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Abstract—Driven by green communications, energy efficiency receiverin a point-to-point way, so it is often referred itogbe-
(EE) has become a new important criterion for designing wirdess yser MIMO (SU-MIMO). However, in some applications,
communication systems. However, high EE often leads to low especially in cellular networks, it is often difficult to iad

spectral efficiency (SE), which spurs the research on EE-SE t due to the size limitati f devi
tradeoff. In this paper, we focus on how to maximize the utilty in many anténnas dué 1o the size imitations ot many devices

physical layer for an uplink multi-user multiple-input mul tiple- Such as smartphones and tablets. To increase the network-
output (MU-MIMO) system, where we will not only consider wide SE, multi-user MIMO (MU-MIMO) technigue has been
EE-SE tradeoff in a unified way, but also ensure user faimess proposed. Although distributed users only have a small rermb
We first formulate the utility maximization problem, but it t urns of antennas or even just one, they can share the same time-

out to be non-convex. By exploiting the structure of this prdlem,
we find a convexization procedure to convert the original non redquency resource block to form a MU-MIMO system [6]. In

convex problem into an equivalent convex problem, which has this paper, we are interested in the uplink MU-MIMO because
the same global optimum with the original problem. Following users, such as smartphones and tablets, are often moreg-energ
the convexization procedure, we present a centralized algthm  sensitive.

to solve the utility maximization problem, but it requires the Recently there are some papers studying how to maximize

global information of all users. Thus we propose a primal-dal . . S .
distributed algorithm which does not need global information EE for uplink MU-MIMO system. In[[7], Miao investigates

and just consumes a small amount of overhead. Furthermore, the uplink MU-MIMO system where each user deploys multi-
we have proved that the distributed algorithm can converge @ antennas and he demonstrates that EE is maximized when
the global optimum. Finally, the numerical results show tha our  some antennas are turned off if the corresponding spatial
approach can both capture user diversity for EE-SE tradeoffand  ~hannel is not good or the corresponding circuit power con-

ensure user fairness, and they also validate the effectiveas of . . . .
our primal-dual distributed algorithm. sumption is large. In[]8], Rui et al. study the uplink MU-

Index Terms—MU-MIMO, Spectral Efficiency, Energy Effi- MIMO system where each user deploys only one antenna and

ciency, Fairness, Power Control, Primal-Dual they maximize EE by jointly doing mode selection and optimal
power allocation.
|. INTRODUCTION However, it is well-known that SE and EE are two con-

Among the total worldwide energy consumption, commulicting objectives [[4]. Often high EE leads to low SE and
nication networks have contributed increasingly from 1i8% vice verse, which means it is more practical to consider SE
2007 to 1.8% in 2012, and this proportion is anticipated t@nd EE simultaneously. Thus how to study the EE-SE tradeoff
grow continuously in the coming yearis| [1]. This stimulatebas attracted a lot of attentionl [9]=[13] whereas, only a few
the fast development afreen communicationgecently [2]. articles study uplink MU-MIMO system. The authors in [12]
Compared to spectral efficiency (SEnergy efficiencyEE), consider how to get the EE-SE tradeoff for a large-scale
defined as the number of bits that can be transmitted witiplink MU-MIMO system in a system level. They study EE-
per energy consumption, becomes a new important criteridfe tradeoff in low and high SE regime asymptotically and
for designing green wireless systems. How to obtain optim@d not involve user fairness explicitly which is important i
EE has become a hot research topic in different wireleswilti-user system. Different from_[12], our paper inveatigs
communication systemsl[3]. uplink MU-MIMO system in the link level rather than the

On the other hand, multiple-input multiple-output (MIMO)system level. More importantly, we study EE-SE tradeoff in
has been a key technique in modern wireless communicat@runified way and we also guarantee fairness among users.
systems, because it can significantly increase SE by exgoit Specifically, our contributions are three-fold,
transmit diversity and spatial multiplexing gains [5]. MM « We construct a utility function of all users which not only
system is used for one single transmitter and one single captures the user diversity for EE-SE tradeoff in a unified
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way, similar to [13], but also guarantees fairness among - T\\ ~
all users. Then we maximize the utility function. To the o SO T~

best of our knowledge, we are the first to study EE-SE Al
tradeoff and user fairness together in uplink MU-MIMO -
system. 7= 7
« Although the original utility maximization problem is not S I?F) o7 77| i | NodeB
convex, we have proposed an approach to convert it into : s
an equivalent convex programming problem which has : 2
the same optimal solution with the original problem. This Use‘rN Y
convexization procedure also generates our optimal power (1 RF)
allocation scheme in a centralized manner.
« Apart from the centralized algorithm, we further devise a Fig. 1. System Model
primal-dual distributed algorithm which only consumes a
small amount of overhead between each user and Node-B.
Moreover, we have proved that the distributed algorithm
converges to the global optimal solution. P, 1

User 2

M receiving
antennas at Node-B

The rest of this paper is outlined as follows. We describe Vi = o2[(HTH)1];; =F G2[(HTH)-1]; ®)
the system model and formulate the problem in Section II. —_—
In Section Ill, we analyze the optimal power allocation by
converting the optimization problem into a convex program-
ming problem. Next in Section IV, we propose a primal-dual
distributed algorithm, which can achieve the global optimu
The numericgl results are shown in Sectiongv, foIIoEJ/ved by SE; =log(l +7i) = log(1 + 8: ), “)
conclusion in Section VI. Throughout this paper, we will use EE; = SE; _ log(1+ 51'131'), (5)
[-];; to denote the matrix’s entry iitth row andj-th column, P+ Py P+ P
E[| to denote expectatiorl,, to denote then x n identity
matrix, and the superscrigtto denote Hermitian transpose.

Then we can obtain SE and EE for useas

where Pf is a positive constant circuit power consumed by
the relevant electronic devices for uger

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model B. Problem Formulation

Consider a MU-MIMO system wittV users indexed fror Next, we will construct the utility function in two steps.
to N, and one Node-B in a single cell. In this paper, we assurié'St; we consider the EE-SE tradeoff. Inspired by the widel
that each user is only equipped with one transmitting arenk'S€d Cobb-Douglas production function in economics [14],
and the Node-B is equipped with/(M > N) receiving W€ adopt this modeempirically to get the “production” of
antennas, as shown in FIg. 1. In uplink, all users share the SE and EE for usei,
same time-frequency resource to transmit data to the Node-B
DenoteP; as the transmit power for usér Then the received u; = (SE) " (EE;)' ", (6)
signal vectory € CM*1 s,

wherew; € [0, 1]. More specifically, we can regatd;, 1 —w;)
y = Hs +n, (1) as a priori articulation of preferences for SE and EE, which
N o _ captures EE-SE tradeoff in a unified way [13].
wheres ¢ C7*" denotes the transmit signal vector with gecond we consider the fairness amonghalusers. If we

1 = di e MxN . . . . -
Elss'] = diag{P, P, 7511% H € CU* denotes the o0 theproportional fairnessmetric, we can define the final
channel matrix, anch € C denotes the additive white utility function for useri as

Gaussian noise (AWGN) with zero mean and covariance
mairix Bfon'] = o,y Ui(P) = log(ui) = logl(SE)" (FE)' "]

In this paper, we assume that Node-B has perfect channel .
state information (CSI) for all users and the receiver at&od log[log(1 + 8;F;)] — (1 — w;) log(F; + Fy)
B uses zero forcing (ZF) detection method. Thus, the decoded = Ui(P), )
signal vector is

H#y = s + H*n, 2 whereP = (P, P»,--- , Py) and the last step shows that the
utility for useri is not related to the transmit power of other
where H# = (H'H) 'H' denotes the pseudo-inverse ofisers.
channel matrixH. Then the signal-to-interference-plus-noise Based on the utility function i {7), we then formulate our
ratio (SINR) at the Node-B’s receiver for users, utility maximization problem subject to a power constrduon



each user and a power sum constraint for all users,

N
ZUi(B)

Proof: We can prove this proposition by analyzing the
first and second derivative @f;(P;) with respect toP;. For

maximize (8) full proof, please see Appendix A. [
Let us denote optimal solution under individual power
(P1) subjectto 0< P, < PM™* Vi (9) constraints a®* = {P;*, Py,--- , P\ }.

N Now we consider the power sum constraint [n](10). In
sz' < Prax- (P1), since the feasible region is a compact set and the
=1 objective function is continuous, a global optimal solatio
In B), we aim at maximizing the sum of the utility forcan be attained. Let us denote the global optimal solution
all users, i.e., the network-wide utility. Inequalityl (% the asP* = {P;,P;,---,Px}. Then we have the following
individual power constraints wher@™** is the maximal proposition.
transmit power for usef. Inequality [10) is the power sum Proposition 2: P*
constraint for the total MU-MIMO system whet,.. is the (1 9 ... N1,

maximal transmit power for all users, which is tip@wer Proof: Vi € {1,2,---,N}, supposeP; > P. Then

budgetof the whole system. Zk# Py 4 Py < Zszlpl: < P... which meansP’ —
{P{,---,P*,P" P}, - ,Py} is a feasible solution to
{B1). According to theProposition[l we haveU;(F;) <

In the previous section, we have formulated the problem " N N . 5 _
maximize the network-wide utility in[{8), which however isUi(F7*)- S04y Uk(Fy) < X2y U (Fy) + Ui(Py), which

not a concave function since EE i (5) is neither convex nby @ contra(_1|ct|on to the fact th@&* is the optimal solution
concave [18]. Therefore, in this section, we will exploieth© (P1). This completes the proof. u
inner structure of P1) and find that we can narrow down Proposition 2shows that for any user the optimal transmit
the feasible region without changing the global optimuniower P cannot be greater thaf;'. Therefore we have the
Furthermore, we will prove that the objective function[i) 8 following main result of this section.

concave in the new feasible region, which converts thewsigi  Theorem 1: (P1) is equivalent to the following problem,
problem into a convex programming problem. After some
analysis, we will get the optimal power allocation scheme fo

(10)

< PY ie, P < P Vi €

I1l. OPTIMAL POWERALLOCATION

(P1) with a centralized algorithm.

A. Convexization Procedure

To narrow down the feasible region ifPl), we first
consider the individual power constraints i (9). Since the

optimization problem can be changed as,
N N

max E UZ(PZ) = E max UZ(PZ),
0<P; SP;“ZLX,VZ' =1 — OSPiSP;]]aX
1= i=

(11)

we just need to find the maximal individual utility, i.&/; (P;)

N
maximize Z U:(P;)
1=1
(P2) subjectto 0< P, <P" Vi (15)
N
ZPZ S Pmax- (16)
1=1

In addition, (P2) is a convex programming problem.

Proof: Following from Proposition[2 we immediately
conclude thatP1) is equivalent to(P2). In addition, from

for any useri € {1,2,---,N}. For the individual utility Proposition[3 we know thatU;(P;) is strictly concave at

function U;(P;) in (@), we have the following proposition.

P, € [0, P!]. Thus, P2) is a problem to maximize a strictly

Proposition 1: For any uset under individual power con- concave function in a convex region, which means it is a

straint in [9), there exists one and only one poift <
(0, P™2x] that maximizesU;(P;). The functionU;(F;) is
strictly increasing and strictly concave over the inteff@alP}"]
while strictly decreasing over the intervéP, P™**]. In
addition, P}* can be derived as follows,

= P! it w; > 1— (P | ) (12)
Pi0 if w; <1-— ﬂ(Pim‘”‘)
where 5:(Ps + P°)
B(P;) = ! (13)

(1+6;P)log(1+ 6; )’

and P? is the unique solution to the following equation when

w; < 1— B(PR™),

B(P) =1~ w. (14)

convex problem now. This completes the proof. ]

B. Some Analysis

Next we will give some analysis for the optimal solution
P* in the following two cases.

Case 1:3.V | P < Puax

In this caseP" is feasible for{P2), so it is also the optimal
solution for (P2), i.e., P* = P,
Case Z:ZZJ.V:1 P > Ppax
In this case, we can further narrow down the feasible region
for (P2) and achieve the following proposition.

Proposition 3: If Zf;l P! > Puax, (P2) is equivalent to



the following convex optimization problem, such as instantaneous CSI. Hence, we hope to implement the
algorithm in a distributed manner. Inspired by the distigol

maximize XN: Ui(P) algorithm in network flow optimization problerm [i15], we de-
Pl sign the following primal-dual distributed algorithm toraeve
(P3) subjectto 0< P, <P* Vi (17) the optimal power allocatioi”,
ZN:Pi:Pmax. 18) szﬁ({é(ﬂ)—ﬂ%ﬂ%é{1,27... N} 19)
pot A=g[30is) Pi = Panas]
Proof: Supposey.Y | P¥ < Pyax. Since Y» | P* > where 0 <0
Paax, there exists at least onee {1,2,---,N} such that [f]F = {max(f’ ), 2% (20)
Py < P (Otherwise,>"~ | Pf = S"N | P > Py, Which f z>0
is a contradiction). Therefore, there exists & 0 such that .4
Pr+e< Prand}’, Py + (P +¢€) < Pnax. SOP' = max(f,0), z<0
{P{,--- P, P +¢Pf,, - ,Py} is afeasible solution (/12 = { min(£,0), z>a (21)
for (P2). According to theProposition] we havel;(P;) < : T 0-
Ui(P; +e). ThenZivzl U(Py) < 3y Un(Py) + Us (P + f s
€), which is a contradiction to the fact thBt* is the optimal andk; andg are positive stepsize.
solution to(P1). Therefore, we must ha\igf;l P* = Puax, From [19), each user does not need the information of
which completes the proof. B others but just the penalty. The only overhead is that Node-

. . B broadcasts\ to all users and each userupdatesP; to

C. Centralized Algorithm Node-B until convergence. Therefore, such implementation

Based on the above analysis, we can readily get the optimpaly consumes a small amount of overhead between each
power allocatiorP* for (P1) with a centralized algorithm, asuser and Node-B. Also, our proposed distributed algorithm
shown in Algorithm[l. In practice, we can implement sucheduces computational complexity compared to Algorifim 1.
centralized algorithm as follows. First, each usdransmits Moreover, we further prove that this primal-dual distritaait
its parameters, including;"*, P andw; to Node-B. After algorithm in [I9) can converge to the global optimal, as show
collecting all the information of all users, Node-B runs 8dg in the following theorem.
rithm [ to obtain the optimal power allocatid*, and then  Theorem 2: The distributed algorithm in[{19) is globally
updates the optimal transmit powEf* to each uset. Finally, asymptotically stable and the only equilibriums.
each user transmits data at the optimal transmit power. Proof: We can prove this theorem by constructing the
following Lyapunov function,

Algorithm 1 Centralized Algorithm for P1)

N *\2 *\2

1: for 1 <i< N do V(P,x\):lz(Pi_Pi) _|_()\—/\)7 (22)
2. if w; > 1 — B(PM™) then 2~ ki 29
i elsf;i =B where (P, P, --- , P5, \*) satisfy the KKT conditions for
. Get P9 with Newton-Raphson iteration method for(P2) and \ is the multiplier for [I6). For full proof, please

L ) see Appendix B. ]

the equation[{14);

6: Pt = PY; V. NUMERICAL RESULTS
7. end if In this section, simulation results are provided to vakdat
8 gnd E(V)r . our theoretic analysis, which show that our approach not onl
9 if Z*i:1 Pz‘u_ﬁ Prax then captures user diversity for EE-SE tradeoff, but also erssure
lo. P*=P% user fairness. In addition, we also verify that our primal-
11: else L _ o _ dual distributed algorithm can converge to the global optim
12: (je_]:[P with gradient projection method foiP3); solution. Throughout this section, we will set the maximal
13: end i

transmit power to bd W (30dBm) for all users, by adopting
the transmitter’s power level for 1800/1900 MHz mobile

phones[[16]. The circuit power is set to baW for all users.
IV. DISTRIBUTED PRIMAL -DUAL IMPLEMENTATION -

In the previous section, we provide Algorithm 1 to solvé\ User Diversity for EE-SE Tradeoff
the utility maximization problem in a centralized manner. As shown in [6), different users can have different prefer-
However, it requires Node-B to have knowledge of all thences for SE and EE accordingu. In this part, we will show
global information of all the users. Furthermore, the cantr how to capture user diversity witly;. We consider two users,
ized algorithm still incurs some computational complexdhd i.e., N = 2, and let the number of receiving antennas for Node-
is not robust against temporary variation of system pararagt B to be 2, i.e., M = 2. In addition, we regard two users as



homogeneous such that they have the same CSI. Specific:
let 61 = 02 = 20dB and Pyax = 1.5W.

Fig.[2 shows the impact of users’ different preferences, i.t
w1 andw,. From Fig[2(d) anfl 2(H), we can see the optim:
transmit power for two users. Under the optimal transm
power for userl, Fig.[2(b) demonstrates that SE increases .
wy increases while Fid. 2(c) demonstrates that EE decrea
asw, increases. Similarly, Fig. 2(e) afd 2(f) show the san
effect of wo for user2. Such results comply with our intuition
for the effect ofw; in (@), and therefore verify that our utility
function can capture user diversity for EE-SE tradeoff vel
well with the preferencey;.

B. User Fairness

In this part, we will show that our utility function if{7)
can ensure fairness among all users. We still consider t
users, i.e.,N = 2, and letM = 2. We setw; = wy; = 0.5
which means SE and EE are equally important for both usef
Prax is set to bel.5W. We will vary the channel conditions
for two users. Specifically, we fi§; to three different levels:
—20dB (worst), 0dB (normal) and20dB (best) respectively,
while changingds from —20dB (worst) to 20dB (best). In
addition, we will use the Jain’s fairness indéx|[17] to eedéu
the user fairness, i.e.,

[exp(Uh) + exp(Us)]?

Jain’s Fairness Index 2[(exp(U1))2 + (exp(Us))?]

, (23)

whereU; and U, are the utility from [[¥) for user 1 and user
2 with channel conditions; andds, respectively.

Fig.[3 shows that the closer the channel conditions are, tt
better the fairness is. In addition, whépn = 6., the index
is 1 (the best fairness) which means no bias exists and tv
users have the same utility. Furthermore, even though whe
the channel condition is worst for us&érwith 6; = —20dB
and the channel condition is best for ugewith §, = 20dB,
the index still does not touch 0.5 (the worst fairness) dyact
and it is actually 0.5017. This means ugecan still transmit
data with a positive transmit power. Therefore, user fasne
can be guaranteed under our proposed utility functiofin (7)

C. Primal-Dual Distributed Algorithm

In this part, we will validate the effectiveness of our prima
dual distributed algorithm i _(19). We consider four usess,

N =4 and letM = 4. We set different EE-SE preferences for
all users, which arev; = 0, ws = 0.3, w3 = 0.7 andw, = 1.
The maximal sum power i®,,,, = 3W. In addition, the step
sizes,k;, Vi € {1,2,3,4} andg in (19) are set to b6.001.

Fig. [4 shows the simulation results. From Fig. #(a), we
can see that the power allocation can be converged and
also shows that our approach can capture user diversity wh
different users have different preferences for EE-SE tfide
From Fig.[4(D), we can see that the distributed algorithm can
converge to the global optimum, which verifieheoreni R

11

©
©

Jain’s Fairness Index

o
)
.

0.5y

7Pf

Transmit Power

o
©
:

o©
3

14

— P ) =0
1.2H Py wy =0.3
o Pyiws = 0.7
TR, Phwg=1 [TTTmEEsmmimmmmmmm s
Kd
K4
0.8 4*
’
K4
4
0.6
0.4F
0.2 \
0 ; ; ; ;
0 1000 2000 3000 4000
Number of Iterations
(a) Power Convergence
7
—
6 L
= = = = Optimal Value
5F Distributed Algorithm
Eap
»
2
5 3}
2 L
1k

—e—4; = —20dB
—8—, = 0dB

10

15 20

ig. 3. User fairness wittv. = 2, M = 2, PP*®* = P = IW, Ppax =
P35 =0.1W,w; = wa = 0.5.

5000

1000

2000 3000 4000

Number of Iterations

(b) Utility convergence

5000

Fig. 4. Convergence of primal-dual distributed algorithm.



0.5

w2 00 w1

(@) Optimal transmit poweP;* (c) EE, with Py

0.5
0.5

wa 00 w1

(d) Optimal transmit poweiP; (e) SE2 with Py (f) EE> with Py

Fig. 2. User diversity for EE-SE tradeoff witN = 2, M = 2, P/"?* = P;"** = 1W, Ppax = 1.5W, P{ = P§ = 0.1W, d1 = 2 = 20dB.

VI. CONCLUSION AND FUTURE WORK how to select part of users from all available users to foren th
MU-MIMO system, is also an important issue in uplink MU-
In this paper, we consider utility maximization for the uqdi  MIMO system. Traditional metric is to maximize throughput
MU-MIMO system. We define the utility function combiningor SE, but the story will be changed when we use EE-SE
both EE-SE tradeoff and user fairness. After formulatingjadeoff as the new metric. In summary, this paper opens a
the utility maximization problem with individual power con new way to quantitativelyanalyze the EE-SE tradeoff with

straints and sum power constraint, we analyze the optinfalrness guarantee for MU-MIMO system.
power allocation scheme. Although the original optimiaati

problem is not convex, we propose a convexization procedure

to convert it into an equivalent convex programming prohlem APPENDIXA

which has been proven to have the same global optimal PROOE OFPROPOSITION1
solution as the original problem. Moreover, we have progose

two algorithms to obtain the optimal solution: one is the The first derivative ofU;(F;) in (@) is
centralized algorithm which requires knowledge of all the 1 5. 1w
global information; the other is the primal-dual distriedt U/(P,) = . v v
algorithm which only needs a small amount of overhead log(1+6:F;) 14+6:,P P+ Ff

between each user and Node-B. Furthermore, we have proved _ 1 [ (P + P) 1
that our proposed distributed algorithm can converge to the P, + P7 (1 +6;P;)log(1 + 6, F;)
i i 1
global optimal sol_utlon. . _ B(P) — (1 — wi)],
Several extensions can be done in the future to apply our P, + Pf

results to more practical scenarios. First, if we use other
detection methods rather than ZF, such as minimum medf1ere 5.(P + Pe
squared error (MMSE), the problem becomes more complex B(P;) = i+ F) .
because of the coupled interference part. Second, statiesCS (1+0;F;)log(1 + 6; ;)
investigated in this paper, but more realistic version $h&e A, the second derivative i, (P) is
stochastic CSI under which we should analyze the achievable

(or average) SE and EE to guarantee a statistical long-term Ur(p,) =

performance. Last but not least, user pairing, which depict ¢

(P + Pf)?

B/(P(Ps+ P) = [B(P,) — (1 —wi)]

— w;)]

(24)

(25)

(26)



In (28), we can get first derivative ¢f(P;) as conditions,

B(P,) U(P) + i = vi = X" =0,V (32)

! [(1+6;P;)log(1+ 6;P)]? N
<0, (27) > P/ < Puax, (34)

=1
which shows thaf3(F;) is strictly decreasing wittP;. ”i Z*O’ Vi Z'O’)‘ 2 0, (35)
Case LiIf w; > 1 — B(P™>), thenl — w; < B(P™*) < pi b =0, (36)
B(P), which yields U/(P;) > 0. So U;(P;) is strictly in- *(P* Pf') =0,Vi (37)

creasing af0, P™**]. The utility U;(P;) is maximized when

P; = P™@_ |n addition, U/ (P;) < 0, so U;(P;) is strictly ZP* Puax) = 0. (38)

concave af0, P™a~].

Case 2:If w; < 1 — B(P™>), thenU/(P;) = 0 has one ) - )
and only one solutiotP? € (0, Pax], This is becausg(P;) Now given such KKT conditions, we can prove this theorem

is strictly decreasing and1m B(P;) = +oc and B(PMax) < by constructing the following Lyapunov function for the

system in
1 — w,. Note thatP? is the umque solution of the following y B).
equation, N
1 P, — Pr)? A—A*)?2
V(P,/\):—Z( i . (39)
0;(P; + Pf) 2 = ki 2g

It is easy to verify that’ (P, \) in (39) is positive definite.
At the interval [0, P*), we haves(P;) — (1 — w;) > 0, SO To show thatV (P, )\) is a Lyapunov function, it suffices to
Ul{(P;) > 0 and U/(P;) < 0. At the interval [P, P/"**], verify its Lie derivative with respect td_(19) is nonnegativ
B(P;)—(1—w;) <0,soU/(P;) <0. Then we obtain that the j.e., v < 0. This is true because,
utility U;(P;) is maximized atP = P? andU;(P;) is strictly
increasing and concave &, P?] and strictly decreasing at
(Pio’ Hmax]'

The proof is completed.

P, — P* . A— A"
L P+ A (40)
ks g

<
I
.Mz

N
Il
-

(P, = PO[U(P) = A

I
.MZ

s
Il
-

APPENDIXB

PROOF OFTHEOREM 2 F(A— A ZP Praxly (41)

Proof: The proof is based on_[18]. Readers can find
more information about primal-dual algorithm for network

M=

(P = P)[UI(P) = A

flow optimization in [15] [18]. i=1
First, we rewrite the probleriP2), L=\ ZP Paas] (42)
N N
maximize > Ui(F;) = (B -POUUR) -UIR)]  (43)
=1 =1
subjectto —-P, <0, Wi (29) N
P—P'<0, Vi (30) +> (P = POU(P) =\ (44)
N =1
Pi_PmaXSO- (31) N
; +A=X)D_ P — P (45)
i=1
Since P* = {P},Py,---, Py} is the optimal solution of =0 (46)

this problem and the Slater’s condition holds for this conve
problem, there exists KKT multipliers; for (29), v; for (30) where [43) is nonpositive sind& (P,) is strictly decrease over
and \* for (31) such that they satisfy the foIIowmg KKT the interval [0, P*] according toProposition 1 and [45) is



nonpositive following from the KKT conditions as,

N
(/\ - /\*)[Z Pz* - Pmax]
v =1 N
= AD_ P = Puax] = XD P — Punayl
z;l i=1
= AD_ P — Pual, //from (38) (47)
< O,lZI//from (39) (48)

and [44) is nonpositive following from the KKT conditions[lo]

as,

(P = POIUI(PT) = A7)

s

N
Il
-

[

= Y (P —P)(v;—p;) //from @2)  (49)
z;l N

= (PP =3 (PP (50)
Z]:vl Z]:vl N

= Y (B—=Pv;=> Py +> Pru; (51)
1=1 1=1 1=1
N

< > (P—PHy; //from @3,3536)  (52)
Z]:vl v

= Y (B -P"vi+) (P =Py} (53)
1=1 i=1
N

= Y (B—P"); //from (31) (54)
=1

< 0. //from (33,35) (55)

Therefore, we have verifietf (P, ) in (39) is a Layponouv
function. So the primal-dual distributed system[in](19) lisby
ally asymptotically stable and will converge to the equibib
set{P : V =0} [19]. On the other handy = 0 only if (@3)
is equal to 0, i.e.,

N

> (P = POWUI(P) = Uj(P)]

=1
which holds only if P, = Py for all i € {1,2,---,N}.
Therefore, the equilibria s€tP : V' = 0} only contains one
point, i.e.,P*. This completes the proof. ]

0, (56)
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