), ..., L (T0)]
with {l,,(1),1,(Ty) € C} denote the initial and final locations,
respectively. For convenience, the area of interest is discretely
divided into equally-sized small square/octagonal grids, where
the positions of UAVs or IoT devices are considered to be
constant anywhere inside one grid. The center of each grid
is given by (z4,y,) € G, where G is the set containing the
locations of the centers of each grid. The distance between
the centers of two adjacent grids is r4. Moreover, we set T
as the time required for the UAV to move from the center of
one grid to another, which is defined as the ratio between 7,
and the UAV velocity. Let’s also assume that the SNs follow
a scheduling policy such that w(t) € W = {0,1, ..., D} where
w(t) = d means that node d is scheduled to transmit at time
slot t. The system model is illustrated in Fig. 1.

The power consumption of the UAVs when moving or
hovering is composed of three components modeled by [12]
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where Py and P, represent the blade profile power and derived
power when the UAVs are hovering, respectively. V; depicts
the velocity of the UAVs and Uy, the tip speed of the rotor
blade, o is the mean rotor induced velocity when hovering,
dy represents the fuselage drag radio, p is the air density.
Meanwhile, sy represents the rotor solidity and B the area
of the rotor disk. Moreover, the UAVs consume energy when
communicating with the BS. If we consider a battery capacity
Bz, for the UAVs and discretize it in energy quanta e,
then, the amount of energy per energy quantum is given by the
ratio E4z. 4 /€maz,u- We denote the battery level of UAV u at
time slot ¢ as e, (t) € £, = {0,1, ..., €4 maz ;- Then, the energy



consumption at a UAV required to relay an update packet is
given by

R Emax,u
t) = L BL(1), 2
ey (t) Ernann (t) (2
with
B (t) = o (2% — 1) 3)
“ Gu,bs(t) ’

where g, »s(t) is given in (7), M is the packet size of the sensor
updates, BW depicts the signal bandwidth and o2 the noise
power. The energy consumption due to flying and hovering can
also be expressed as

eE (V) = Smamt p (). )

max,u

Since the energy consumed due to flying or hovering is consid-
erably larger than the energy for packets relays, the number of
energy quanta when discretizing the batteries must be set large
enough in order not to overestimate the energy consumption
due to communication with the BS. The battery evolution of
the UAVs is given by

if w(t) =d,

5
otherwise. ®)

eu(t+1) = {

eu(t) = ey (Vi) + e (1)1,
[l

eu(t) = ey (Vo)1

The ceiling operator guarantees a lower bound on the energy
performance. The scheduling constraint ||p,(t) — Lq|| < Rq
ensures that UAV v is within the coverage radius Ry of sensor
d. R, is defined as

B P 1/2
Ry = (MO - h2> : (6)
(28w — 1)02

where P represents the transmit power of a SN [9].

We also assume the presence of LOS between the sensors and
UAVs, and between the UAVs and BS, therefore, the channel
gain between UAV w and the BS at time slot ¢ is given by

_ Bo
t) = Bod, 5, =
guse(t) = Foduts = P LT

)

where [y is the channel gain at the reference distance of 1 m
and hps represents the height of the antennas at the BS [8].
We use the Aol as a metric for measuring the freshness of
information, which is defined as the time elapsed since the last
update packet received at a UAV was generated. Particularly,
we define Aol as

if w(t) =d,
otherwise,

®)
which ensures that the Aol of SN d is set to one if it generates
an update packet at time slot ¢ or is increased by one otherwise.
Here, Ajmqs denotes the maximum allowed Aol, which is
relatively large.
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B. State and Action Spaces

The state space of the system at time slot ¢ is defined as
s(t) = (I(t), A(t), A(t)) where:

e I(t) is a vector containing the position of each UAV
l,(t) € P at time slot t.

o A(t) = (A1(t), As(t), ..., An(t)) (N < D) contains the
Aol of all SNs under the coverage of the UAVs, where
An(t) € A=1[1,2, ..., AN maz)-

o A(t) = (A1(t),As(t), ..., Apy(t)) with Ay(t) € G, is
a vector that contains the difference between the battery
status of each UAV and both the required energy to arrive
to the nearest charging depot ¢ € C and the energy
consumed by packet relays considering the worst case
when the UAVs relay packets in every time slot .

Finally, the state space of the system is given by S = PY x
AN % GU.

The action space at time slot ¢ is determined by the
movement of the UAVs v, (¢) and the scheduling policy, i.e,
a(t) = (vy(t),w(t)). Here, v,(t) € V has 9 directional
actions as detailed in (9). Then, the action space is given by
B=VV x WY,

The movement direction of each UAV at a given time slot is
modeled as

Lu(t) +(0,7), vy (t) = North,
Lu(t) = (0,7), vy (t) = South,
Lu(t) + (r,0), vy (t) = East,
lu(t) = (r,0), v (t) = West,
L(t+1) = lu(t) + (%, ) vy (t) = Northeast,
Lu(t) + (—%, %), vy (t) = Northwest,
Lu(t) + (%, -7 vy (t) = Southeast,
Lu(t) + (—%7 —5); vy (t) = Southwest,
Lu(t), Hovering.

©))

The reward system is defined to minimize the weighted-

sum of the age of information for all devices. We define the
immediate reward r,, for the « UAV at time instant ¢ as

D .
o) {— S 04A4(t) —2,  if dua > Ra,

10
otherwise, (10)

= X1 bada(t),
where 0, is a weight that denotes the importance of sensor d, z
represents energy penalty from allocating a device outside the
coverage radius of the UAV, and d,, 4 is the distance between the
UAV and the chosen SN d. In addition, we define an episodic
model, where each episode starts by having all UAVs at one
of the charging depots. We assume a centralized learning that
takes place at the BS, where all the states and actions are shared
among all the UAVs. Therefore, an episode ends by having at
least 1 UAV with an amount of energy quanta e, less than
or equal the energy threshold e;;,, where the UAV takes the
shortest path to one of the recharging depots.

C. Problem Formulation

We aim at minimizing the weighted average Aol of all SNs
in the network by jointly finding the optimal trajectories of all



deployed UAVs. We can proceed to formulate the optimization
problem as follows

T D
1
P1: min — 04 A4( (11a)
1(t) T;; adalt
Ty,
st Y Pu(Vh) < eult), (11b)
t
1y (1) = be s (11c)

where b, are the coordinates of the charging depot where
UAV u is going to take off. (11a) represents the weighted
average Aol of all nodes in the network, (11b) ensures that the
UAVs will be able to reach a charging depot before running
out of energy, and (11c) establishes the initial position where
the UAVs take off from. It is worth noting that (11b) depends
on T,, which means that the period that the UAVs will be
flying/hovering are different and they can arrive at the charging
depots in different time slots, considering that they all take off
at the same time. The optimization problem (11) is a non-linear
integer programming optimization problem whose complexity
grows with the number of deployed devices. In order to solve
this problem in an efficient and feasible manner, we propose
a DRL-based approach with the use of action/state spaces and
the reward system as defined in the previous subsection.

III. DRL APPROACH

In regular RL problems, the goal of the agent is to find the
best policy to follow while being at each state [13]. The state-
action value function Q. (s, a) is one of the key functions in RL
problems to find the optimal policy. It represents the expected
reward of taking an action a at state s then following a policy
m. The state-action value function at time instant ¢ is updated
as follows

Q(s(t),a(t) = Q(s(t),a(®)+
o (r()+7 maxQ(s(t+1),0) = Q(s(t),a®)), (12)

where « is the learning rate, r(t) is the immediate reward,
YQ (s(t+1),a(t+ 1)) is the discounted state-action value at
time instant ¢t 4+ 1, and ~ is the discount factor. In addition,
an exploration rate € is defined, where the agent selects a
random action with probability € and selects the greedy action
(the one that maximizes the state-action value) with probability
1 —e. The value of € decays as the learning progresses. Hence,
random actions are more likely to be chosen at the beginning
of training to explore the state space, whereas it is better to
follow the best policy after relatively long training period. In
our model, the UAV experiences a large dimension state space,
which is almost a continuous state space. To overcome the
dimensionality issue, we propose a deep Q-network (DQN),
which works as a function approximation to estimate the action-
value function (Q-function).

In DQNs, there are two implemented neural networks [14].
The first network estimates the Q-function, whereas the second
network is called the target network, which estimates the target
Q-function. In the context of DQNs, there are two major
strategies that improve the learning rate: fixed Q-targets and
experience replay. The DQN updates the Q-function estimator

TABLE I: UAV model parameters

Parameter Value
Battery capacity Emaz,u 10000
Energy per quantum emaz,u 200

Maximum allowed Aol Ag a0 30

Channel gain at 1 m (g 30 dB
Height of the UAV h,, 100 m
distance between cells centers 74 100 m
Bandwidth BW 1 MHz
Packet size M 5 Mb
Noise power o2 -100 dBm
Number of charging depots C 4
UAV speed V4 25 m/s
Tip speed Uyip 120 m/s
Air density p 1.225 kg/m?
Blade power profile Py 99.66 W
Hovering power profile Py 120.16 W
Fuselage drag ration do 0.48
Rotor solidity sg 0.0001
Area of rotor disk B 0.5 s?
Mean rotor induced velocity in hover pg 0.002 m/s
SN transmit power P 0.003 W
Base station height hpyg 15 m
Energy penalty z 5

network, while keeping the weights of the target network fixed,
where they are only updated every specified number of steps
to utilize the fixed Q-targets. In addition, the DQN stores the
experience (s (t+1),a(t+1),7(t+1),s(t+ 1)) in a buffer
memory, where a small batch from this buffer is sampled
randomly to train the neural network. The experience replay
utilizes the past experience and also breaks the correlation
behavior of the samples, where the states s; and s;4; are
highly correlated. Applying fixed Q-targets and experience
replay strategies speed up the learning process and guarantee
finding the optimal policy.

IV. NUMERICAL ANALYSIS

In this section, we present the numerical results of our
proposed DRL scheme and compare them to a baseline RW
model. First, consider a grid world of 1100 m x 1100 m,
which is divided into 11 x 11 grids. The simulation parameters
regarding communication for the UAV model are in Table I. We
use Pytorch to implement the proposed DQN, which comprises
an input layer, which has the size of the state space, two fully
connected hidden layers in case of one UAV and five fully
connected hidden layers in case of two UAVs, and the output
layer with the size of the action space. Table II summarizes
the DQN setup settings. In addition, we use a single NVIDIA
Tesla V100 GPU and 10 GB of RAM The one UAV case
requires around 10000 episodes (40 minutes) to converge to
the minimum training loss, which corresponds to the optimal
policy, whereas the two UAVs case requires around 25000
episodes (100 minutes). We present two models to evaluate
the trained UAVs performances. The first model (5-directions
model) allows the UAV to move in five directions (North,
South, East, West and Hovering), whereas the second model,
as mentioned in (9).

Fig. 2a presents the average age for RW and the proposed
DRL approach with one and two UAVs using the 5-directions
model, whereas Fig. 2b presents the 9-directions model. We
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Fig. 2: Average age of information for the RW and the proposed DRL approach with 1 and 2 UAVs serving 5 IoT devices using different direction models.

Time is measured in multiples of 7.

TABLE II: DQN parameters used on simulations for 1 and 2 UAVs.

Parameter 1 VAV 2 UAVs

Neural network 2 hidden layers 5 hidden layers

architecture (64,64) (64,128,256,128,128)
Episodes 50000 100000
Batches 64 128
Learning rate « 0.0004 0.0004
Initial € 1 1
e-decay 0.995 0.995
Discount factor v 0.99 0.99
Replay buffer size 100000 1000000
Optimizer Adam Adam
Activation function ReLU ReLU

consider 5 IoT devices in both cases. Both figures show that
the proposed DRL approach results in a better performance,
i.e., reduced average Aol over the baseline random walk. When
comparing the average Aol of the DRL scheme with one and
two UAVs, we notice that there is a considerable gap at the
beginning, which reduces with time. This is because, with
the considered number of few IoT devices in the small grid
world, the proposed DRL approach can learn the age-optimal
scheduling policy efficiently, even for the case of a single
UAV (as indicated in Fig. 2b, where the corresponding age
decreases after a certain point). The same does not occur with
the random walk, where it seems always necessary to add more
UAVs to increase the performance. Moreover, the average age
seems to increase linearly in the beginning of the episodes
as the individual ages are initialized as 1, where the devices
experience low ages and their ages start to grow. After around
30 time instants, the average age seems to converge to the true
average age and becomes steady until the end of the episode. In
addition, we can observe that using the optimal policy for the
9-directions model reduces the age experienced by the devices
over the 5-directions model. With the 9-directions model, the
UAV has more flexibility to reach the optimized destination
faster than the 5-directions model.

Fig. 3 shows the average Aol (i.e, final average age of the
simulation time) regarding the number of IoT devices. We can
see that the age increases with the number of IoT devices
and the proposed DRL scheme outperforms the RW policy.
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Fig. 3: Average age of information for the RW and the proposed DRL approach
with 1 and 2 UAVs using the 9-directions model as a function of the number
of IoT devices D.

In addition, the reduction in the age is quite significant while
using DRL scheme over the RW policy when the number of
IoT devices increases. The 1-UAV DRL almost achieves the
same average Aol of the 2-UAV RW policy at D = 10. Since
the UAV serves only 1 device at each time instant, the devices
have to wait longer period until being served by the UAV, which
increases the age in case of a large number of IoT devices.
Therefore, the larger the deployment, the more significant the
reduction of the age of the DRL policy compared to the baseline
RW policy.

In Fig. 4, 2 UAVs are serving 8 SNs using the 5-directions
model while adjusting the allowed transmission power for the
proposed DRL scheme. It shows the effect of the transmission
power on the average age of information. As the transmission
power increases, the coverage radius increases and it becomes
easier for the UAV to receive information from any device in
the grid world without energy penalty. Therefore, note that the
age decreases as the coverage radius increases. Notice that the
proposed DRL scheme outperforms the RW scheme even for
high transmission power and the coverage radius of the UAV.

Finally, Fig. 5 illustrates the energy consumption for the
proposed DRL scheme compared to the RW scheme for 2 UAVs
serving 5 IoT devices using both the 5-directions model and
the 9-directions model. The available energy levels presented
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Fig. 5: Available number of energy levels at the UAV for the random walk
and the proposed DRL approach with 2 UAVs serving 5 IoT devices using the
5-directions model and the 9-directions model.

is the average energy levels of the two UAVs. The DRL scheme
finds the optimal policy that can achieve the best combination
between the desired low age and saving UAV energy before
recharging. As we noticed in 2a and 2b, the 9-directions model
outperforms the 5-directions model in terms of average Aol. In
addition, the 9-directions model also overpasses the 5-directions
model by saving more energy levels as the 9-directions model
has more flexibility in movement and can save time and energy
by reaching the optimized location faster than the 5-directions
model. It can be observed that the available energy levels e,, ()
of the DRL scheme using the 9-directions model is almost
double the available energy levels of the RW scheme using
the 5-directions model after 59 time instants.

V. CONCLUSIONS

In this paper, we consider a network of deployed sensors
in an IoT network where multiple UAVs serve as mobile
relay nodes with LOS connectivity between the sensors and
the UAVs. We formulate an optimization problem to plan
the trajectory of the UAVs, while minimizing the Aol of the
received messages and considering the energy consumption
of the UAV nodes. We address the problem by proposing a
DRL algorithm for finding the optimal policy for the UAV’s
trajectories with nine movement directions of the UAVs at each
time instant. Our proposed approach provides better results in
terms of average Aol and energy consumption when compared
to the RW policy as a baseline scheme. In particular, our
proposed algorithm reduces the average Aol by more than

25% for the 9-direction model with one UAV and 10 SNi.
In addition, it also requires significantly less energy compared
to the baseline scheme under all scenarios. This work would
pave the road towards the deployment of UAV swarms to serve
massive IoT scenarios. Thus, we plan to extend this work by
solving the problem of high dimensionality in the action space,
thus applying it to a massive IoT deployment scenario where
we could train a UAV swarm to serve many IoT devices.
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