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Abstract—Collecting data from Internet-of-Things (IoT) de-
vices, especially the variety of sensors dispersed in the environ-
ment, is an increasingly important and difficult task. Several
long-range radio-access technologies, such as low-power wide-
area networks (LPWAN) and specifically LoRaWAN, have been
proposed to address this challenge. However, until now, the key
focus of the related studies has been on static terrestrial LPWAN
deployments. In this study, we depart from this vision and inves-
tigate the practical feasibility and performance of a LoRaWAN
gateway (GW) on a flying platform, specifically - an unmanned
aerial vehicle (UAV). The key contributions of this study are
(i) the design and field-testing of a packet-sniffer-based mobile
LoRaWAN GW prototype, allowing collection of the data from
LoRaWAN networks, including the already deployed ones; (ii) the
open-publication of the data collected during our experimental
campaign in the 426 LoRaWAN sensor node network of the
University of Oulu illustrating the performance of different drone
trajectories; (iii) the initial results of the system’s performance
analysis, revealing some interesting trends and setting goals
for further studies, and pinpointing the lessons learned during
the experimental campaign. Our empirical findings suggest that
the Travelling Salesman Problem (TSP) trajectory is the most
effective moving trajectory for the number of packets collected
and the average energy consumed per packet collected.

Index Terms—LoRaWAN, UAV, IoT, experiment, trajectory,
non-terrestrial, field test, packet delivery, dataset, drone

I. INTRODUCTION

The number of Internet-of-Things (IoT) applications and
devices is growing incredibly fast, supported by the progress
in underlying technologies. Over the past years, substantial
efforts have been invested in increasing the coverage and
enabling the operation of IoT applications in remote areas.
This has brought to the stage several radio access technologies
featuring a combination of long-range communication and low
IoT node energy consumption – the low-power wide area
networks (LPWAN). Of these, LoRaWAN is quite popular [1]
due to its flexibility, relatively simple design, and ease of use.

However, even though LoRa modulation underlying Lo-
RaWAN can enable communication links with the length of
several kilometers (and dozens of kilometers opportunisti-
cally), these do not provide an ultimate solution to enable
ubiquitous connectivity for IoT. To offer just two illustrative
examples: (i) even today, there are still many use cases in
the regions lacking terrestrial infrastructure (e.g., in natural
reserves, rural and Polar areas); (ii) there are some emergency
and event-triggered applications and services. An illustrative
example of the latter is a forest wildfire extinguishing case,
where IoT sensors deployed on the trees or around them can

be used to detect the start, predict the propagation and ensure
the extinction of fire.

Therefore, addressing this challenge as well as the need
for increasing the reliability of IoT data collection (e.g., in
case of energy blackouts affecting terrestrial infrastructure)
in this paper, we report and advocate the employment of
IoT radio infrastructure deployed on a mobile platform – an
unmanned aerial vehicle (UAV). Compared to the state-of-
the-art, the key novelties of our work are: (i) we discuss
and report the design of a UAV-based LoRaWAN gateway
(GW) prototype, which can be used either standalone or to
complement an existing network; (ii) we report field trials
conducted with the instrumented UAV LoRaWAN GW, during
which we employed it to collect data from 426 LoRaWAN
sensors scattered inside the University of Oulu as a part of
Smart Campus initiative. Note that in this paper, we detail
the experiment procedure and pinpoint just some selected
results related to the instrumentation and operation of a flying
LoRaWAN GW (e.g., the effect of the different trajectories
on data collection performance). At the same time, we open-
publish the data collected during the experiments for further
use and to enable a more detailed analysis by the community.

The remainder of the paper is organized as follows. Sec-
tion II discusses the state-of-the-art. Section III details the
UAV GW design and describes the working environment, the
trajectories and experiment procedures. Section IV presents
the selected results and Section V concludes the paper, sum-
marizing the lessons learned and prospective future steps.

II. RELATED WORKS

Given this work’s emphasis, we focus on the studies im-
plying the use of a UAV-based LoRaWAN GW for collecting
data from sensors scattered in the environment. These studies
can be classified into two main categories based on the
methodology. In the former, simulations or analytic methods
are used, while the latter develop and use a real-life prototype
and field tests. In Table I we summarize the contributions
of the different papers, and below, we discuss them in more
detail. In the rightmost column with Nd we show how many
End Devices (EDs) were involved in the experiments.

First, we will briefly discuss the selected works belonging
to the former category. Zorbas et al. [3] focused on energy
efficiency and packet collection success rate: they modified the
classical ALOHA transmission policy to introduce a more ef-
ficient synchronized time-scheduled transmission mechanism



TABLE I
RELATED WORKS

Ref. Obtained results Prototype Nd

Design, implementation, and evaluation
[2] of an architecture for enhancing LoRAWAN Yes 7

deployments by employing a LoRa-drone GW
Developed a new transmission policy

[3] introducing a synchronized time-scheduled No n.a.
transmission mechanism to eliminate packet collisions
Simulations show that adopting

[4] a flying LoRaWAN GW reduces the mean No n.a.
energy consumption of the EDs by up to 59%
Developed and realized lab tests

[5] - [6] as well as an experiment of a flying LoRaWAN Yes 2
GW equipped with a simulated satellite connection
Obtained an analytical model that can be used

[7] to configure the path of the drone to guarantee No n.a.
a given probability of collecting LoRaWAN sensor data
Developed a prototype where LoRaWAN

[8] is used on a drone to wake up high power Yes 1
5-GHz transmitters on the ground
Simulations and financial analysis of a
prototype drone tasked with charging LoRaWAN

[9] sensors placed in a remote location proved to be No n.a.
advantageous compared to manually replacing
all sensors’ batteries

and eliminate packet collisions. They achieved 0% packet col-
lisions through simulations in an environment populated by 80
devices. Tiurlikova et al. [4] focused on the energy efficiency
aspect of adopting a flying LoRaWAN GW in the network,
showing through simulations that a UAV-based GW can reduce
the mean energy consumption of EDs for communication in
the network by up to 59%. In Caruso et al. [7], a theoretical
model is formulated to understand analytically how close a
UAV that uses a LoRa radio needs to fly over the sensors to
achieve a certain quality of data collection. The results can
be used to determine the layout of the sensors on the ground,
the type of drone to utilize, and the path shape that needs to
be followed together with the battery size of the aircraft. A
quite different approach to the use of drones for LoRaWAN
networks is proposed in Tiurlikova et al. [9], where a drone
equipped with wireless power transfer is evaluated as a means
to replenish the batteries of all the LoRaWAN sensors of
a remote deployment. The paper carries out feasibility and
financial sustainability simulations comparing this approach
with manual battery servicing.

Next, we focus on the second class of papers, where a
real-life prototype is reported. So far, we have found only
four such studies. In their work, Zhang et al. [8] adopt the
LoRa technology as a wake-up signal for a 5-GHz transmitter
for application data transfer. Note that although the authors
used LoRa-modulated signals, the communication does not
follow LoRaWAN specifications. The works by Marchese et
al. [5], Moheddine et al. [6], and Gallego-Madrid et al. [2]
focus on adopting the UAV to extend the coverage of the
LoRaWAN network; they both develop a working prototype.
In [5] and [6], the UAV is equipped with a LoRaWAN GW
and a simulated satellite backbone connection. Experiments
were carried out using just two sensors placed 100 meters
apart on an open field while the drone moved in a random
pattern at an altitude of 20 meters. Results for signal strength
and energy consumption for lab tests and drone flights are
compared; moreover, in [6], the authors compare the difference

in performance between the drone acting as a data mule and a
simulated satellite connection. In study [2], the prototype was
designed to overcome the problematic orography of the area
where sensors were placed, which did not allow the GW to
collect data from all the sensors. In the field-trial phase, the
authors employed seven EDs with one ground GW and two
locations where the UAV-equipped GW hovers. The results for
packet delivery ratio (PDR) are reported in the paper.

As seen from the discussion above, the number of experi-
mental studies on the use of UAV-based LoRaWAN GW is low,
as is the scale of their experimental campaigns. Notably, none
of the referenced works, to the best of our knowledge, provides
an openly accessible dataset. In contrast, in this study, we
investigate the case when a flying LoRaWAN GW collects the
data from the already deployed massive LoRaWAN network,
composing more than 400 sensors. Also, during our experi-
ments, the packets sent by LoRaWAN sensors were collected
simultaneously by a terrestrial GW and the UAV-based mobile
GW. Therefore, our results allow to compare the performance
of the two deployment types and shed some light on the
added value of a flying GW within a LoRaWAN network
that is already served by a static GW. Finally, we report the
experimental results for five different drone trajectories. To our
knowledge, such results are not yet available in the literature.

III. EXPERIMENT DESIGN AND ENVIRONMENT

A. Experiment environment

The Oulu University campus is located in the Linnanmaa
district; it covers an area larger than 180 000 m2. Inside the
university, there are several active LoRaWAN sensor networks.
The most extensive one and of primary interest for this work
belongs to the Smart Campus initiative; it includes 426 active
sensors (Elsys.se model ERS [10]), each transmitting once
every 900 seconds (more information, including the map of the
sensors, is available from [11] and [12]). The deployed sensors
measure and communicate temperature, humidity, light, mo-
tion, CO2 concentration, and sound volume data. The uplink
transmissions of the different sensors are not synchronized.

The LoRaWAN network is served by one static GW (model:
Multitech Conduit) equipped with an omnidirectional antenna
(biconical D100-1000 by Aerial) mounted to an external mast
over the university rooftop 28 meters above the ground level.
Data captured by this GW is streamed to InfluxDB, a time
series database, and visualized through the Grafana plat-
form. The Smart Campus project makes data openly available
through periodic publications [11].

B. Flying gateway platform design

Given that the network discussed in the previous subsec-
tion is already running and collecting data used by several
applications, we aimed at a solution that would not alter the
present setup when designing our testbed and experiments.
This requirement posed two major challenges. The former
originated from the fact that the already deployed sensors were
configured to use the over-the-air activation (OTAA) procedure
defined by LoRaWAN specifications. Due to this, the sensors’



Fig. 1. The structure of the set-up for the field trials.

security keys were generated by the network server (NS) for
each new connection of a device. Given that the sensors can
occasionally reconnect or reboot for various reasons resulting
in keys being changed, this made pre-storing the keys on
the UAV-based GW impossible. Meanwhile, enabling a stable
backbone wireless connection between the GW on a mobile
UAV and a ground-based NS also appeared to be extremely
challenging, especially while complying with the Finnish
frequency regulations, which prohibit the use of any mobile
network equipment on any aerial vehicles, including UAVs.

After analyzing the pros and cons, we opted to implement
the UAV GW as a ”packet sniffer” – it receives and logs in
its memory all the LoRaWAN packets it observes, but the
analysis of the data and their interpretation is made offline
after the flight. However, on the positive side, this allows a
fully-autonomous and independent operation of the UAV-based
LoRaWAN GW. Notably, this approach does not introduce new
security vulnerabilities since the drone, even if intercepted or
lost, does not have the keys to decrypt network or application
data. Also, it is very scalable since the drone does not require
keys, can collect packets from different LoRaWAN networks
simultaneously, and does not introduce extra signaling. On the
negative side, this approach does not enable the implementa-
tion of acknowledged transmissions (these are not used in the
Smart Campus network) and introduces a time delay before the
data are received and decoded. Therefore, this design approach
is prospective for non-latency-critical applications only.

Figure 1 shows the overall testing environment. The data
pipeline of the University of Oulu fixed LoRaWAN network
is shown at the top. The static GW sends the received packets
to the NS, which is connected to the Internet and forwards
the data to InfluxDB. From there, all the data needed for the
analysis can be downloaded in a csv format. On the bottom,
the structure and the pipeline for the flying GW setup are il-
lustrated. The drone is carrying the battery-powered (65160 J)
RAK2287 dev kit [13], connected to an HWR Series ½-wave
center-fed dipole antenna [14]. The system hosts a ChirpStack
NS locally. Node-RED stores all the packets captured by the
mobile GW onto a Secure Digital card. Notably, both GWs
can simultaneously receive packets from the sensor nodes.

Fig. 2. Photo of the aerial LoRaWAN GW used in field trials.

Fig. 3. The trajectories overlaying the University of Oulu map. The TSP
trajectory is represented in blue, the Scan trajectory is green, and the Orbit
is red. Yellow dots are the starting/ending points. The larger lime-colored dot
represents the location of the static ground LoRaWAN GW’s antenna.

C. Trajectories

The major benefit a drone offers – is its mobility. Unfor-
tunately, no previous experimental work studied the effect of
the trajectory on communication performance; thus, we carried
out such study in this work. Specifically, we considered the
following drone mobility patterns (i.e., the trajectories):

• The first two scenarios implied the drone hovering in the
air stationary. The first hovering spot was above the K-
means centroid of all EDs’ locations; the second hovering
location was above the stationary GW’s antenna position.
These trajectories are further referred to as ”Mid” and
”Actual”, respectively.

• The third scenario (the ”Orbit”) implied the circular
motion of the UAV centered at the K-means centroid of
all EDs’ positions. An arbitrary radius of 250 meters was
chosen to cover the whole university area.

• For the fourth case a conventional drone scan (denoted
”Scan”) trajectory was generated to cover the approx-
imate area occupied by the university buildings (i.e.,
251 m width, 725 m length).

• Finally, for the fifth case, we have employed the Trav-
elling Salesman Problem [15] (denoted ”TSP”) solution
to optimize the drone movement. A number of reference
points (i.e., coordinates in the campus map) were identi-



fied, starting from all sensor node locations. As they are
many, the positions of sensor nodes were first grouped
into clusters. The K-means algorithm [16] was selected
as a clusterization method for the sensor nodes, obtaining
17 cluster center locations that are then used as reference
points for the movement. The final trajectory was ob-
tained by solving an NP-hard combinatorial optimization
problem to find the shortest closed tour through the set
of reference points.

All the different trajectories are illustrated in Fig.3. A flight
automation software was employed to configure the drone to
follow the trajectories with high fidelity. The flight altitude
was set to 45 meters above ground in all experiments to avoid
possible obstacles along the path; for the trajectories involving
the drone moving, its speed was set to constant 5 m/s. In the
future, other heights and speeds will be considered.

D. Experiment routine

Several considerations were made to ensure the safety of
people, equipment, and the environment. First, the weather
conditions (e.g., temperature, humidity, wind speed, and visi-
bility) and the crowdedness of the area were analyzed before
each flight on site. The experiments were executed outside
business hours in the late evenings to minimize the number
of people around. Note that the experiments were conducted
in June 2022, when the daylight duration in Oulu exceeds 20
hours, thus enabling good visual conditions in the evenings.

Before the start of each flight, the home point location
was configured at the drone to allow its autonomous safe
return in case of communication failure or other unforeseen
circumstances. Also, as the longest trajectories required a large
percentage of the drone battery, it was in the best interest to
take off as close as possible from the start of the trajectory.
Special software has been used to automate the flight of the
pre-configured trajectories. All flights were carried out under
human supervision, maintaining a visual line of sight between
the pilot and/or a dedicated observer and the drone at all times.
After every landing, the drone and the GW were powered off
to reset the packet counter, creating a clear separation of the
data collected during the different flights. The results were
collected by executing four flights for each trajectory.

E. Data analysis

During the experiment, several datasets were collected.
First, the LoRa packets received by the drone were stored
in a txt file on the GW’s memory card. Second, the LoRa
packets received by the stationary GW during the experiments
were extracted from the database, downloaded and saved in
a csv file format, and later transferred into the data analysis
software. Third, the flight log of each run was also saved,
allowing to check the integrity of the trajectories against the
designed ones uploaded into the flight automation software
and enabling tracking of the change of the drone’s position in
time. The collected data composes of:

• For the flying GW: time in epoch format, packet counter
from the last boot of the GW, data packet (consisting of

Fig. 4. PDR for different trajectories. The confidence interval is delimited
by the black lines on the top and bottom of each trajectory, the median value
represented as a horizontal line, and the average is shown as a black cross.

Fig. 5. Standard deviation for PDR. The trajectories are placed and colored
similarly to the previous figure.

an unencrypted header that includes the sensor’s network
address, packet counter and other relevant information,
while the rest of the packet is the encrypted payload);

• For the fixed GW: time in epoch format, sensor’s
network address, sensor’s identifier (EUI), frame counter,
data rate, channel, frequency, radio signal strength indi-
cator (RSSI), signal-noise ratio (SNR), and packet size;

• For the trajectories and drone position: latitude, lon-
gitude, and altitude for each data point of the drone
trajectory, speed of the drone, its orientation, etc.

The data sets and metadata can be downloaded from [17].
The data file, containing the analysis of captured packets, is
organized as follows: there is a worksheet for every type of
trajectory containing all the field trials. In each of them, the
data is laid out in columns. On the left side, there is all
the information downloaded from the drone; in the middle,
a gold-colored column indicates the packet match between
the stationary GW and the drone. On the right side of this
column, we placed the data downloaded from the database
of the fixed GW. Packet matches are highlighted by showing
the row number containing the packets that match the MAC
Header (MHDR) from the fixed GW data. All the trajectory
logs are provided in the form of ods and gpx files and can be
imported into visualization tools such as Google Earth.

Since this study’s key focus is investigating the performance
of a UAV-based LoRaWAN GW, we have analyzed the data



on the LoRa PDR. Specifically, we have used the stationary
GW’s packet log to figure out the Device Address (DevAddr)
used by the LoRaWAN sensors during the flights. Then, we
analyzed the contents of the frame (FHDR) and the media
access (MAC) MHDR headers, which are sent unencrypted
in LoRaWAN, for the packets received by the drone-based
GW to identify the uplink data packets and the sensors they
originate from. Furthermore, we used the frame counter (FCnt)
to distinguish the packets originating from the same sensor.

Next, we categorized all the packets received by the UAV-
based GW into four categories. First, we identified the packets
received by both GWs (“Cat.Dbl”). Second, we determined the
packets with valid DevAddr and counter that the stationary
GW did not receive (“Cat.UAV”). Third, we specified the
packets with the DevAddr not assigned to any sensor in
our network as external interferences (“Cat.Int”). Finally, we
grouped all service packets (i.e., any LoRaWAN packet types
other than uplink) or the packets having incorrect structure
(i.e., a not user-data) packet (“Cat.Oth”).

IV. RESULTS

Since it was only possible to conduct four flights for
each trajectory due to adverse weather conditions, the statis-
tical relevance of the results should be carefully considered.
Nonetheless, some trends and lessons learned can be identified.

This study’s main parameter of interest was the PDR from
ground sensors to the drone GW. This statistic was computed
by dividing the number of all packets collected by the drone
(i.e., the number of packets in Cat.UAV and Cat.Dbl) by the
total number of packets sent by the sensor nodes during the
same time interval. The PDR for each trajectory is depicted
in Fig. 4, and its standard deviation is shown in Fig. 5. The
first thing to note is the relatively low PDR to the mobile
GW. We expect the possible reason for this result is the used
antenna – the half-wavelength dipole- attached to one of the
drone’s legs (see Fig.2). Currently, we are conducting further
investigations into this matter and taking measures to improve
the performance by designing a specialized antenna. Nonethe-
less, since all the trajectories have been affected equally, we
consider that their performance can still be compared fairly.

Comparing the PDR for the different trajectories, on av-
erage, the TSP tends to be the most successful. Moreover,
considering the average and median values of the PDR, the
results of TSP surpass that for static drone positions; however,
considering the confidence interval, the stationary positions
may outperform the TSP. The performance of Scan and Orbit
trajectories was substantially lower. Interestingly, the Orbit and
static trajectories were characterized by the high variance of
the results. Though we are still investigating this phenomenon,
we expect that it may be caused by the drone’s orientation,
which was not explicitly configured in our tests.

Figure 6 illustrates how much interference the flying GW
was exposed to during the experiments. The interference rate
was computed by dividing the total number of packets in
Cat.Int and Cat.Oth by the total number of packets the drone
received. The figure clearly shows that a large percentage

Fig. 6. Average interference rate for different trajectories

TABLE II
EXPERIMENTS STATISTICS

Number of packets Tflight Etot Epkt

Traj. min max total avg avg (s) avg (J) avg (J)
Scan 181 197 755 188.75 654 1785.42 44.73
Orbit 40 87 249 62.25 326 889.98 79.77
TSP 127 146 542 135.5 462 1261.26 36.03
Mid 59 134 389 97.25 427 1165.71 55.28

Actual 46 161 410 82 427 1165.71 59.18

Tflight is the average flight time for each trajectory, Etot is the total energy
consumed by the GW for each trajectory (computed as average GW power
consumption multiplied by Tflight), Epkt is the average energy consumed
by the GW to receive one packet from the target network (Cat.UAV &
Cat.Dbl).

of packets received by the flying GW originated from the
devices extraneous to the university network. This testifies that
the testing environment is highly congested; moreover, it is
noticeable that the Actual trajectory has a lower interference
rate than the others. This could be because the hovering point
is placed over the southern part of the university, where a lower
number of buildings and, thus, fewer sensors are present.

Finally, Table II summarizes the statistics on the number
of packets received by the mobile GW for the different
trajectories and the average flight times (which also correspond
to the energy consumed by the drone). The minimum (min),
maximum (max), total, and average (avg) numbers for different
flights are shown. In the three rightmost columns, we report
an assessment of the average energy consumption for the GW
mounted on the drone. We measured the average power con-
sumption to be 2.73 W (the consumption of the stationary GW
is more than three times higher - 9.78 W). This analysis made
it possible to compute Epkt, the average energy consumed
by the flying GW to receive a single packet from the Smart
Campus network. This term indicates the efficiency of each
trajectory; concerning this metric, the TSP outperforms the
Scan, with the second-best figure by about 20%.

V. CONCLUSIONS

The use of non-terrestrial infrastructure for improving the
performance of IoT data collection has a strong potential.
Therefore, in this paper, we reported the design and results



of an experimental study focusing on collecting data from
an extensive LoRaWAN sensor network by a drone-based
GW. The novel contributions of this work are: (i) the design
and field-testing of a packet-sniffer-based mobile LoRaWAN
GW, allowing non-intrusive and autonomous collection of
the data from LoRaWAN networks, including the already
deployed ones; (ii) the data collected during our experimental
campaign illustrating the performance of the different drone
trajectories, which we publish open-access; (iii) the initial
results of the system’s performance analysis, revealing some
interesting trends and setting goals for further studies. To the
best of our knowledge, none of the previous studies has (i)
experimentally investigated drone-based data collection from
a network composed of more than 400 nodes, (ii) reported the
data both for static and mobile GWs operating simultaneously,
(iii) studied the effect of the trajectory, and (iv) openly
published the data from on-field experiments. Although the
presented node deployment is specific to the University of
Oulu, we consider that the obtained results can be further
generalized. For example, the methodology for building the
TSP trajectory, carrying the flights and handling the data
processing can be employed for other use cases and studies.
More experimental flights are needed to increase the statistical
relevancy of the presented results, but preliminary empirical
findings suggest that the TSP trajectory is the most effective
between the moving trajectories concerning the PDR.

However, we have faced several challenges which affected
the obtained results. First, the weather and time constraints
limited the number of flights. Second, the post-experiment
analysis of the results revealed that the overall PDR for the
mobile GW was substantially lower than the static GW. We
expect that the primary reasons for it are the low performance
of the used non-UAV-optimised antenna and the fact that the
orientation of the drone during the flight was not explicitly
controlled. Nonetheless, we do not expect that this issue
invalidates the results of our reported trajectory comparison
since all trajectories were affected equally. We are currently
approaching these problems by characterizing the antenna
performance, developing a specialized antenna, and investi-
gating the effect of the drone’s orientation on communication
performance. However, we would like to stress the importance
of properly selecting the antenna and its positioning on the
drone as one of the lessons learned and crucial factors related
to the practical performance of IoT data collection by a drone.

Among the other aspects which we consider worth inves-
tigating are: (i) further trajectory optimization (also using
machine-learning-based methods, both for standalone drone
operation and accounting for the presence of static GWs),
(ii) adaptation of the radio parameters (e.g., LoRa spreading
factor) for data collection by drones, (iii) development of
the different architectures for sensor data collection by a
drone (e.g., from real-time data decoding/streaming to fully
autonomous drone operation). The prospective directions for
further analysis of the data which we have already collected
and made publicly available include: (i) analyzing the effect
of the speed, distance, and orientation of the drone towards

a sensor on its packet’s delivery success probability, (ii) ex-
ploring which of the trajectories is more efficient considering
the drone operation not as standalone (as we have done in
this paper), but in cooperation with a stationary GW (i.e., to
maximize the number of unique packets received by both static
and mobile GW), (iii) studying the impact of the modulation-
coding scheme and transmit power used by different nodes.
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