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Abstract—Sensing using cellular infrastructure may be one of
the defining feature of sixth generation (6G) wireless systems. 6G
communication channels operating at higher frequency bands
(upper mmWave bands) are better modeled using clustered
geometric channel models. In this paper, we propose methods
for detection of passive targets and estimating their position
using communication deployment without any assistance from the
target. A novel AI architecture called CsiSenseNet is developed
for this purpose. We analyze resolution, coverage and position
uncertainty for practical indoor deployments. Using the proposed
method, we show that human sized target can be sensed with high
accuracy and sub-meter positioning errors in a practical indoor
deployment scenario.

Index Terms—Sensing, Joint Sensing and Communication, Tar-
get Detection, Localization, Machine Learning (ML), Artificial
Intelligence (AI)

I. INTRODUCTION

The sixth generation (6G) wireless systems will continue to
evolve towards higher frequency bands and wider bandwidths
[1]. Typical 6G deployment will be spread over low, mid and
higher frequency bands to enhance coverage and capacity [2].
The increase in operating frequency could result in commu-
nication bands operating closer to traditional radar bands. We
see this trend already in fifth generation (5G) mmWave com-
munication bands merging with K band (18 GHz−26.5 GHz)
and Ka band (26.5 GHz−40 GHz) and this trend will continue
in 6G. High frequency operation of 6G enables transceivers
to employ massive antenna arrays. This coupled with wider
bandwidth can aid in high resolution sensing solutions with
fine range, Doppler and angular resolutions [3], [4].

As visualized in Fig. 1, sensing of targets (also referred
to as passive objects) involves target detection and, if targets
are deemed to be present, estimation of their parameters [5].
Passive sensing include sensing of targets that do not have
communication capabilities nor will aid in any form to the
sensing process. Employing communication infrastructure for
passive sensing of objects can enable several new use cases,
such as optimizing energy consumption by controlling the
internet of things (IoT) devices, intruder detection, tracking
of equipment among others [6]. In these systems, sensing
can piggyback on ubiquitous communication infra-structure
there by reducing the cost for realizing these use cases.
Sensing using communication signals can also ensure privacy
and security aspects compared to the existing methods which
typically employ cameras to sense passive targets in indoor
environments [7].

Fig. 1: Sensing of a passive object in an indoor wireless deployment. The
passive object creates shadow regions which in turn creates perturbation in
the communication link which can be exploited towards sensing.

Methods for sensing passive objects from the reflected
signal using radars along with other onboard sensors are
commonly employed in automotive use cases [8]. These
methods cannot be directly extended towards passive sensing
using communication infrastructure since the sensors needed
are typically not available and to mimic a traditional radar
using these systems require full duplex operation to harness
the reflected signals from the environment [4]. In [9]–[12]
authors propose methods which use wireless signals for pas-
sive sensing. These methods extract features like received
signal strength indication (RSSI), channel state information
(CSI) or micro-Doppler shifts from communication signal for
passive sensing, based on mid-band (2 − 10 GHz) carriers.
High frequency 6G channels exhibit clustered multi-paths
with each cluster pertaining to a highly reflective surface in
the environment. These channels are generally represented
through environment specific ray-tracing channel models. To
ensure that the conclusions drawn form the work is applicable
to many environments, stochastic geometric models, such as
the Saleh-Valenzuela (SV) channel model [13], [14] is more
appropriate. To the best of our knowledge, this model has
not been adopted towards indoor passive sensing. The passive
target localization problem is also treated in the literature
under the umbrella of device free localization, where the focus
is only on localization and not on target detection [15], [16].
Typically, these works use non cellular channel models and the

ar
X

iv
:2

21
1.

05
34

0v
2 

 [
cs

.I
T

] 
 1

9 
A

pr
 2

02
3



proposed artificial intelligence (AI) methods does not exploit
the correlation in anglular domains from multiple links. In
parallel, there have been works on using radio tomographic
imaging (RTI) for position estimation [17]. In these methods,
a high-resolution attenuation image caused by the presence of
the object is exploited by an image estimator to arrive at the
position. These methods require many communication links
to get high resolution attenuation image for accurate position
estimation and is not suitable for practical indoor cellular
deployment.

In this paper, we develop methods that exploit the 6G
infrastructure capability towards sensing of passive targets.
The main contributions of this paper are summarized as
follows. (i) An AI method that exploits the multi-input multi-
output (MIMO) CSI from multiple links between transmitter
and receiver towards target sensing by perturbations in the
geometric channel model. The method naturally exploits the
angular dimension of the CSI using the rich beamforming
capability of the large MIMO array towards target sensing and
parameter estimation. (ii) Analysis of the resolution (i.e., size
of the target that can be sensed), coverage (i.e., probability of
detection of a fixed size target at different spatial locations),
and position estimation accuracy, using practical indoor cel-
lular deployments. (ii) Comparison of the proposed position
estimation method with an angle-based method to demonstrate
the utility of the proposed AI-based solution.

II. SYSTEM MODEL

In the following, we describe the system model for tar-
get sensing in the indoor environment. We assume that the
deployment has multiple links between transmit and receive
devices having beamforming capabilities. We consider a single
transmit device creating links towards L receive devices. In a
typical indoor deployment the transmit devices could be a fixed
anchor UE with an omni-directional antenna and the receive
devices could be a base stations (BS) with beamforming
capability. In the rest of the paper, we use the term transmitter
and receiver to keep the discussion more general.

A. Channel Model

Channels in 6G systems operating at high frequency bands
(> 24 GHz) are sparse. Propagation paths in these channels
are primarily due to the highly reflective scatterers in the
environment and they arrive as clusters. Generally, deter-
ministic channel models based on ray-tracing are commonly
employed at these frequency bands. However, such channels
are environment specific and does not generalize well to other
environments. To overcome this and to ensure that the infer-
ence drawn from the work to be widely applicable, we adopt a
stochastic geometric channel model called SV channel model
[13], [14]. In this model, each cluster is comprised of the
combination of discrete set of rays. We consider transmissions
from a signal low cost transmitter with an omni-directional
antenna pattern and each L receivers having an uniform linear
array (ULA) with Nr elements separated by half wavelength.
Moreover, we consider a communication-centric integrated

sensing and communication (ISAC) system, where only a
small portion of the 6G bandwidth will be used for sensing,
resulting in a narrowband channel with only spatial resolution
[4].

1) Default Channel without Target: During default or null
state, i.e., when the object is absent, we have

hnull
l =

Ncl∑
v=1

Nrays∑
u=1

βl,u,varx(φl,u,v)G(ψl,u,v), (1)

where hnull
l ∈ CNr , l ∈ {0, . . . , L}, denotes the CSI for the

link between the transmit device and l-th receive device in
the indoor environment. Ncl is the number of clusters and
Nrays indicates the number of rays within each cluster. The
u-th ray of the v-th cluster corresponding to the l-th link has
a complex gain βl,u,v. Each ray has an angle of departure
from the transmit array ψl,u,v and angle of arrival at the
receive array φl,u,v. The transmit gain pattern is denoted
by G(ψl,u,v), while the receive array response is given by
[arx(θ)]k = ejπk sin(θ), k ∈ [0, . . . , Nr − 1]. All angles are
measured in the local coordinate frame of the transmitter or
receivers.

2) Perturbed Channel with Target: CSI pertaining to each
link gets perturbed uniquely when the object is placed in the
environment. As shown in Fig. 1, the occlusion angles O1

tx and
Olrx are created based on the position of the target, transmitter
and receiver. Due to the high frequency of operation, we
assume that the target completely blocks the rays and there
is no diffraction of rays. This creates a L+ 1 convex shadow
regions, namely Stx ⊂ R2 behind the object as seen from the
transmitter and Srx,l ⊂ R2 behind the object as seen from
receiver l. Then, during alternate hypothesis, the CSI of the
channel is given by

halt
l =

∑
u,v

β′l,u,varx(φl,u,v)G(ψl,u,v) +

Ns∑
s=1

αsarx(φs)G(ψT ),

(2)

where

β′l,u,v =

{
0 x(φl,u,v, ψl,u,v) ∈ Stx ∪ Srx,l

βl,u,v else,
(3)

where x(φl,u,v, ψl,u,v) ∈ R2 is the unique location induced by
the angle of departure ψl,u,v from the transmitter and angle
of arrival φl,u,v from the l-th receiver. The second term of (2)
represents the contribution due to the scattering from the target
resulting in Ns rays arriving at the receiver, having complex
gains αs, angles of arrival φs and a fixed angle of departure
ψT . Here, ψT denotes the angle of the impinging ray from the
transmitter to the center of the target.

So far we assumed a single target of interest in the scene
during alternate hypothesis. However when there are multiple
targets (T > 1), the perturbed CSI is due to the creation of
T (L + 1) shadow regions, together with the new reflection
paths reaching the receivers due to the scattering from T
targets. Without loss of generality, the above proposed methods



Fig. 2: Three different deployment scenarios with varied number of links, L ∈ {1, 2, 3}, are considered.

can be extended to the multi-target scenarios with much richer
interaction between the objects and the impinging rays.

B. Deployment Model

We consider an indoor deployment in a 25 m2 area with a
transmit device (fixed anchor UE) having an omni-directional
antenna (Nt = 1) and multiple receive devices (BSs) having
an ULA with Nr = 8 antennas. We place the transmit and
receive device such that the boresight direction is normal to
the walls as shown in Fig. 1. Each receiver has beamforming
capability to scan between −π/2 to + π/2 using Nb beams.
An illustration of three deployment scenarios with number
of links, L ∈ {1, 2, 3} with receivers performing a beam
scan using Nb = 7 beams is shown in the Fig. 2. During
each coherent processing interval (CPI), CSI is captured in all
the Nb = 7 angular dimensions synchronously for each link
and transferred to an AI agent where detection and parameter
estimation on the passive target is performed.

III. METHODS

The complex relationship between high dimensional CSI
space to the target detection and parameter estimation can be
learned by AI methods directly from data without modeling.
In this section, we discuss the AI methods and required data
pre-processing for the sensing problem.

A. Data Preprocessing and AI Architecture

We represent the CSI for each CPI in the form of a 2D
frame. which is fed to an AI based imaging processing pipeline
consisting of stacked convolution neural network (CNN) to
extract relevant features. Similar to AI based image processing,
the pipeline is supervised to learn the relation between input
2D-CSI space to output space. The structure of the CSI data
is used to tune the hyper parameters of the AI - pipeline.
Tuning is done in such a way to have the network as shallow
as possible at the same time yields good performance so that
it can be used on an embedded platforms. We call this tuned
CNN network as CsiSenseNet, and is shown in Fig. 3. Both
target detection and position estimation pipelines share the
same network except for the last two layers shown in green
shaded area for target detection and blue shaded area for
position estimation.

The CSI for all the L links are concatenated in the horizontal
dimension, that is for a given receiver beamforming angle, θi
at all receivers,

hθi = [h1,θi |h2,θi | . . . |hL,θi ]T ∈ CL·Nr×1, (4)

where | is the concatenation operation, hθi is the aggregated
CSI in a particular angular direction θi and hT

l,θi
∈ CNr , l ∈

{1, . . . , L} denotes the CSI for l-th link. The collected CSI
from different angular directions are further concatenated in
the vertical dimension forming a 2D-CSI frame

H = [hT
θ1 |h

T
θ2 | . . . |h

T
θNb

]T ∈ CLNr×Nb . (5)

Both pipelines are separately trained for target detection and
position estimation respectively.

B. Target Detection

For target detection, several realizations of channel H are
generated using a simulator for both hypotheses (i.e., with
and without a target). A labeled training set consisting of M
records (Hi, hypi) | i = 1, 2, . . . ,M with Hi as channel
realization and hypi as hypothesis is used to supervise the
target detection (green shaded) part of the AI pipeline shown
in Fig. 3. Detection network is trained to minimize binary
cross-entropy loss.

C. Position Estimation

The position estimation part of the CsiSenseNet shown in
the blue shaded area of Fig 3 has two neuron output (for X
and Y coordinate estimates) with a linear activation. Similar
to target detection a labeled data set consisting of (Hi,pi) |
i = 1, 2, . . . ,M with pi ∈ R2 representing the position of
the target for channel realization Hi, is used to supervise the
position estimation network.

We use angle-based position estimation to compare per-
formances with the proposed CsiSenseNet based position
estimator. Since in the representative deployment scenarios
shown in Fig. 2, the receivers employ multiple antennas and
are beamforming capable, the baseline method identifies the
angular direction of the beam which is observing maximum
perturbation (attenuation) from multiple receivers for triangu-
lating to the position.



Fig. 3: AI pipeline for target detection and position estimation considering scenario-3 (L = 3). Input to the model is a 2D-CSI frame, H ∈ CLNr×Nb . With
L = 3, Nr = 8, Nb = 7, and separating real and imaginary values into different channels, we have the 2D-CSI frame dimension of (24 × 7 × 2). Both
target detection and position estimation share the same network except at the last two layers.

Fig. 4: Accuracy versus target size for different deployment scenarios of Fig 2.

IV. SIMULATION RESULTS

A. Simulation Setting

We use Matlab for MIMO (MFM) simulator discussed in
[18] to create the deployments shown in the Fig 2. Due
to the high absorption characteristics of high frequency 6G
channels, we modify the SV channel model to have single
bounce reflection from scatter to the receiver, as detailed in
the Appendix. We consider beamforming only in the azimuth
direction and assume circular shapes for the target to aid
in analysis. The proposed methods can be easily extended
to have beamforming in both azimuth and elevation with
arbitrary shaped targets. Although we consider a single target
in the simulations, the AI pipeline can be trained with data
from a much larger input domain space having many targets
of interest at various positions for multi-target sensing. We
configure the simulator as shown in the Table I.

In terms of performance metrics, we first of all consider the
accuracy score P:

P = 1− (p(target|null)p(null) + p(null|target)p(target)),
(6)

which is estimated empirically during testing. Using P we
define resolution as the size of the target that can be sensed

Simulation Parameter Value
Number of links L = 1, 2, 3

Target size (diameter) σ = 0.5, 0.8, 1.0, 1.5
Tx antenna array 1× 1
Rx antenna array 1× 8
Number of beams Nb = 7

Beam sweep angles {−π/2,−π/3,−π/6, 0, π/6, π/3, π/2}
Channel model Modified SV model, Ncl, Nrays, Ns = 3, 5, 1

TABLE I: Simulation parameters
with an accuracy score higher than a threshold (i.e.,P > γ) and
coverage as variation of P at different spatial points for a fixed
size target. Secondly, we consider the cumulative distribution
function (CDF) of the positioning error, i.e., FE(ε), where
ε = ‖p̂− p‖, in which ‖·‖ denotes the L2 norm and p̂ ∈ R2

is the position estimate of the true position, p.

B. Results and Discussion

We now proceed to evaluate the impact of the size of
the target and the spatial coverage for different numbers of
receivers. Then we evaluate the target positioning performance
and compare to a model-based baseline.

1) Resolution Analysis: We analyzed the size of the target
required to create sufficient CSI perturbation to be detected
by the AI agent. First, we generate 2000 CSI realizations for
each hypothesis and size by placing object at 1000 random
positions within a 25 m2 indoor area. A 70/30 split is done to
train and validate the target detection part of the CsiSenseNet
AI pipeline. Then we drop objects with varying size having
diameter, σ from 0.2 to 1.2 at 700 random positions drawn
from a 25 m2 area to assess the accuracy of the AI prediction.
The accuracy score, P , of the AI detector for the representative
deployment scenarios in Fig. 2 is shown in the Fig. 4. The
performance of the detector improves with L and for a given
deployment, larger sized targets can be sensed with higher
accuracy. For a passive object such as human, who has an
approximate width of about 0.8 m can be detected with more
than 90 percent accuracy with L > 2.

2) Coverage Analysis: The separation of the distribution
of CSI matrix under null hypothesis (without targets) and
alternate hypothesis (with target) depends on the position of



Fig. 5: Coverage of the proposed AI detector. (a) Coverage for deployment scenario-1 (L = 3) with target size σ = 0.5 m (b) Coverage for deployment
scenario-1 (L = 3) with target size σ = 0.8 m (c) Coverage for deployment scenario-3 (L = 1) with target size σ = 0.8 m.

Fig. 6: Positioning performance: (a) and (b) shows the performance of CsiSenseNet in terms of mean (µε), 90-percentile (∆90
ε ) and CDF (FE(ε)) of the

position error, ε for representative deployments, scenarios-1 and scenario-3 respectively for different target sizes. (c) Comparison of the positioning performance
between baseline and CsiSenseNet methods for target size, σ = 0.8.

the target. Positions closer to the transmitter or receiver node
creates more CSI perturbation in alternate hypothesis than the
targets which are farther. For example, objects in the direction
near the endfire of an array are less likely to be detected
than objects near the broadside. Therefore, we can define
coverage of the sensing method for a given sized target in
terms of probability of target detection at various positions.
To assess the coverage, we train the target detection part
of the CsiSenseNet by generating 2000 CSI realizations for
both hypotheses by placing the fixed size object at the center
of various quantized bins of 0.0625 m2 of a 25 m2 indoor
area. The performance of such a trained agent is evaluated
using 700 new CSI realization for both hypothesis at each of
the quantized bins of 0.0625 m2 from total indoor area of
25 m2 for representative deployment scenarios in Fig. 2. The
coverage of the proposed sensing method is shown in Fig. 5
for representative deployment scenarios. The coverage is good
at positions closer to the transmit and receive antennas, and
also along the beam directions. Also comparing Fig 5(a) and
Fig. 5(b) notice that the coverage depends on the size with
larger sized target having better coverage.

3) Position Estimation with CsiSenseNet: In this section,
we present the results for the proposed position estimation of
the target using CSI gathered from multiple links and compare
its performance with baseline method. For a fixed target-
size, 2000 CSI realizations at each quantized bin positions
of resolution 0.0625 m2 is captured similar to Section IV-B2,
which is then used to train the position estimation part of the

CsiSenseNet. We then drop the objects of various size (σ) at
1000 random positions drawn from a 25 m2 area to access the
accuracy of the position estimation. The Fig. 6(a) and Fig. 6(b)
shows the performance in terms of mean position error µε,
90-percentile error ∆90

ε , and CDF of position-error FE(ε) for
different deployment scenarios and target sizes. From Fig. 6(a)
and Fig. 6(b), larger target size and more number of links in
the deployment reduces the position uncertainty.

4) Position Estimation with Baseline Method: The perfor-
mance of the baseline method described in Section III-C is as
shown in Fig. 6(c). The red plot in Fig. 6(c) is the performance
of the baseline algorithm using 7 non-overlapping beams to
scan the space (−π/2,+π/2) as shown in Fig. 2. The high
position uncertainty in this method is due to:

(a) The representative deployment scenarios use Nr = 8
antennas at receiver, which yields approximate angular
resolution of 30 degrees which is rather high and creates
greater uncertainty while triangulating the angles towards
position

(b) The beams are not over-lapping which creates the large
spatial regions without coverage

(c) Due to the geometry of receiver placements and the target
position, it could block multiple adjacent beams leading
to angular uncertainty and inferior position estimates.

To address the issue described in (b) above, we created
overlapped beams with beam width 30 degrees with stride of
one degree to span (−π/2,+π/2) resulting in 180 overlapped
beams. The performance of the angle based estimator with



this modification is shown in the blue plot of Fig. 6(c). This
modification to the baseline algorithm reduced the average
position error, µε from 3.30 [m] to 2.86 [m]. The CsiSenseNet
outperforms the angle based methods because the AI agent
learns the spatial correlation between the perturbance in a
higher dimension CSI space for each angular dimension across
multiple receivers towards position estimation.

V. CONCLUSIONS

Passive sensing of targets using ubiquitous communication
infrastructure provides several benefits without compromising
on privacy and security as in the camera aided sensing systems.
This paper describes a multistatic indoor sensing system which
exploits perturbation patterns from inserted objects in the CSI
of multiple links towards detection and position estimation.
A shallow CNN based AI network called CsiSenseNet is
developed to exploit these patterns towards target sensing.
Results show that larger objects are easier to detect with
higher accuracies. The performance of the proposed method
to estimate the sensed target’s position improves with the
objects size and outperforms angle based methods. Objects
inserted close to transmitter or receiver or along scanned beam
directions are easier detected than the objects in other places.
Increasing the number of links improves detection and position
accuracy. Based on the results, the proposed methods can be
used for sensing humans sized objects with good accuracy
using indoor cellular deployment.

APPENDIX: MODIFIED SV MODEL

In order to modify the SV to only have single bounce
reflections, we discretize the possible angle of departures into
a set of angles pointing to a fine grid of points with 0.0625 m2

resolution. The stochastically generated angle of departure
(ψl,u,v) from the SV model are quantized to closest discretized
angle (ψ′l,u,v) corresponding to the quantized grid point as
shown in Fig. 7. By using the location of the receiver and
the grid point, the angle of arrival (φ′l,u,v) to the receiver is
computed from geometry.

Fig. 7: Modified SV model with single bounce reflections.
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