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Abstract—Network Function Virtualization (NFV) has become
a widely acclaimed approach to facilitate the management
and orchestration of network services. However, after rapidly
achieving a widespread success, NFV is now challenged by the
overwhelming demand of computing power originated by the
never-ending growth of innovative applications coming from
the Internet world. To overcome this problem, the use of h/w
acceleration combined with NFV has been proposed. This way,
the computing performance of commodity servers can be greatly
enhanced, without losing the advantages offered by NFV in
service management. In this paper, to demonstrate the potential-
ities of NFV and h/w acceleration, a Virtual Network Function
for video coding (video Transcoding Unit – vTU) is presented.
The vTU is accelerated by a General Purpose GPU, and is
based on Open Source software packages for media processing.
The vTU architecture is firstly described in details. A thorough
characterization of its computing performance is then reported,
and the obtained results are compared to those achieved with
non-accelerated and/or non-virtualized versions of the vTU itself.
Also, the performance provided by an original, GPU accelerated
version of the VP8 encoder is presented. The activities described
in this paper have been carried out within the EU FP7 T-NOVA
project.

I. INTRODUCTION

In the telecommunication sector, Network Function Vir-
tualization (NFV) has rapidly become a widely acclaimed
approach to facilitate the management and orchestration of
network applications [1]. NFV allows the migration of net-
work functionalities from bespoke hardware to virtualized
IT infrastructures based on commodity servers, where they
run as software components. Adopting NFV, Telco opera-
tors expect to achieve significant cost reductions, gaining at
the same increased flexibility, accelerated service deployment
and facilitated infrastructure management [2]. However, after
rapidly achieving a wide success, the NFV approach is now
challenged by the overwhelming demand of computing power,
originated by the huge growth of innovative applications and
services coming from the Internet world. To overcome this
problem, the use of ad hoc h/w accelerators within the NFV
framework has been proposed. This way, the computational
performance of commodity servers can be greatly enhanced,
without losing the advantages brought about by NFV in service
management [3]. In this paper, to demonstrate the potentialities
of NFV combined with h/w acceleration, a Virtual Network
Functions (VNF) for video coding (video Transcoding Unit

– vTU) is presented. The vTU is accelerated by a General
Purpose GPU (GP-GPU), and based on the most popular
Open Source software packages for media processing, such
as AVConv or FFMPEG. First, the architecture of the vTU
is presented in details. The experimental characterization of
its video coding performance is then reported, and compared
to the performance obtained with non-virtualized and/or non-
accelerated versions of the vTU itself. The use of commercial
GPU based H.264 and H.265 encoders has been evaluated,
and an original GPU-accelerated version of the VP8 encoder
is presented and discussed. The results presented in this
paper have been obtained within the activities of the EU
FP7 T-NOVA project. The T-NOVA framework allows and
facilitates the use of VNFs which rely on h/w accelerators
[4]. Thus, management of h/w accelerators within the T-
NOVA framework is also presented and briefly discussed. The
structure of the paper is as follows. In Section II, the overall
T-NOVA framework is briefly introduced, and its approach to
use h/w acceleration within NFV is summarized. In Section
III the video coding problem is addressed, while in Section IV
the vTU architecture is described. Finally, in Section V, the
obtained experimental results are presented and discussed.

II. H/W ACCELERATION MANAGEMENT IN T-NOVA

The T-NOVA project [5] aims to design and implement an
integrated management architecture, including an Orchestrator
platform, for the automated provision, management, monitor-
ing and optimization of Virtualised Network Functions over
Network/IT infrastructures. Also, T-NOVA aims to introduce
and promote a novel Marketplace for NFV, introducing new
business cases and considerably expanding market opportu-
nities by attracting new entrants to the networking market.
T-NOVA exploits and extends Software Defined Networking
(SDN) aspects, focusing on the OpenFlow [6] technology, for
efficient management of network resources, including network
slicing, traffic redirection and QoS provision. A notable aspect
of T-NOVA framework is the ability to extend the classical
cloud resources such as computation, network, and storage,
with software and hardware accelerators. Within T-NOVA a
VNF can operate using both the basic cloud resources and
also the accelerated ones whenever they are available and it is
requested to guarantee certain service level agreement (SLA).



The information for achieving this goal is written the VNF
descriptor (VNFD) that is the document that accompaines
all the VNFs. The VNFD provides the technical description
of the VNF behaviour, the deployment requirements and the
VNF’s ability to exploit hardware acceleration. In T-NOVA
the VNFD accommodates also the business description of
the VNF such as the definition of SLA together with the
billing schema associated to each level of service. The VNFD
therefore provides key information to the mapping function
that determines the best place where to instantiate a VNF and
its internal components according to the requested SLA. The
management of h/w accelerated VNF in T-NOVA is based
on a three step mechanism. As explained above, the VNF
must first declare in the VNFD its capabilities to exploit h/w
acceleration, and which type of acceleration is required. This
information is inserted into T-NOVA Infrastructure Repository,
that records also the location of the various types of h/w ac-
celerators. A fundamental block of the T-NOVA Orchestrator,
the Service Mapping block, accommodates the VNF in the
infrastructure location where the required acceleration devices
are available. This implies the Service Mapping block to
execute a mapping function that combines the information in
the Infrastructure Repository with the specific requests in the
VNFD for the given VNF, yielding to the optimal assignment
of the infrastructure resources. In the case of the vTU, the h/w
accelerators required are Nvidia GPGPU. However, details on
this mechanism are out of the scope of this paper. Conversely,
in the following sections, we present how the vTU exploits
the available GPGPU resources to dramatically increase its
performances in video transcoding.

III. VIDEO ENCODING

In the NFV panorama, the Network Functions and Network
Services dealing with video data, such as video processing
or transcoding functions, cover a role of primary importance,
considering that nowadays video contents take approximately
80% of the global network traffic [7], with increasing trend.
Video-related VNF’s, in particular those related to video
coding (encoding/decoding), are typically computationally-
intensive, and, in addition, they often require the fulfillment
of rather strict real-time constraints (for instance, a maximum
allowed latency of one frame). For this reason, video coding
functions would greatly benefit from the availability of High-
Performance Computing (HPC) resources. Under the several
kinds of HPC resources available for standard server architec-
tures, many-core GP-GPU’s represent the mostly cost-effective
(in terms of MFlops/price ratio), as long as the inherently par-
allel GPU architecture can be effectively exploited. Moreover,
GPU programming has become a simpler task, with respect to
other h/w acceleration resources (e.g. FPGA’s), thanks to paral-
lel high-level languages and tools, like OpenCL and NVIDIA’s
CUDA [8], made available by the GPU manufacturers. For
these reasons, GPU-based acceleration has been chosen for
the development of video encoding and decoding VNF’s in
the T-NOVA framework.

However, the achievement of significant performance im-
provements in video encoding/decoding by means of GPU’s
is not so straightforward. Such tasks are difficult to parallelize
because most video coding schemes (and, among them, H264
[9] and Google’s VP8 [10], considered in the Project) are
inherently sequential. In fact, coding processes try to max-
imally exploit the spatial and temporal correlation present
in the data. For this reason, both encoding and decoding
processes rely on the assumption that, while processing a
macroblock, all previous macroblocks (i.e. those above and
left of the considered one in the current frame, and some entire
previous frames) have been already processed. This eliminates
any chance of massive data parallelism; for instance, simply
processing many macroblocks in parallel cannot be done. In
addition, all standard coding schemes have been conceived for
optimal CPU processing (e.g. macroblocks are small enough
to be processed by keeping all data within the innermost levels
of CPU cache), therefore they are “hard to beat” by different
computing architectures.

In order to design a scheme for GPU-accelerated VP8
encoding, we analyzed the main limits and obstacles to the
achievement of significant acceleration by adopting the tra-
ditional GPU-programming approaches. We considered two
classical approaches for porting algorithms onto GPU’s: one
typical approach is to port the lowest-level, CPU-intensive
computation onto GPU. This approach, often quite successful,
is very inefficient in this case, because all low-level computing
functions, besides the fact that they cannot be run in parallel,
accomplish very tiny tasks, and are consequently called a huge
amount of times. This makes the use of GPU totally inefficient,
as the processing time is dominated by the GPU-CPU memory
transfers for each call. Also the other, somehow complemen-
tary approach, that is, to port the whole CPU computation
onto a GPU kernel, would solve for the GPU-CPU transfer
issue, but encounters the problem that a significant part of the
encoding algorithms is inherently sequential, therefore it must
be processed by a single GPU core, which is, of course, much
slower that a CPU core.

For this reason we propose an alternative, cooperative CPU-
GPU approach, in which the main framework of the algorithms
is kept running on the standard CPU, while the most demand-
ing task in terms of computing effort, like the Motion Estima-
tion (ME) procedure, is delegated to the GPU and, therefore,
computed independently (and in parallel with the CPU). As
Motion Estimation is completed, the main algorithm, running
on the CPU, can just “pick” the computed Motion Vectors
(MV) without having to run the computationally-expensive
motion search. Moreover, in order to further maximize the
processing speed, the whole ME process on the GPU have
been partitioned into many streams, each working on a differ-
ent set of macroblocks. This configuration gives the advantage
of a minimized latency by the CPU’s main thread, which could
have to wait for the Motion Vectors of the initial macroblocks.

As starting point for this development we took Google’s
open-source WebM Project [11], an open project for VP8/VP9
video coding, and added to this framework the functions for



Motion Estimation on GPU. The aim is to develop a GPU-
accelerated version of the VP8 encoder, that could be then
officially contributed to the WebM Project.

As shown in Section V, this approach has reached a maxi-
mum speed-up factor of almost two, which is an encouraging
result, compared to what obtained in literature, for instance on
GPU-accelerated encoders for H264 [12], [13].

IV. THE VIDEO TRANSCODING UNIT ARCHITECTURE

The vTU is a VNF, i.e. it runs as a virtual machine
instantiated in a Virtualized Infrastructure, according to the
definition given in [14]. Its development has followed the
guidelines provided to Function Developers by the T-NOVA
framework. For the sake of brevity, in the following we will
not give further details on these aspects, which are fully
described with abundance of examples in [4]. vTU’s VNF
is available as a preconfigured virtual image which can be
customized through a graphical interface (Marketplace) and
incorporated into a Network Service; then, instantiation is
automatically performed by T-NOVA orchestrator (TeNOR).
One of the benefit of customization, is that different
configurations can be tailored to the customer requirements
in order to meet performance levels or time constraints, i.e.
by increasing the number of virtual cores in case of multiple
concurrent transcoding operations.
The non-accelerated vTU version can run on any Virtualized
Infrastructure. Conversely, the h/w accelerated virtualized
vTU can run on any commodity server that hosts in one of
its PCIe slots (at least) one Nvidia GPU. In particular, in the
experiments described in this paper the Nvidia Quadro M4000
has been used [15]. Such device, as shown in Section V,
can provide a great increase in coding performance, at a low
cost and low power consumption. In order to be used by the
virtualized vTU, the GPU must be virtualized. The problem
of GPU virtualization can be stated as follows: a guest Virtual
Machine (VM), running on a hardware platform provided with
GPU-based accelerators, must be able to concurrently and
independently access the GPUs, without incurring in security
issues. The technique adopted to achieve GPU virtualization
is based on PCI-Passthrough, sometimes referred to also
as Direct Device Assignment. GPU virtualization achieved
through PCI-Passthrough techniques is thoroughly described
in [16].
In the vTU, the audio and video transcoding capabilities
are provided by the Libav library [17], a very popular open
source library, which can perform encoding and decoding
according to a wide set of coding standards. AVConv tool
from Libav is used for performing the conversion between
audio and video formats and containers; while it already
supports a wide variety of hardware accelerations, native
GPU support in encoding tasks is quite limited, experimental
and restricted only to H.264 and H.265 standards, exploiting
the NVidia NVENC hardware encoder of medium and high
level NVidia GPUs [18]. The AVConv tool running in the
vTU has been modified so that VP8 encoding tasks can also
greatly benefit from the virtualization of GPUs.

Fig. 1. vTU internal structure

A short description of vTU internal structure and main
operations follows.
The vTU can operate on static multimedia files (local or
remote) and audio and/or video streams; multiple jobs can
run concurrently.

Fig. 2. vTU web interface

The vTU is provided with a web interface (fig. 2) which
exposes the user accessible folders containing multimedia
data (”input” and ”output” folders), jobs descriptors (”spool”,
”run”, ”done”) and logs (”log”, ”undone” and ”error”). At
any time, the user can access the web interface to peek the
current status of the vTU.
Jobs inside the vTU are fully automatized: transcoding tasks
are started by providing the vTU a XML descriptor of the job;
this simple descriptor provides the vTU all the information
needed by avconv for performing the transcoding task: such
information are represented by, but not limited to, source and
output data in form of links to static files (local or remote) or
rtsp multimedia streams, as well as input and output format,
encapsulation, frame size, frame rate, output bitrate and so



on.
The descriptor is processed by the vTUdaemon as soon as it is
copied into the ”spool” folder; then, after validating the XML
descriptor, the vTUdaemon invokes one or several instances of
avconv for fulfilling job requests and its descriptor is moved
to the ”running” folder. At the end of the task, the descriptor
is moved to one of the ”done”, ”undone” or ”error” folder (in
case of successful, cancelled or unsuccessful outcome). Also,
if the vTU is requested to operate on static files, the user is
required to upload the input multimedia file in the ”input”
folder, while the transcoded output will be available on the
”output” folder at the completion of the job.

Fig. 3. vTU Grafana dashboard

In order to monitor the vTU status and performance, several
metrics are generated and constantly written at regular and
modifiable basis to a user defined ip address and port. For
demoing purpose, currently, monitoring data generated by the
vTU is redirected to a local instance of InfluxDB database, a
popular open source database solution, oriented to collecting
and managing time-series data [19]; then, such records are
graphically arranged and visualized into a browser window
by Grafana (Fig. 3), a popular dashboard for displaying time
series metrics [20].
Currently, metrics collected are related, but not limited, to
CPU, GPU (when available), memory, and disk usage; also
encoding performances are captured and visualized, such as
the number of transcoded frames per second.

V. EXPERIMENTAL RESULTS

The main aim of the experimental tests carried out on the
vTU is to quantitatively evaluate the performance of the GPU-
accelerated version of this VNF, with respect to the “standard”
version, just running on one or more CPU cores. Although
performance comparisons among coding schemes are often
evaluated in terms of obtained image quality vs. coded bit-
rate, in this application it is more meaningful to compare the
coding speed (keeping the same target image quality), because

TABLE I
SPEED-UP PROVIDED BY GPU-ACCELERATION – VP8 ENCODER

VP8 encoding - Processing time

Sequence CPU (libvpx) CPU+GPU Speed-up

Battledrift (720p) 16.82 s 13.03 s 1.29x

Right (1080p) 38.33 s 29.55 s 1.30x

Jockey (4k) 106.73 s 57.27 s 1.86x

timing constraints are typically the most important aspect in
applications considering network-distributed video contents.

Two kinds of experiments are presented in the following:
in the first, the entity of the speed-up provided by the GPU-
accelerated encoder is evaluated, with respect to that running
on CPU; the second is aimed to assess the benefit of GPU
acceleration in case of high loads of video encoding tasks,
that is, when multiple encoding sessions need to be processed
simultaneously.

A. Computational speed-up

Table I summarizes some of the speed tests, carried out
for different image resolutions, in which we compare the
processing time of the proposed cooperative GPU-accelerated
VP8 encoder to the standard CPU-based encoder available in
the WebM libvpx library [11]. Since the processing time of
a video encoder strongly depends on many coding parameters
(like coding speed factors, target bit-rate, image quality, and
computing time itself), in order to obtain a meaningful com-
parison, the presented data have been obtained by adopting
the parameters that provide the same image quality (i.e. mean
PSNR) and the same compression ratio (same size of the
encoded stream) in both cases.

As Table I shows, the proposed algorithm reaches a speed-
up of approx. +30% for HD and Full-HD resolutions, and
increases to +86% for 4k resolution. This is a quite encourag-
ing result; we considered for comparison the H264 encoder1

provided by X264, the publicly available video coding library
by VideoLAN [13], because it is also available both in standard
and GPU-accelerated version. By running both versions of this
encoder on the same sequences, we experienced a speed-up
by the GPU-accelerated encoder, with respect to its standard
version, of +11%, +15% and +24% for HD, Full-HD and 4k
resolutions, respectively.

B. Performance running multiple sessions

A significant further benefit of exploiting GPU resources
comes from the consequent off-loading of the CPU cores, as
the most significant part of the computation effort is delegated
to the GPU. In such applications, it often happens that the
GPU computing resources are inherently “underemployed” by
a single process. In our case, for instance, a single encod-
ing process takes approximately 10% of the resources made
available by a 2048-cores GPU device.

1A comparison with a VP8 encoder would have been more meaningful, but,
to our knowledge, there is no open-source GPU-accelerated VP8 encoder.



Fig. 4. Processing time with multiple encoding sessions in parallel, with and
without GPU support.

Since the computing load at the CPU side has been reduced
by delegating the GPU, this has the consequence that, in case
of multiple sessions running in parallel, the processing time
grows more slowly than in the case of entire computing load
assigned to CPU’s only, because of the lower CPU load for
each new session in the GPU-accelerated case. For this reason,
by running multiple coding sessions in parallel with GPU
support, the advantage in performance of GPU-accelerated
operation over GPU-less should grow further, as long as the
GPU is able to “scale well”, that is, to accommodate increasing
loads of parallel computation without significant switching
overload.

In order to quantitatively evaluate this concept, we carried
out this comparison by running multiple sessions in parallel,
both with and without GPU support. We ran the comparison on
a VM equipped with 2 Xeon CPU cores and a GPU with 2048
cores. Considering that the measured GPU load for a single
session is about 10%, we considered a number of parallel
sessions from 1 to 16, in order to be sure to come to GPU
overloading, making therefore any possible scaling problem
visible. Figure 4 shows the obtained processing times.

The graphs show that, indeed, the processing time with GPU
support is always lower, and grows with a lower steepness,
than without GPU. This proves that the proposed cooperative
CPU-GPU approach scales well, at least up to 16 parallel ses-
sions. The speed-up (i.e. the ratio between the two processing
times) holds rather constant, around 25–30%, actually with a
light increasing trend, thus suggesting a tendency of the system
to even improve its efficiency with increasing processing loads.

VI. CONCLUSION

In this work, the combination of NFV combined with
h/w acceleration has been addressed, within the T-NOVA
Project. In particular, the use of a General Purpose Graphical
Processing Unit to accelerate a VNF for video transcoding in
the T-NOVA framework has been analyzed and discussed. The
architecture of such a specific VNF - the video Transcoding

Unit - has been introduced, and the results obtained in a
number of experiments to characterize its performance have
been presented and discussed. The obtained results clearly
show that the use of h/w acceleration can greatly increase the
VNF video transcoding performance, without affecting in any
way the advantages in service management and application
development brought about by virtualization.
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