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Abstract—Driven by green communications, energy efficiency
(EE) has become a new important criterion for designing wireless
communication systems. However, high EE often leads to low
spectral efficiency (SE), which spurs the research on EE-SE
tradeoff. In this paper, we focus on how to maximize the utility in
physical layer for an uplink multi-user multiple-input mul tiple-
output (MU-MIMO) system, where we will not only consider
EE-SE tradeoff in a unified way, but also ensure user fairness.
We first formulate the utility maximization problem, but it t urns
out to be non-convex. By exploiting the structure of this problem,
we find a convexization procedure to convert the original non-
convex problem into an equivalent convex problem, which has
the same global optimum with the original problem. Following
the convexization procedure, we present a centralized algorithm
to solve the utility maximization problem, but it requires the
global information of all users. Thus we propose a primal-dual
distributed algorithm which does not need global information
and just consumes a small amount of overhead. Furthermore,
we have proved that the distributed algorithm can converge to
the global optimum. Finally, the numerical results show that our
approach can both capture user diversity for EE-SE tradeoffand
ensure user fairness, and they also validate the effectiveness of
our primal-dual distributed algorithm.

Index Terms—MU-MIMO, Spectral Efficiency, Energy Effi-
ciency, Fairness, Power Control, Primal-Dual

I. I NTRODUCTION

Among the total worldwide energy consumption, commu-
nication networks have contributed increasingly from 1.3%in
2007 to 1.8% in 2012, and this proportion is anticipated to
grow continuously in the coming years [1]. This stimulates
the fast development ofgreen communicationsrecently [2].
Compared to spectral efficiency (SE),energy efficiency(EE),
defined as the number of bits that can be transmitted with
per energy consumption, becomes a new important criterion
for designing green wireless systems. How to obtain optimal
EE has become a hot research topic in different wireless
communication systems [3].

On the other hand, multiple-input multiple-output (MIMO)
has been a key technique in modern wireless communication
systems, because it can significantly increase SE by exploiting
transmit diversity and spatial multiplexing gains [5]. MIMO
system is used for one single transmitter and one single

receiver in a point-to-point way, so it is often referred to single-
user MIMO (SU-MIMO). However, in some applications,
especially in cellular networks, it is often difficult to install
many antennas due to the size limitations of many devices
such as smartphones and tablets. To increase the network-
wide SE, multi-user MIMO (MU-MIMO) technique has been
proposed. Although distributed users only have a small number
of antennas or even just one, they can share the same time-
frequency resource block to form a MU-MIMO system [6]. In
this paper, we are interested in the uplink MU-MIMO because
users, such as smartphones and tablets, are often more energy-
sensitive.

Recently there are some papers studying how to maximize
EE for uplink MU-MIMO system. In [7], Miao investigates
the uplink MU-MIMO system where each user deploys multi-
antennas and he demonstrates that EE is maximized when
some antennas are turned off if the corresponding spatial
channel is not good or the corresponding circuit power con-
sumption is large. In [8], Rui et al. study the uplink MU-
MIMO system where each user deploys only one antenna and
they maximize EE by jointly doing mode selection and optimal
power allocation.

However, it is well-known that SE and EE are two con-
flicting objectives [4]. Often high EE leads to low SE and
vice verse, which means it is more practical to consider SE
and EE simultaneously. Thus how to study the EE-SE tradeoff
has attracted a lot of attention [9]–[13] whereas, only a few
articles study uplink MU-MIMO system. The authors in [12]
consider how to get the EE-SE tradeoff for a large-scale
uplink MU-MIMO system in a system level. They study EE-
SE tradeoff in low and high SE regime asymptotically and
do not involve user fairness explicitly which is important in
multi-user system. Different from [12], our paper investigates
uplink MU-MIMO system in the link level rather than the
system level. More importantly, we study EE-SE tradeoff in
a unified way and we also guarantee fairness among users.
Specifically, our contributions are three-fold,

• We construct a utility function of all users which not only
captures the user diversity for EE-SE tradeoff in a unified
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way, similar to [13], but also guarantees fairness among
all users. Then we maximize the utility function. To the
best of our knowledge, we are the first to study EE-SE
tradeoff and user fairness together in uplink MU-MIMO
system.

• Although the original utility maximization problem is not
convex, we have proposed an approach to convert it into
an equivalent convex programming problem which has
the same optimal solution with the original problem. This
convexization procedure also generates our optimal power
allocation scheme in a centralized manner.

• Apart from the centralized algorithm, we further devise a
primal-dual distributed algorithm which only consumes a
small amount of overhead between each user and Node-B.
Moreover, we have proved that the distributed algorithm
converges to the global optimal solution.

The rest of this paper is outlined as follows. We describe
the system model and formulate the problem in Section II.
In Section III, we analyze the optimal power allocation by
converting the optimization problem into a convex program-
ming problem. Next in Section IV, we propose a primal-dual
distributed algorithm, which can achieve the global optimum.
The numerical results are shown in Section V, followed by
conclusion in Section VI. Throughout this paper, we will use
[·]ij to denote the matrix’s entry ini-th row andj-th column,
E[·] to denote expectation,In to denote then × n identity
matrix, and the superscript† to denote Hermitian transpose.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a MU-MIMO system withN users indexed from1
toN , and one Node-B in a single cell. In this paper, we assume
that each user is only equipped with one transmitting antenna,
and the Node-B is equipped withM(M ≥ N) receiving
antennas, as shown in Fig. 1. In uplink, allN users share the
same time-frequency resource to transmit data to the Node-B.
DenotePi as the transmit power for useri. Then the received
signal vectory ∈ CM×1 is,

y = Hs+ n, (1)

where s ∈ CN×1 denotes the transmit signal vector with
E[ss†] = diag{P1, P2, · · · , PN}, H ∈ CM×N denotes the
channel matrix, andn ∈ CM×1 denotes the additive white
Gaussian noise (AWGN) with zero mean and covariance
matrix E[nn†] = σ2

nIM .
In this paper, we assume that Node-B has perfect channel

state information (CSI) for all users and the receiver at Node-
B uses zero forcing (ZF) detection method. Thus, the decoded
signal vector is

H#y = s+H#n, (2)

where H# = (H†H)−1H† denotes the pseudo-inverse of
channel matrixH. Then the signal-to-interference-plus-noise
ratio (SINR) at the Node-B’s receiver for useri is,

User 1

(1 RF)

Node-B

User 2

(1 RF)

User N 

(1 RF)

M  receiving 

antennas at Node-B

Fig. 1. System Model

γi =
Pi

σ2
n[(H

†H)−1]ii
= Pi

1

σ2
n[(H

†H)−1]ii
︸ ︷︷ ︸

δi

. (3)

Then we can obtain SE and EE for useri as

SEi = log(1 + γi) = log(1 + δiPi), (4)

EEi =
SEi

Pi + P c
i

=
log(1 + δiPi)

Pi + P c
i

, (5)

whereP c
i is a positive constant circuit power consumed by

the relevant electronic devices for useri.

B. Problem Formulation

Next, we will construct the utility function in two steps.
First, we consider the EE-SE tradeoff. Inspired by the widely-
used Cobb-Douglas production function in economics [14],
we adopt this modelempirically to get the “production” of
SE and EE for useri,

ui = (SEi)
wi(EEi)

1−wi , (6)

wherewi ∈ [0, 1]. More specifically, we can regard(wi, 1−wi)
as a priori articulation of preferences for SE and EE, which
captures EE-SE tradeoff in a unified way [13].

Second, we consider the fairness among allN users. If we
apply theproportional fairnessmetric, we can define the final
utility function for useri as

Ui(P) = log(ui) = log[(SEi)
wi(EEi)

1−wi ]

= log[log(1 + δiPi)]− (1− wi) log(Pi + P c
i )

= Ui(Pi), (7)

whereP = (P1, P2, · · · , PN ) and the last step shows that the
utility for user i is not related to the transmit power of other
users.

Based on the utility function in (7), we then formulate our
utility maximization problem subject to a power constraintfor



each user and a power sum constraint for all users,

maximize
N∑

i=1

Ui(Pi) (8)

(P1) subject to 0 ≤ Pi ≤ Pmax
i , ∀i (9)

N∑

i=1

Pi ≤ Pmax. (10)

In (8), we aim at maximizing the sum of the utility for
all users, i.e., the network-wide utility. Inequality (9) is the
individual power constraints wherePmax

i is the maximal
transmit power for useri. Inequality (10) is the power sum
constraint for the total MU-MIMO system wherePmax is the
maximal transmit power for all users, which is thepower
budgetof the whole system.

III. O PTIMAL POWER ALLOCATION

In the previous section, we have formulated the problem to
maximize the network-wide utility in (8), which however is
not a concave function since EE in (5) is neither convex nor
concave [13]. Therefore, in this section, we will exploit the
inner structure of (P1) and find that we can narrow down
the feasible region without changing the global optimum.
Furthermore, we will prove that the objective function in (8) is
concave in the new feasible region, which converts the original
problem into a convex programming problem. After some
analysis, we will get the optimal power allocation scheme for
(P1) with a centralized algorithm.

A. Convexization Procedure

To narrow down the feasible region in (P1), we first
consider the individual power constraints in (9). Since the
optimization problem can be changed as,

max
0≤Pi≤Pmax

i
,∀i

N∑

i=1

Ui(Pi) =

N∑

i=1

max
0≤Pi≤Pmax

i

Ui(Pi), (11)

we just need to find the maximal individual utility, i.e.,Ui(Pi)
for any useri ∈ {1, 2, · · · , N}. For the individual utility
functionUi(Pi) in (7), we have the following proposition.

Proposition 1: For any useri under individual power con-
straint in (9), there exists one and only one pointPu

i ∈
(0, Pmax

i ] that maximizesUi(Pi). The function Ui(Pi) is
strictly increasing and strictly concave over the interval[0, Pu

i ]
while strictly decreasing over the interval(Pu

i , P
max
i ]. In

addition,Pu
i can be derived as follows,

Pu
i =

{

Pmax
i if wi > 1− β(Pmax

i )

P 0
i if wi ≤ 1− β(Pmax

i )
(12)

where

β(Pi) =
δi(Pi + P c

i )

(1 + δiPi) log(1 + δiPi)
, (13)

andP 0
i is the unique solution to the following equation when

wi ≤ 1− β(Pmax
i ),

β(Pi) = 1− wi. (14)

Proof: We can prove this proposition by analyzing the
first and second derivative ofUi(Pi) with respect toPi. For
full proof, please see Appendix A.

Let us denote optimal solution under individual power
constraints asPu = {Pu

1 , P
u
2 , · · · , P

u
N}.

Now we consider the power sum constraint in (10). In
(P1), since the feasible region is a compact set and the
objective function is continuous, a global optimal solution
can be attained. Let us denote the global optimal solution
as P∗ = {P ∗

1 , P
∗
2 , · · · , P

∗
N}. Then we have the following

proposition.

Proposition 2: P∗ ≤ Pu, i.e., P ∗
i ≤ Pu

i , ∀i ∈
{1, 2, · · · , N}.

Proof: ∀i ∈ {1, 2, · · · , N}, supposeP ∗
i > Pu

i . Then
∑

k 6=i P
∗
k + Pu

i <
∑N

k=1 P
∗
k ≤ Pmax, which meansP′ =

{P ∗
1 , · · · , P

∗
i−1, P

u
i , P

∗
i+1, · · · , P

∗
N} is a feasible solution to

(P1). According to theProposition 1, we haveUi(P
∗
i ) <

Ui(P
u
i ). So

∑N

k=1 Uk(P
∗
k ) <

∑

k 6=i Uk(P
∗
k )+Ui(P

u
i ), which

is a contradiction to the fact thatP∗ is the optimal solution
to (P1). This completes the proof.

Proposition 2shows that for any useri, the optimal transmit
powerP ∗

i cannot be greater thanPu
i . Therefore we have the

following main result of this section.

Theorem 1: (P1) is equivalent to the following problem,

maximize
N∑

i=1

Ui(Pi)

(P2) subject to 0 ≤ Pi ≤ Pu
i , ∀i (15)

N∑

i=1

Pi ≤ Pmax. (16)

In addition,(P2) is a convex programming problem.

Proof: Following from Proposition 2, we immediately
conclude that(P1) is equivalent to(P2). In addition, from
Proposition 1, we know thatUi(Pi) is strictly concave at
Pi ∈ [0, Pu

i ]. Thus, (P2) is a problem to maximize a strictly
concave function in a convex region, which means it is a
convex problem now. This completes the proof.

B. Some Analysis

Next we will give some analysis for the optimal solution
P∗ in the following two cases.

Case 1:
∑N

i=1 P
u
i ≤ Pmax

In this case,Pu is feasible for(P2), so it is also the optimal
solution for (P2), i.e.,P∗ = Pu.

Case 2:
∑N

i=1 P
u
i > Pmax

In this case, we can further narrow down the feasible region
for (P2) and achieve the following proposition.

Proposition 3: If
∑N

i=1 P
u
i > Pmax, (P2) is equivalent to



the following convex optimization problem,

maximize
N∑

i=1

Ui(Pi)

(P3) subject to 0 ≤ Pi ≤ Pu
i , ∀i (17)

N∑

i=1

Pi = Pmax. (18)

Proof: Suppose
∑N

i=1 P
∗
i < Pmax. Since

∑N

i=1 P
u
i >

Pmax, there exists at least onei ∈ {1, 2, · · · , N} such that
P ∗
i < Pu

i (Otherwise,
∑N

i=1 P
∗
i =

∑N

i=1 P
u
i > Pmax, which

is a contradiction). Therefore, there exists aǫ > 0 such that
P ∗
i + ǫ ≤ Pu

i and
∑

k 6=i P
∗
k + (P ∗

i + ǫ) ≤ Pmax. So P′ =
{P ∗

1 , · · · , P
∗
i−1, P

∗
i + ǫ, P ∗

i+1, · · · , P
∗
N} is a feasible solution

for (P2). According to theProposition 1, we haveUi(P
∗
i ) <

Ui(P
∗
i + ǫ). Then

∑N

k=1 Uk(P
∗
k ) <

∑

k 6=i Uk(P
∗
k )+Ui(P

∗
i +

ǫ), which is a contradiction to the fact thatP∗ is the optimal
solution to(P1). Therefore, we must have

∑N

i=1 P
∗
i = Pmax,

which completes the proof.

C. Centralized Algorithm

Based on the above analysis, we can readily get the optimal
power allocationP∗ for (P1) with a centralized algorithm, as
shown in Algorithm 1. In practice, we can implement such
centralized algorithm as follows. First, each useri transmits
its parameters, includingPmax

i , P c
i andwi to Node-B. After

collecting all the information of all users, Node-B runs Algo-
rithm 1 to obtain the optimal power allocationP∗, and then
updates the optimal transmit powerP ∗

i to each useri. Finally,
each user transmits data at the optimal transmit power.

Algorithm 1 Centralized Algorithm for (P1)
1: for 1 ≤ i ≤ N do
2: if wi > 1− β(Pmax

i ) then
3: Pu

i = Pmax
i ;

4: else
5: Get P 0

i with Newton-Raphson iteration method for
the equation (14);

6: Pu
i = P 0

i ;
7: end if
8: end for
9: if

∑N

i=1 P
u
i ≤ Pmax then

10: P∗ = Pu;
11: else
12: GetP∗ with gradient projection method for (P3);
13: end if

IV. D ISTRIBUTED PRIMAL -DUAL IMPLEMENTATION

In the previous section, we provide Algorithm 1 to solve
the utility maximization problem in a centralized manner.
However, it requires Node-B to have knowledge of all the
global information of all the users. Furthermore, the central-
ized algorithm still incurs some computational complexityand
is not robust against temporary variation of system parameters,

such as instantaneous CSI. Hence, we hope to implement the
algorithm in a distributed manner. Inspired by the distributed
algorithm in network flow optimization problem [15], we de-
sign the following primal-dual distributed algorithm to achieve
the optimal power allocationP∗,

{

Ṗi = ki[U
′
i(Pi)− λ]

Pu

i
+

Pi
, ∀i ∈ {1, 2, · · · , N}

λ̇ = g[
∑N

i=1 Pi − Pmax]
+
λ ,

(19)

where

[f ]+z =

{

max(f, 0), z ≤ 0

f, z > 0
(20)

and

[f ]a+z =







max(f, 0), z ≤ 0

min(f, 0), z ≥ a

f, 0 < z < a

(21)

andki andg are positive stepsize.
From (19), each user does not need the information of

others but just the penaltyλ. The only overhead is that Node-
B broadcastsλ to all users and each useri updatesPi to
Node-B until convergence. Therefore, such implementation
only consumes a small amount of overhead between each
user and Node-B. Also, our proposed distributed algorithm
reduces computational complexity compared to Algorithm 1.
Moreover, we further prove that this primal-dual distributed
algorithm in (19) can converge to the global optimal, as shown
in the following theorem.

Theorem 2: The distributed algorithm in (19) is globally
asymptotically stable and the only equilibrium isP∗.

Proof: We can prove this theorem by constructing the
following Lyapunov function,

V (P, λ) =
1

2

N∑

i=1

(Pi − P ∗
i )

2

ki
+

(λ − λ∗)2

2g
, (22)

where (P ∗
1 , P

∗
2 , · · · , P

∗
N , λ∗) satisfy the KKT conditions for

(P2) andλ∗ is the multiplier for (16). For full proof, please
see Appendix B.

V. NUMERICAL RESULTS

In this section, simulation results are provided to validate
our theoretic analysis, which show that our approach not only
captures user diversity for EE-SE tradeoff, but also ensures
user fairness. In addition, we also verify that our primal-
dual distributed algorithm can converge to the global optimal
solution. Throughout this section, we will set the maximal
transmit power to be1W (30dBm) for all users, by adopting
the transmitter’s power level1 for 1800/1900 MHz mobile
phones [16]. The circuit power is set to be0.1W for all users.

A. User Diversity for EE-SE Tradeoff

As shown in (6), different users can have different prefer-
ences for SE and EE according towi. In this part, we will show
how to capture user diversity withwi. We consider two users,
i.e.,N = 2, and let the number of receiving antennas for Node-
B to be 2, i.e., M = 2. In addition, we regard two users as



homogeneous such that they have the same CSI. Specifically,
let δ1 = δ2 = 20dB andPmax = 1.5W.

Fig. 2 shows the impact of users’ different preferences, i.e.,
w1 andw2. From Fig. 2(a) and 2(d), we can see the optimal
transmit power for two users. Under the optimal transmit
power for user1, Fig. 2(b) demonstrates that SE increases as
w1 increases while Fig. 2(c) demonstrates that EE decreases
asw1 increases. Similarly, Fig. 2(e) and 2(f) show the same
effect ofw2 for user2. Such results comply with our intuition
for the effect ofwi in (6), and therefore verify that our utility
function can capture user diversity for EE-SE tradeoff very
well with the preferencewi.

B. User Fairness

In this part, we will show that our utility function in (7)
can ensure fairness among all users. We still consider two
users, i.e.,N = 2, and letM = 2. We setw1 = w2 = 0.5
which means SE and EE are equally important for both users.
Pmax is set to be1.5W. We will vary the channel conditions
for two users. Specifically, we fixδ1 to three different levels:
−20dB (worst), 0dB (normal) and20dB (best) respectively,
while changingδ2 from −20dB (worst) to 20dB (best). In
addition, we will use the Jain’s fairness index [17] to evaluate
the user fairness, i.e.,

Jain’s Fairness Index=
[exp(U1) + exp(U2)]

2

2[(exp(U1))2 + (exp(U2))2]
, (23)

whereU1 andU2 are the utility from (7) for user 1 and user
2 with channel conditionsδ1 andδ2, respectively.

Fig. 3 shows that the closer the channel conditions are, the
better the fairness is. In addition, whenδ1 = δ2, the index
is 1 (the best fairness) which means no bias exists and two
users have the same utility. Furthermore, even though when
the channel condition is worst for user1 with δ1 = −20dB
and the channel condition is best for user2 with δ2 = 20dB,
the index still does not touch 0.5 (the worst fairness) exactly
and it is actually 0.5017. This means user1 can still transmit
data with a positive transmit power. Therefore, user fairness
can be guaranteed under our proposed utility function in (7).

C. Primal-Dual Distributed Algorithm

In this part, we will validate the effectiveness of our primal-
dual distributed algorithm in (19). We consider four users,i.e.,
N = 4 and letM = 4. We set different EE-SE preferences for
all users, which arew1 = 0, w2 = 0.3, w3 = 0.7 andw4 = 1.
The maximal sum power isPmax = 3W. In addition, the step
sizes,ki, ∀i ∈ {1, 2, 3, 4} andg in (19) are set to be0.001.

Fig. 4 shows the simulation results. From Fig. 4(a), we
can see that the power allocation can be converged and it
also shows that our approach can capture user diversity when
different users have different preferences for EE-SE tradeoff.
From Fig. 4(b), we can see that the distributed algorithm can
converge to the global optimum, which verifiesTheorem 2.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we consider utility maximization for the uplink
MU-MIMO system. We define the utility function combining
both EE-SE tradeoff and user fairness. After formulating
the utility maximization problem with individual power con-
straints and sum power constraint, we analyze the optimal
power allocation scheme. Although the original optimization
problem is not convex, we propose a convexization procedure
to convert it into an equivalent convex programming problem,
which has been proven to have the same global optimal
solution as the original problem. Moreover, we have proposed
two algorithms to obtain the optimal solution: one is the
centralized algorithm which requires knowledge of all the
global information; the other is the primal-dual distributed
algorithm which only needs a small amount of overhead
between each user and Node-B. Furthermore, we have proved
that our proposed distributed algorithm can converge to the
global optimal solution.

Several extensions can be done in the future to apply our
results to more practical scenarios. First, if we use other
detection methods rather than ZF, such as minimum mean-
squared error (MMSE), the problem becomes more complex
because of the coupled interference part. Second, static CSI is
investigated in this paper, but more realistic version should be
stochastic CSI under which we should analyze the achievable
(or average) SE and EE to guarantee a statistical long-term
performance. Last but not least, user pairing, which depicts

how to select part of users from all available users to form the
MU-MIMO system, is also an important issue in uplink MU-
MIMO system. Traditional metric is to maximize throughput
or SE, but the story will be changed when we use EE-SE
tradeoff as the new metric. In summary, this paper opens a
new way toquantitativelyanalyze the EE-SE tradeoff with
fairness guarantee for MU-MIMO system.

APPENDIX A
PROOF OFPROPOSITION1

The first derivative ofUi(Pi) in (7) is

U ′
i(Pi) =

1

log(1 + δiPi)
·

δi
1 + δiPi

−
1− wi

Pi + P c
i

=
1

Pi + P c
i

[
δi(Pi + P c

i )

(1 + δiPi) log(1 + δiPi)
− (1− wi)]

=
1

Pi + P c
i

[β(Pi)− (1− wi)], (24)

where

β(Pi) =
δi(Pi + P c

i )

(1 + δiPi) log(1 + δiPi)
. (25)

And the second derivative ofUi(Pi) is

U ′′
i (Pi) =

β′(Pi)(Pi + P c
i )− [β(Pi)− (1− wi)]

(Pi + P c
i )

2
. (26)



In (25), we can get first derivative ofβ(Pi) as

β′(Pi)

= δi ·
[log(1 + δiPi)− δiPi]− P c

i δi[log(1 + δiPi) + 1]

[(1 + δiPi) log(1 + δiPi)]2

< 0, (27)

which shows thatβ(Pi) is strictly decreasing withPi.

Case 1:If wi > 1 − β(Pmax
i ), then1 − wi < β(Pmax

i ) ≤
β(P ), which yieldsU ′

i(Pi) > 0. So Ui(Pi) is strictly in-
creasing at[0, Pmax

i ]. The utility Ui(Pi) is maximized when
Pi = Pmax

i . In addition,U ′′
i (Pi) < 0, so Ui(Pi) is strictly

concave at[0, Pmax
i ].

Case 2:If wi ≤ 1 − β(Pmax
i ), thenU ′

i(Pi) = 0 has one
and only one solutionP 0

i ∈ (0, Pmax
i ]. This is becauseβ(Pi)

is strictly decreasing andlim
Pi→0

β(Pi) = +∞ andβ(Pmax
i ) ≤

1 − wi. Note thatP 0
i is the unique solution of the following

equation,

β(Pi) =
δi(Pi + P c

i )

(1 + δiPi) log(1 + δiPi)
= 1− wi. (28)

At the interval [0, Pu
i ), we haveβ(Pi) − (1 − wi) > 0, so

U ′
i(Pi) > 0 and U ′′

i (Pi) < 0. At the interval [P 0
i , P

max
i ],

β(Pi)− (1−wi) ≤ 0, soU ′
i(Pi) ≤ 0. Then we obtain that the

utility Ui(Pi) is maximized atP = P 0
i andUi(Pi) is strictly

increasing and concave at[0, P 0
i ] and strictly decreasing at

(P 0
i , P

max
i ].

The proof is completed.

APPENDIX B
PROOF OFTHEOREM 2

Proof: The proof is based on [18]. Readers can find
more information about primal-dual algorithm for network
flow optimization in [15] [18].

First, we rewrite the problem(P2),

maximize
N∑

i=1

Ui(Pi)

subject to −Pi ≤ 0, ∀i (29)

Pi − Pu
i ≤ 0, ∀i (30)

N∑

i=1

Pi − Pmax ≤ 0. (31)

Since P∗ = {P ∗
1 , P

∗
2 , · · · , P

∗
N} is the optimal solution of

this problem and the Slater’s condition holds for this convex
problem, there exists KKT multipliersµ∗

i for (29), ν∗i for (30)
and λ∗ for (31) such that they satisfy the following KKT

conditions,

U ′
i(P

∗
i ) + µ∗

i − ν∗i − λ∗ = 0, ∀i (32)

0 ≤ P ∗
i ≤ Pu

i , ∀i (33)
N∑

i=1

P ∗
i ≤ Pmax, (34)

µ∗
i ≥ 0, ν∗i ≥ 0, λ∗ ≥ 0, ∀i (35)

µ∗
iP

∗
i = 0, ∀i (36)

ν∗i (P
∗
i − Pu

i ) = 0, ∀i (37)

λ∗(

N∑

i=1

P ∗
i − Pmax) = 0. (38)

Now given such KKT conditions, we can prove this theorem
by constructing the following Lyapunov function for the
system in (19),

V (P, λ) =
1

2

N∑

i=1

(Pi − P ∗
i )

2

ki
+

(λ − λ∗)2

2g
. (39)

It is easy to verify thatV (P, λ) in (39) is positive definite.
To show thatV (P, λ) is a Lyapunov function, it suffices to
verify its Lie derivative with respect to (19) is nonnegative,
i.e., V̇ ≤ 0. This is true because,

V̇ =

N∑

i=1

Pi − P ∗
i

ki
Ṗi +

λ− λ∗

g
λ̇ (40)

=

N∑

i=1

(Pi − P ∗
i )[U

′
i(Pi)− λ]

Pu

i
+

Pi

+(λ− λ∗)[

N∑

i=1

Pi − Pmax]
+
λ (41)

≤

N∑

i=1

(Pi − P ∗
i )[U

′
i(Pi)− λ]

+(λ− λ∗)[

N∑

i=1

Pi − Pmax] (42)

=

N∑

i=1

(Pi − P ∗
i )[U

′
i(Pi)− U ′

i(P
∗
i )] (43)

+

N∑

i=1

(Pi − P ∗
i )[U

′
i(P

∗
i )− λ∗] (44)

+(λ− λ∗)[

N∑

i=1

P ∗
i − Pmax] (45)

≤ 0, (46)

where (43) is nonpositive sinceU ′(Pi) is strictly decrease over
the interval [0, Pu

i ] according toProposition 1, and (45) is



nonpositive following from the KKT conditions as,

(λ− λ∗)[
N∑

i=1

P ∗
i − Pmax]

= λ[

N∑

i=1

P ∗
i − Pmax]− λ∗[

N∑

i=1

P ∗
i − Pmax]

= λ[

N∑

i=1

P ∗
i − Pmax], //from (38) (47)

≤ 0, //from (35) (48)

and (44) is nonpositive following from the KKT conditions
as,

N∑

i=1

(Pi − P ∗
i )[U

′
i(P

∗
i )− λ∗]

=

N∑

i=1

(Pi − P ∗
i )(ν

∗
i − µ∗

i ) //from (32) (49)

=

N∑

i=1

(Pi − P ∗
i )ν

∗
i −

N∑

i=1

(Pi − P ∗
i )µ

∗
i (50)

=

N∑

i=1

(Pi − P ∗
i )ν

∗
i −

N∑

i=1

Piµ
∗
i +

N∑

i=1

P ∗
i µ

∗
i (51)

≤

N∑

i=1

(Pi − P ∗
i )ν

∗
i //from (33, 35, 36) (52)

=

N∑

i=1

(Pi − Pu
i )ν

∗
i +

N∑

i=1

(Pu
i − P ∗

i )ν
∗
i (53)

=

N∑

i=1

(Pi − Pu
i )ν

∗
i //from (37) (54)

≤ 0. //from (33, 35) (55)

Therefore, we have verifiedV (P, λ) in (39) is a Layponouv
function. So the primal-dual distributed system in (19) is glob-
ally asymptotically stable and will converge to the equilibria
set{P : V̇ = 0} [19]. On the other hand,̇V = 0 only if (43)
is equal to 0, i.e.,

N∑

i=1

(Pi − P ∗
i )[U

′
i(Pi)− U ′

i(P
∗
i )] = 0, (56)

which holds only if Pi = P ∗
i for all i ∈ {1, 2, · · · , N}.

Therefore, the equilibria set{P : V̇ = 0} only contains one
point, i.e.,P∗. This completes the proof.
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