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Abstract

Optical fibre communication using the Nonlinear Fourier transform (NFT) is one of the

potential solutions to tackle the so-called capacity crunch problem in long-haul optical fibre

networks. The NFT transforms the nonlinear propagation of temporal signal, governed by

the nonlinear Schrödinger equation (NLSE), into simple linear evolutions of continuous and

discrete spectra in the so-called nonlinear spectral domain. These spectra and the corresponding

nonlinear spectral domain, defined by the NFT, are the generalized counterparts of the linear

spectrum and frequency domain defined by the ordinary Fourier transform. Using the NFT,

the optical fibre channel is effectively linearised, and the basic idea is to utilize degrees of

freedom in the nonlinear spectral domain for data transmission. However, many aspects of this

concept require rigorous investigation due to complexity and infancy of the approach. In this

thesis, the aim is to provide a comprehensive investigation of data transmission over mainly

the continues spectrum (CS) and partly over of the discrete spectrum (DS) of nonlinear optical

fibres. First, an optical fibre communication system is defined, in which solely the CS carries

the information. A noise model in the nonlinear spectral domain is derived for such a system by

asymptotic analysis as well as extensive simulations for different scenarios of practical interest.

It is demonstrated that the noise added to the signal in CS is severely signal-dependent such

that the effective signalling space is limited. The variance normalizing transform (VNT) is used

to mathematically verify the limits of signalling spaces and also estimate the channel capacity.

The numerical results predict a remarkable capacity for signalling only on the CS (e.g., 6

bits/symbol for a 2000-km link), yet it is demonstrated that the capacity saturates at high power.

Next, the broadening effect of chromatic dispersion is analysed, and it is confirmed that some

system parameters, such as symbol rate in the nonlinear spectral domain, can be optimized so

that the required temporal guard interval between the subsequently transmitted data packets

is minimized, and thus the effective data rate is significantly enhanced. Furthermore, three

modified signalling techniques are proposed and analysed based on the particular statistics

of the noise added to the CS. All proposed methods display improved performance in terms of

error rate and reach distance. For instance, using one of the proposed techniques and optimized
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Abstract

parameters, a 7100-km distance can be reached by signalling on the CS at a rate of 9.6 Gbps.

Furthermore, the impact of polarization mode dispersion (PMD) is examined for the first time,

as an inevitable impairment in long-haul optical fibre links. By semi-analytical and numerical

investigation, it is demonstrated that the PMD affects the CS by causing signal-dependent

phase shift and noise-like errors. It is also verified that the noise is still the dominant cause

of performance degradation, yet the effect of PMD should not be neglected in the analysis of

NFT-based systems. Finally, the capacity of soliton communication with amplitude modulation

(part of the degrees of freedom of DS) is also estimated using VNT. For the first time,

the practical constraints, such as the restricted signalling space due to limited bandwidth,

are included in this capacity analysis. Furthermore, the achievable data rates are estimated

by considering an appropriately defined guard time between soliton pulses. Moreover, the

possibility of transmitting data on DS accompanied by an independent CS signalling is also

validated, which confirms the potentials of the NFT approach for combating the capacity

crunch.
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Lay summary

Optical fibre is the only medium that can support the ever-increasing demand for data rate and

make the Internet possible. Optical fibre communication systems have kept up with demands

for decades thanks to the tremendous research in different disciplines. However, the growth rate

of data transmission over optical fibre has slowed down in recent years because all conventional

communication methods eventually fail due to the inherent nonlinearity of optical fibre, which

makes it different from other communication types, such as wireless. Thus, specific methods

are required for enhancing the performance of the optical fibre systems. The recently proposed

optical fibre communication based on the nonlinear Fourier transform (NFT) is one of the

novel solutions which can address the nonlinearity problem. Unlike previous techniques, which

consider the nonlinearity as a source of noise and try to compensate it, the NFT-based approach

tries to adapt the system to the existing nonlinearity and exploit it. In this thesis, different

aspects of the optical fibre communication using NFT are studied. The channel model of a

NFT-based structure is derived, and it is observed that the noise statistics depend on the input

signal. This is a very important feature of NFT-based communication, which affects all aspects

of the system. Based on such a model, the information capacity of the channel is estimated,

and remarkable capacity is predicted only for a part of the available degrees of freedom,

called continuous spectrum. Furthermore, different NFT-based signal processing techniques

are proposed, and system parameters are optimized to further improve the performance. It

is demonstrated that data can be transmitted over more than 7000 kilometres of fibre with

a rate of approximately 10 Gigabits per second. Moreover, for the first time, impacts of an

unavoidable impairment of the optical fibre channel on NFT-based systems is investigated,

and compensation techniques are proposed. Finally, the channel information capacity for the

other part of available degrees of freedom, called discrete spectrum, is estimated. It is further

demonstrated that it is possible to simultaneously and independently transmit data using both

continuous and discrete spectra. This thesis provides a comprehensive study of optical fibre

communication using NFT, and confirms its high potentials for future communication systems.
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Chapter 1

Introduction

1.1 Overview

Optical fibre has been an attractive medium for data transmission since its introduction in 1966

[1]. With enormous engineering advances in manufacturing and system design, optical fibre

links are currently like the arteries that connect the world and make the Internet possible. Low

loss (less than 0.2 dB/km at 1550 nm) and large bandwidth (7.1 THz for L-band 1565-1625

nm and 4.4 THz for C-band 1530–1565 nm) of optical fibre have made the transmission of

huge amounts of information possible through terrestrial and submarine optical fibre links.

However, for several decades, the ever increasing demand for data rate have forced scientists

and engineers to search for more efficient and novel techniques for data transmission using

optical fibre.

The first signal transmission using optical fibre was demonstrated in Chicago’s Loop District in

1977 [2, 3]. After that, development of optical fibre links rapidly progressed. For instance, the

first fibre-to-home scheme was demonstrated in Japan in 1978, and a commercial system with

45 Mb/s over multimode fibre was available in 1987 [4]. In 1991, practical optical network

with 2.5 Gb/s rate was introduced, and 20 Gb/s was achieved through experiment [2]. While

only electrically regenerated direct detection was used in previous systems, the availability of

optical amplifiers made the unregenerated wavelength division multiplexing (WDM) possible

in 1990s. Dispersion-management using consecutive fibre segments with positive and negative

dispersions was a breakthrough that led to high data rate WDM systems [5]. From their

advent, different dispersion management techniques with various fibres and dispersion maps

were developed in a way that dispersion compensating fibres are used in most of the current
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optical fibre links. By 2009, practical communication systems could support 40 Gb/s over a

single wavelength, and 25 Tb/s rate was demonstrated in experimental setups [2].

Although high data rate transmission was enabled and commercially available, even more data

rate was needed due to the rapid growth of demand. Analysis of historical data reveal that

the global traffic growth rate is between 25% and 80% per year depending of the network

and traffic type [6]. For instance, Youtube upload rate have had an almost constant growth

of about 70% per year over the past 10 years, and the total UK broadband demand have

increased 60% per year. It is expected that the emerging technologies and applications, such

as 4K video streaming, Internet-of-Things, and social media, preserves the continuous growth

of demand for data rate. While the growth rate of most of the generation and processing

units (e.g., microprocessor performance, wireless interface speed, etc.) have kept up with the

global network traffic growth, the transport units, such as WDM capacity, failed to satisfy

such demand [6]. For instance, WDM capacity have only increased 20% per year from the

year 2000. Therefore, techniques other than WDM with direct detection and On-Off-Keying

(OOK) are crucially needed.

Coherent detection enables applying advanced modulation formats and polarization

multiplexing. Moreover, the performance is enhanced using digital signal processing and

error correction coding using powerful high-speed processors for coherent detection that

makes the complex electric field available rather than the optical intensity. High data rates

are demonstrated to be achievable with coherent detection, digital signal processing, and

different multiplexing techniques in several experiments [7,8]. For instance, 200 Gb/s systems

are now commercially available for regional networks [2]. However, there is an inverse

relationship between distance reach and data rate achieved by multi-dimensional advanced

modulation formats because of the inevitable amplified spontaneous emission (ASE) noise

added during the amplification process. To make it worse, increasing the signal power does

not always result in higher signal-to-noise ratio (SNR) due to the nonlinearity of the fibre

channel. Unfortunately, the effect of nonlinearity is not easily tractable because it is combined

with dispersion and noise. It is now widely believed that the random effects as a result of

nonlinear signal and noise interactions are the ultimate barrier for data rate increase in optical

fibre channels [9]. Thus, some kind of nonlinearity treatment is essential for future modern
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optical fibre communication systems.

Most of the techniques for optical fibre communication channels adopt ideas from the

conventional communication methods developed for linear channels (e.g., radio wireless

channel), yet the optical fibre is nonlinear. The propagation of light through the fibre is

governed by a partial differential equation called nonlinear Shrödinger equation (NLSE),

which does not lead to any known input-output relationship for the optical fibre channel.

Therefore, except for some low power or short distance scenarios, conventional techniques are

not efficient and eventually fail at some longer distances and higher signal power. For instance,

the capacity of optical fibre channel may be studied using some empirical approaches [10]

or low nonlinearity assumption [11] that does not work for a general optical fibre structure.

As a consequence, even with detailed noise modelling of nonlinearity [12] or improved

detection [13], the achievable information rates tend to zero at high powers, and the capacity

saturates.

As demonstrated in many works, such as [2], there is a gap between the known lower capacity

bounds, such as [9], and upper bounds such as [14]. Different signal processing techniques have

been developed for increasing the capacity beyond the lower bound and as close as possible

to the Shannon capacity [15–17]. As an example, one of the most promising techniques

is called digital back propagation (DBP) that uses split-step Fourier method to reverse the

effect of propagation [18]. In the absence of noise, all nonlinear signal-signal interactions

can be compensated, yet in practical scenarios nonlinear signal-noise interactions limit the

performance. Several modifications of DBP have also been proposed which improve the

performance [19–21].

All methods developed for nonlinearity treatment, including DBP, fail at some point because

either nonlinearity is treated as a noise source or the “distortions” resulted from nonlinearity

is tried to be compensated. The novel idea of designing systems based on the nonlinear

Fourier transform (NFT) [22, 23], the subject of this thesis, have recently attracted attention

among researchers since the nonlinearity is no longer treated as a nuisance [16]. Using

NFT, the communication system can be designed embracing the nonlinearity and adapting

the signalling techniques to the inherent nonlinearity of the channel. Currently, NFT-based

signal processing and information theoretical analysis of optical fibre are regarded as potential
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approaches to achieve the true capacity of optical fibre links [24–27]. By applying the NFT,

the available degrees of freedom in the time domain (i.e., the optical wave) are transformed

into two types of spectra, namely the discrete and continuous spectrum. These spectra

evolve linearly through the fibre, in a generalized spectral domain called nonlinear spectral

domain, as the time domain signal travels in a nonlinear medium. Thus, the nonlinear channel

defined by NLSE, is transformed by NFT to a linear memoryless channel. As a natural

consequence, communication systems can be designed in which the mentioned spectra carry

the information instead of the time domain signal. This a very attractive approach that opens up

a whole new direction for capacity evaluation and signal processing in long-haul optical fibre

communication.

Space division multiplexing using multi-core fibres and fibre spatial modes is also regarded as

a promising technique for achieving high data rates [6, 28, 29], but nonlinearity still affects the

channel along with some additional challenges such as cross-talk in spatial dimension. Spatial

multiplexing is also a popular ongoing research route. Another way of tackling the problem

is developing more efficient optical fibres and components. For instance, the concept of low

noise amplifiers have been developed recently [30]. Hollow core fibres also can potentially

provide very low nonlinearity and loss [31]. However, all these routes are still far from practical

deployment in optical fibre communication systems.

1.2 Related work

Although the mathematical basis of the nonlinear Fourier transform was developed in 1970s

[32–34], it was until 1993 [35] that NFT was first used as a technique for data transmission

over the channel defined by NLSE. Indeed, NFT, also known as inverse scattering method,

have been used in different areas of mathematics and physics during this time [36]. The NFT is

a well-established method for solving the NLSE. Using this method, the continuous spectrum

(CS) and discrete spectrum (DS) of input signal are obtained which evolve linearly along the

fibre. Unlike Fourier transform in conventional linear systems, the NFT provides two types

of spectra in nonlinear spectral domain. The DS corresponds to the solitonic part of time

domain signals. Single soliton pulses retain their shapes as a result of perfect cancellation

of nonlinearity with dispersion, and, likewise, multi-soliton waveforms possess some shape
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preserving properties. The CS, however, corresponds to radiation part of time domain signals.

In other words, the portion of the optical wave associated to CS is largely affected by the

chromatic dispersion and is dispersed in time domain. Because of their nature, these two types

of spectra are manifested in different forms in nonlinear spectral domain. A number of discrete

points on the positive complex plane, called eigenvalues, together with their corresponding

complex amplitude, called norming constant construct the DS. On the other hand, the CS

is essentially a complex continuous waveform, which is analogous to the frequency domain

representation of a signal in conventional linear communication channel. Thus, it is expected

that signal processing techniques and communication systems for CS to be realizable through

some of the known methods for conventional systems.

In [35], signalling on eigenvalues as part of the DS were nominated as a suitable tool for

data communication since they remain unchanged along the fibre in the absence of noise and

other perturbations. It should be noted that using eigenvalues for data transmission is closely

related to the soliton transmission techniques in which soliton pulses are encoded/decoded

in time domain. More recently in a prominent work by Yousefi and Kschischang [24–26],

nonlinear frequency division multiplexing (NFDM) was proposed as a general technique for

data communication for a nonlinear optical fibre link using NFT. In a NFDM system, data is

mapped on continuous and discrete spectra, defined in nonlinear spectral domain. By their

work, the NFT regained attention, and different aspects of NFDM have became subjects of

numerous research projects recently.

In [24–26], Yousefi and Kschischang reformulated the NFT, derived some of its properties,

proposed and examined numerical implementation methods, and studied the concept of NFDM.

They concluded that, as shown in the older works [37], if the data is carried by the scattering

data (i.e., CS and DS), the corresponding communication channel is free from nonlinearities.

In other words, the deterministic distortions caused by the nonlinearity and dispersion are

absorbed in the transform itself and the resulting channel is effectively linear. The NFT can

be regarded as a generalization of orthogonal frequency division multiplexing (OFDM) for

nonlinear optical fibre channel, yet with NFT instead of Fourier transform and different kind

of spectra. Despite authors’ attempts in [26], an important unanswered questions was that how

the channel looks like in presence of perturbations and how much data rate can be achieved?
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Many research groups have recently tried to apply this concept to more practical optical fibre

communication systems. In the literature, due to lack of closed form mathematical relations

for NFT and the complexity of numerical implementation, mainly either CS or DS are solely

considered as the data transmission medium.

Mapping the information only on the CS makes it possible to use signalling techniques and

modulation format similar to conventional systems such as OFDM because the CS is actually

a continuous complex function in nonlinear spectral domain. In a series of papers [38–40],

the linear spectrum of a predefined signal (OFDM or Nyquist) was mapped on the CS through

inverse nonlinear Fourier transform (INFT), which essentially prevents soliton formation in

the time domain signal. This scheme was named nonlinear inverse synthesis (NIS), and the

performance of data transmission using NIS was investigated assuming distributed or lumped

amplification. It was demonstrated that NIS approach can improve the performance (about

4.5 dB) compared to linear compensation and potentially can lead to high data rates over long

distances of fibre. The non-ideal distributed amplification was taken into account in [41], and

an experimental work [42] confirmed the feasibility of effective NIS data transmission for

transoceanic distances. Multiuser NFDM was recently compared to WDM in [43], and it was

demonstrated that achievable rates can be doubled using the proposed nonlinear multiplexing in

defocusing case of NLSE. Similar approach was used for focusing case of NLSE in [44]. Most

recently in [45], up to 1.3 dB performance gain was reported for NFDM compared to OFDM in

an experimental demonstration using only CS and quadrature amplitude modulation (QAM),

which confirms the potential benefits of the NFT approach. The capacity of CS channel was

studied in [46] using the perturbation theory [47]. The derived model for the CS channel

showed absence of inter-symbol interference, and a lower bound of 10.7 bits per symbol was

estimated for 2000 km of fibre length and 500 GHz of bandwidth.

Information transmission using the particle-like nature of DS is also an attractive approach.

Indeed, before the new research direction powered by NFT, soliton communication has been

largely studied in the literature, mainly with OOK modulation and direct detection [48].

Despite relative immunity to dispersion and nonlinear effects, the performance of soliton

communication was limited by impairments such as Gordon-Haus effect [49], Raman

scattering [50], or acoustic effects [51]. For instance, the famous Gordon-Haus effect refers to
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the timing jitter in arrival of soliton pulses as a result of interaction of ASE noise with solitons.

Such timing jitter increases for longer fibre or higher power that, consequently, limits the

achievable data rates [49]. Numerous attempts have been made to improve the performance

and reach distance for soliton communication [48]. Dispersion management, for example,

leads to reduced Gordon-Haus jitter as well as other mentioned effects, and successful

transmission of high data rates over more than 10000 km of fibre using dispersion managed

solitons has been reported [52]. However, fast growth of other high data rate techniques such

as WDM caused that the research on soliton-based systems to become scarce [53, 54]. With

emergence of NFT-based systems, soliton communication is revived once again but different

in format this time. For single soliton communication, using NFT means that data can be

mapped on the eigenvalue in positive complex plane and corresponding phase and amplitude

of norming constants, which requires coherent detection. The noise model as well as capacity

bounds for such system was derived in [55–60]. In these works, however, information rates

in bits per second were not presented. Also, some intrinsic limitations, such as dependence of

signal bandwidth on the amplitude, were ignored. The more important aspect of using DS is

that multi-soliton, also known as multi-eigenvalue, signals can be generated which in effect

can increase the spectral efficiency. In [61,62], multi-eigenvalue communication was analysed,

in which data is mapped on multiple purely imaginary eigenvalues. The multi-eigenvalue

communication was investigated by simulation and experiment, and algorithms were proposed

for optimization of bandwidth and pulse duration to maximize the spectral efficiency that

led to 3 bit/s/Hz over 2000 km. However, it was observed that spectral broadening can be a

limiting issue. In a number of other works general communication system designs, including

the modulation on the norming constants, were studied [63–70]. Recently in [71], transmission

of 6 bits/symbol at 24 Gbps over 1000 km of fibre was demonstrated by experiment using a

single eigenvalue and its corresponding norming constant. In general, it can be concluded

from all these research that reliable high data rates can be achieved for long distances of fibre

link by signalling on DS provided that an optimized system design is opted.

Other related aspects of NFT-based communication systems include alternative designs based

on NFT. For instance, DBP using NFT was proposed in [72], but only the soliton-free

defocusing case of NLSE was considered due to complexity. The NFT can also be used at

the receiver of current optical fibre links with conventional modulation to design an NFT-based
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detector. In such approach, the spectra of the received noisy signal are calculated and the

detection is performed based on all possible spectra using minimum distance criteria [64,

73–76]. Periodic NFT (PNFT) was proposed in [77, 78] and studied in [79–81]. Periodic

boundary condition are assumed in PNFT rather vanishing boundary conditions in NFT. Similar

to OFDM cyclic prefix is added to the signal, which leads to reduced complexity, lower

peak-to-average power ratio (PAPR), and more controllable temporal width at the receiver.

Recently, attempts have been made to map data on both spectra [82], and it was observed that

CS and DS are almost uncorrelated and the performance degradation of CS happens at higher

powers (3 dB increase). Some works have also studied polarization multiplexing in NFT-based

systems [83–85].

Since the NFT and its inverse are only implemented by numerical methods, development of

faster and more efficient numerical algorithms is also an important research direction [43, 66,

86–91]. Detailed review of numerical methods regarding their error and complexity can be

found in [25, 27, 77] and references therein. Fast NFT implementation was proposed in [77,

92, 93], and it was demonstrated that CS and DS can be computed using O(Ms log2Ms) and

O(M2
s ) flops for Ms sample points. Recently, fast INFT algorithms were also proposed in

[94–97], and a complexity ofO(MsNd+Ms log2Ms) was achieved forMs sample points and

Nd DS points.

1.3 Contributions of the thesis

The CS is the main focus of this thesis, and we aim to study the CS channel comprehensively

here. Although some works have studied the CS [39, 40, 42, 43, 46], a fundamental analysis

of CS is conducted in this thesis. The capacity analysis, development of signal processing

techniques, and investigation of an important impairment for the CS altogether build a complete

study of the NFT-based concept using CS. The capacity of the CS is estimated using asymptotic

method combined with extensive simulation for the first time, while in [46], perturbation

method was used to study the capacity of the CS. Moreover, signal processing techniques

are proposed based on the specific noise behaviour of CS, which was lacking in previous

studies. Also, the effect of the polarization mode dispersion (PMD) is studied on the single

polarization data transmission using the CS that was not considered before. At the end, we
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briefly study the capacity of DS part and possibility of simultaneous modulation on both spectra

for the first time. It should be noted that only single mode fibre is considered in NFT-related

research to date, and long-haul optical fibre communication is the main application of the

methods presented in this thesis. Also, device imperfections, higher order dispersions, and

other perturbative effects are not included in the definition of NFT and may negatively affect

the performance of NFT-based systems. The main contributions of this thesis are presented in

four chapters:

Capacity analysis of CS

It is essential to first have a solid model of the CS channel, so that the capacity analysis can

be conducted based on it. In order to understand the CS channel, a communication system

is defined, in which data symbols are mapped on the CS waveform. Then, the time domain

signal is constructed through INFT. The resulted signal is launched into the fibre, and at

the receiver the CS, which contains the initial data symbols, is obtained using NFT. Since

the effective channel response in nonlinear spectral domain is only a phase shift for the CS,

the input-output relation of the channel can be easily defined. However, the properties of

noise added to the CS are unknown because the ASE noise induced during the propagation

of the signal in time domain is also transformed by NFT. Deriving the statistics of noise

in nonlinear spectral domain is not straightforward and novel ways are required for such

purpose. The main features of the noise, which play a key role in the capacity of the CS

channel, are derived by analysis of the channel for asymptotically long fibres. Such features

are confirmed and more details of the noise characteristics are then evaluated by detailed

extensive numerical simulations in non-asymptotic scenarios. In brief, it is demonstrated that

the effective noise added to the CS signal is almost white, non-Gaussian, and signal-dependent.

Having necessary information about the noise, the capacity is estimated numerically utilizing

the variance normalizing transform (VNT), which basically transforms the specific noise of the

CS channel to an additive Gaussian noise. As an important result, we infer that the capacity

saturates at high powers and the capacity achieving distribution is discrete for the CS, which

is caused by the signal-dependency of the noise that effectively limits the signalling space. To

wrap up the capacity analysis, achievable data rates in bits per second are estimated by taking

into account available time-frequency resources, and an approximate closed form equation is
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provided.

Signal processing for CS

After providing a detailed capacity analysis of the CS channel, more practical aspects of

signalling on the CS are investigated. An important characteristic of the CS channel in

NFT-based systems, similar to the traditional optical fibre communication systems, is the data

rate limitation due to the temporal broadening as a result of chromatic dispersion. Thus, it is

essential to investigate the effect of chromatic dispersion on the system performance because

NFT cannot compensate it. Note that NFT is only defined for a fibre channel without any

dispersion compensation method in temporal domain. Using a semi-analytic approach, it is

demonstrated that improved performance and higher bit rates can be achieved by properly

choosing the system parameters and minimizing the effect of dispersion. The other important

attribute of the CS channel is its specific noise characteristics in nonlinear spectral domain.

By considering such a distinctive feature, we propose three different signalling methods for

performance improvement and compare them with the basic method of direct mapping on CS

and sampling for detection. We provide analysis in terms of error performance, distance reach,

and complexity. It is demonstrated that by adding reasonable amount of complexity to the

system, significant performance enhancement can be achieved. For instance, it is shown that a

distance of 7100 km can be reached with a 9.6 Gbps rate in only 26 GHz of bandwidth. At the

end, a simple general dispersion pre-compensation technique is also proposed. By this digital

pre-compensation of the CS and without adding any complexity to the system, up to 100%

increase in data rate is obtained.

PMD: An unavoidable impairment

An important fibre impairment which is not included in the master model of optical fibre,

the NLSE, is the PMD. In long-haul and high speed fibre links, the impact of PMD can be

quite critical. Therefore, for the first time in the literature, the effect of PMD on NFT-based

systems is studied. In a nonlinear coherent optical system, the assumption of this thesis, some

kind of treatment of PMD is essential since the energy is coupled into the two orthogonal

polarization states at the receiver. However, due to the lack of effective PMD compensation

methods considering the nonlinearity, the all-order linear PMD compensation method is opted
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here. Simulation results show that such PMD compensation is effective and can reverse most

of the distortion caused by PMD. Then, the remaining non-compensated effects of PMD on

CS, as a consequence of interaction of nonlinearity with PMD, are examined. An analytical

framework is provided to better understand the impact of PMD and obtain a corresponding

channel model. It is deduced that, apart from the PMD parameter, the fibre length, input power,

and instantaneous signal amplitudes are the parameters that determine the perturbation caused

by PMD. The analysis is followed by simulation results, which confirm the channel model

provided. The main impacts on the CS are a signal-dependent phase shift and a noise-like

error. These effects are studied for different modulation formats, fibre lengths, and PMD

parameters by simulation. Finally, the combined effects of PMD and ASE noise are evaluated.

We infer that, while the effect of ASE noise is still dominant, the PMD can indeed worsen the

performance and must be included in the analysis of long haul systems.

Data transmission using the DS part

The CS is only a portion of the available degrees of freedom, and the ultimate capacity of

optical fibre can only be realized if all degrees of freedom are exploited efficiently. Since

obtaining the capacity of NFT-based systems with optimized signalling on both spectra is

cumbersome and subject to future research, we provide the capacity estimate of single soliton

communication with amplitude modulation as a complementary contribution to the signalling

on CS approach. For the first time, the actual capacity of soliton communication, rather than

bounds, is estimated utilizing the VNT. Some practical consideration, such as dependence of

signalling space on the available bandwidth, are also included, and it is demonstrated that high

data rates can be achieved by considering an appropriate guard time for each soliton pulse.

At the end, as an initial step towards an efficient NFT-based system with full utilization of

available spectra, the possibility of simultaneous signalling on both spectra is examined. It is

demonstrated that independent error-free eigenvalues can be transmitted accompanying the CS,

showing a high potential of NFT-based signalling for data transmission in nonlinear regime.
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1.4 Outline of the thesis

The remainder of this thesis is organised as follows. In chapter 2, the preliminary background

about the optical fibre channel, nonlinear Fourier transform, and numerical methods are

presented. The noise model and capacity analysis of the CS channel is provided in chapter

3. The effect of chromatic dispersion, optimization of the channel parameters, efficient signal

processing methods, and their corresponding performance are studied in chapter 4, followed

by investigation of the effect of PMD in chapter 5. In chapter 6, the capacity of soliton

communication with amplitude modulation is estimated, and the feasibility of simultaneous

signalling on both spectra is validated. Chapter 7 provides the conclusion of the thesis and

future research directions.
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Background

In this chapter, background subjects are briefly presented. Dominant physical phenomena in the

fibre are reviewed, and the fibre channel model is presented. Next, nonlinear Fourier transform

(NFT) is introduced, followed by numerical implementation of fibre channel and NFT. More

details can be found in [27, 36, 98–100].

2.1 Optical fibre channel

History of optical fibre communication begins from 1966 when optical fibre was introduced

as a medium for propagation of light originated from laser [1]. However, optical fibres

with relatively low loss (lower than 20 dB/km) were introduced in 1970 [101], and the first

signal transmission over optical fibre was carried out in 1977 [2, 3]. In the 1980s, optical

fibre transmission lines were gradually commercialized and replaced coper wires and satellite

communication. The first submarine optical fibre cable was used in 1984 for telephone traffic.

Research and development on optical fibre systems has since continued in a way that optical

fibre is now the only medium capable of supporting huge demands for data rate. In the

following subsections basics of optical fibre and corresponding components are reviewed.

2.1.1 Optical fibre structure

Optical fibre is simply a cylindrical glass core covered by a cladding layer with smaller

refractive index. This allows the light wave to travel through the fibre for long distances

with low loss, typically 0.2 dB/km at wavelength 1550 nm for current single mode optical

fibres. The cross-section of a typical step-index fibre is schematically shown in Figure 2.1.

Step-index fibre refers to a fibre with two different refractive indices for core and cladding
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in comparison to the graded-index fibre with gradual change of refractive index from core to

cladding. Various refractive indices are obtained using different dopants in the silica glass at

the fabrication process.
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Figure 2.1: Cross-section of a step-index fibre and its refractive index profile.

The structure of optical fibre and the difference in refractive indices of core and cladding cause

the light to be confined in the fibre by the total internal reflection from the cladding while

travelling through the fibre. The difference of refractive indices between core and cladding

together with core radius determines the number of modes the fibre can support. An optical

fibre that only supports a single mode (fundamental mode) is called single-mode fibre (SMF).

The core and cladding radius for SMFs are typically about 25 and 62.5 µm [98]. The specific

structure of optical fibre results in several physical phenomena, the most important of which

are explained briefly as follows.

2.1.2 Loss

Different factors in an optical fibre contribute to making the fibre a lossy medium. In silica glass

fibre the main loss mechanism is Rayleigh scattering, which originates from light scattering in

all direction due to the local fluctuations of refractive index as a results of density variation

of silica [98]. Rayleigh scattering is inversely proportional to the fourth power of wavelength.

Another mechanism is the material absorption caused by impurities left during the fabrication

process such as OH ion.

The loss factor α is defined as the amount of power lost during the propagation of light through

the fibre. It is usually expressed in units of dB/km. Fibre loss depends on the wavelength,

and the minimum fibre loss is about 0.2 dB/km at wavelength 1550 nm. For long distances
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of fibre links, amplifiers are used in order to compensate the loss and provide sufficient power

at receivers. The most common type of optical amplifier (i.e., Erbium-doped fibre amplifiers)

also work at around 1550 nm wavelength.

2.1.3 Chromatic dispersion

Dependence of the refractive index n(ω) in an optical fibre to the frequency is referred to

as chromatic dispersion. At each optical frequency ω, the response of dielectric medium to

incident electromagnetic wave is different compared to another frequency. As a consequence,

the pulse broadens in time-domain because different frequency components travel at

different speeds. This can be represented mathematically by Taylor series expansion of the

mode-propagation constant β(ω) in the carrier frequency ω0 [98]

β(ω) = n(ω)
ω

c
= β0 + β1(ω − ω0) +

1

2
β2(ω − ω0)2 + · · · ,

where c is the speed of light in vacuum and βi is the ith derivative of β(ω) at the carrier

frequency. Group velocity vg, equal to 1/β1, is the speed of the envelope of optical wave

travelling along the fibre. Dispersion of the envelope is determined by β2, called group velocity

dispersion (GVD) parameter. The chromatic dispersion parameter, which is commonly used in

the literature, can be expressed as [98]

D =
−ω2

2πc
β2.

Apart from frequency-dependence of refractive index of the core, the structure of the fibre

also contributes to the dispersion by reducing the effective refractive index. This is referred

to as waveguide dispersion. However, this usually has negligible effects except around

zero-dispersion wavelength. Waveguide dispersion slightly increases the zero-dispersion

wavelength. Higher order dispersion, such as third-order dispersion parameter β3 should be

included for ultra-short pulses or near the zero-dispersion wavelength where β2 is small.

Dispersion is an important factor in optical fibre communication in both linear and nonlinear

regime. Chromatic dispersion causes the amount of information received in a period of time

to be limited due to the induced broadening of waveforms. For instance, this effect can be
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investigated simply by considering a single Gaussian pulse in linear scenario [98]. If a Gaussian

pulse with root-mean-square (RMS) value of initial temporal width of ∆T0 travels a distance

of L the received temporal width ∆TL is equal to [98]

∆T 2
L = ∆T 2

0 +

(
β2L

2∆T0

)2

.

It can be seen that ∆TL can be minimized by choosing ∆T0 =
√
|β2|L/2. The limit of bit rate

R can be estimated for on-off keying (OOK) modulation assuming 95% of the pulse remaining

in the bit slot TB = 1/R. The corresponding criterion would be 4∆TL < TB , and thus the

limitation on the bit rate R is expressed as [98]

4R
√
|β2|L < 1.

For example, the bit rate is limited to about 1 Gbps for a 1000 km fibre link with D =

16 ps/(km · nm) without any dispersion compensation or other limiting effect.

Different methods are used to compensate the effect of dispersion in optical fibre links.

Dispersion-shifted fibre was developed to eliminate the large amount of dispersion in

1550 nm in Standard Single Mode Fibre (SSMF). However, nonlinear effects are high

for dispersion-shifted fibres in such way that it was almost impossible to use WDM [2].

Dispersion compensating fibre was introduced in 1993 which consisted of segments of fibres

with positive and negative dispersions. This led to zero dispersion overall, but local dispersion

was high enough to mitigate the nonlinear effects. Dispersion effects can also be compensated

using digital signal processing which usually requires coherent detection. It should be noted

that dispersion is a linear effect and can be treated using relatively simple methods. However,

it is no longer straightforward to model and analyse the dispersion effects when nonlinearity is

not negligible, for instance, in advanced multi-level modulation formats.

2.1.4 Polarization mode dispersion

Even a single-mode fibre can support two degenerate modes in orthogonal polarization

directions. As long as the fibre cross section is a perfect circle, the field excited in any of the

orthogonal polarizations would not couple into the other mode [98]. During the manufacturing
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process or due to the environmental stress the fibre deviates from the ideal cylindrical

symmetry, and, consequently, the two orthogonal modes are no longer degenerate meaning

that the refractive index for the two polarization states, shown by nx and ny, are no longer

equal. This is called birefringence.

The parameter B = |nx − ny| is used for evaluating the strength of birefringence. The two

orthogonally polarized modes exchange their power periodically over the beat length LB =

2πc/ωB. An input signal with components in both polarizations broadens as it propagates

along the fibre due to different speeds of two polarization components. This phenomena is

called polarization-mode dispersion (PMD).

More importantly, in standard fibres, the birefringence randomly changes along the fibre

because of some random effects, such as anisotropic environmental stresses. Therefore, the

state of polarization changes randomly for a signal launched into the fibre, and a random

broadening effect is observed. The RMS value of time delay between two polarization

components ∆TP is used for identifying PMD in standard optical fibres, which can be related

to the PMD parameter DP as [99]

< (∆TP )2 >≡ DP

√
L,

The typical values of Dp are about a few tenth of ps/
√

km. Although the PMD-induced

brodening has a
√
L dependence, it becomes important in high data-rate optical

communication, where it can not be neglected compared to the broadening due to chromatic

dispersion.

2.1.5 Nonlinearity

Several nonlinear effects can be observed in an optical fibre due to the nonlinear response of

dielectric (i.e., silica glass) to intense electromagnetic fields. The specific geometry of the wave

guide also plays an important role in the significance of nonlinearity in optical fibres. The main

origin of nonlinear effects in the fibre is the dependence of refractive index to the intensity of

light, referred to as nonlinear refraction. The effective refractive index can be expressed as

ñ(ω,E) = n(ω) + n2|E|2,
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where n(ω) is the linear part of refractive index, E is the electromagnetic field, and n2 is

the nonlinear-index coefficient with typical value about 2.6 × 10−20 m2/W. In spite of the

fact that the nonlinear part of the refractive index is relatively small, the resulting nonlinear

effects cannot be neglected in modern long-haul optical fibre communication systems. The

nonlinearity parameter of the optical fibre is defined as

γ =
ω0n2

cAeff
,

where Aeff is the effective mode area of the fibre.

The dependence of the refractive index to optical intensity causes self-phase modulation

(SPM) and cross-phase modulation (XPM). These effects, which lead to phase shift in

time-domain and spectral broadening of the signal during propagating in the fibre, are widely

studied in the field of optical fibre communication [15, 98]. The SPM and XPM, originated

from intensity dependence of refractive index, are associated with the third-order nonlinear

susceptibility. The SPM is generated from the in-band signal contributions, while XPM

includes the nonlinear interference from out-of-band frequencies. Thus, the considered system

model (e.g., the available bandwidth) is critical in analysis of nonlinearity that determines the

included nonlinear contributions.

Another nonlinear effect also related to the third-order nonlinear susceptibility is called

four-wave mixing (FWM). A fourth frequency component is generated by FWM, when three

frequency components co-propagate in the fibre at the same time. Other nonlinear effects

include simulated Raman scattering and simulated Brillouin scattering. If peak power of

the signal is large enough, energy may be transferred to a new wavelength, and the energy

in the new wavelength may interact with the signal through XPM. All nonlinear effects

(except the simulated scattering effects), chromatic dispersion, and loss can be included in a

single evolution equation that is the main model for analysis of fibre channel. Such evolution

equation is introduced in the following subsection.
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2.1.6 Nonlinear Schrödinger equation

The propagation of signal through the fibre can be described by the nonlinear Schrödinger

equation (NLSE), which is widely used in the field of optical fibre communication and is tested

in several experiments [98]. The NLSE can be derived starting from Maxwell’s equation. The

detailed derivation of NLSE can be found in several books and research papers such as [98]

and [102]. Several major assumptions are needed in derivation of NLSE, which are presented

here:

• The optical field has a slowly varying envelope. This corresponds to the signal bandwidth

to be very small compared to the carrier frequency, or in other words, the envelope of

the wave varies slowly in time and space compared to the period or wavelength. This

is a valid assumption for pulses wider than 1 ps (calculated for carrier frequency 193.5

THz).

• Since nonlinearity is relatively small in silica glass, the nonlinear term is treated as a

small perturbation compared to the linear terms. Also, power is small enough so that

higher order nonlinearities, such as simulated scattering effects, can be ignored.

• It is assumed that PMD is negligible, and the initial field is polarized in one of

the orthogonal polarization modes. Therefore, NLSE in its scaler form is valid.

Unless polarization maintaining fibre are used, this assumption is generally not valid,

particularly for high speed communication and long length of standard optical fibre, in

which case coupled nonlinear Schrödinger equation should be used. This is discussed in

chapter 5.

For the slowly varying envelope Q ≡ Q(τ, l) at carrier frequency ω0, the NLSE can be

expressed as
∂Q

∂l
= −j β2

2

∂2Q

∂τ2
+ jγQ|Q|2 − α

2
Q (2.1)

where j ,
√
−1. In (2.1), a change of variable is used as τ = T −β1l for time T , which refers

to a moving frame with the pulse at the group velocity vg. The first term in the right hand side of

(2.1) represents the dominant form of chromatic dispersion. The NLSE with β2 < 0 is called

focusing or anomalous that is the case considered in this thesis, and defocusing or normal

case refers to β2 > 0. In the focusing regime, high frequency components of optical pulse
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travel faster than low-frequency components of the same pulse. Also, Silica fibre, which is

mainly used in telecommunication, has focusing dispersion in wavelength 1550 nm. Moreover,

soliton propagation is only possible in focusing case when the dispersion is compensated by

nonlinearity, and the pulse shape is preserved. The second term in the right hand side of (2.1)

is responsible for the nonlinearity, and the last term represents the fibre loss. Typical values

for the parameters of NLSE at 1550 nm are α = 0.046 km−1, β2 = 22 × 10−24 s2/km, and

γ = 1.27 W−1km−1 [24].

Despite applying the aforementioned assumptions, the NLSE explains the behaviour of most

of the optical fibre communication systems in typical data rate, fibre types, and transmission

modes. Since higher order dispersion and nonlinearity are not included in NLSE, in some

rare cases, modified version of the NLSE or entirely different modelling techniques may be

required.

2.1.7 Optical amplification

As stated earlier, optical fibre is a lossy medium. Thus, amplification is necessary, particularly

for long fibre links. Before commercialization of optical amplifiers, electrical amplification

was used in optoelectronic repeaters [99]. From 1995, after development of more complex

systems, such as WDM, optical amplifier became an indispensable part of fibre communication

links. Optical signal is amplified periodically over distances of tens of kilometres in a way that

enough optical power is available at the receiver for detection. There are two types of optical

amplification: lumped amplification commonly using Erbium-doped fibre amplifiers (EDFA)

and distributed amplification mainly using Raman amplifiers.

The optical amplification is realized through photon emission as a results of transition of matter

elements (e.g., erbium ions) from an exited energy estate to a lower energy state. The required

energy for simulation may come from an external source such as laser. As a result, the emitted

photons are identical in phase, frequency, and direction with the external photons. This is the

basic principle of optical amplification. However, photon emission may occur spontaneously

without any external simulation in random direction and phase. This spontaneous emission is

also amplified in the same way as the signal photons, and is regarded as a noise, called amplified
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spontaneous emission (ASE) noise. The NLSE with optical amplification is expressed as

∂Q

∂l
= −j β2

2

∂2Q

∂τ2
+ jγQ|Q|2 +

(
gA(l)− α

2

)
Q+N, (2.2)

where gA(l) is the gain coefficient, which depends on the type of amplification. The term

N ≡ N(l, τ) represents the ASE noise. As demonstrated in [103, 104], the ASE noise can be

modelled as a circularly symmetric Gaussian process, fully characterized by its autocorrelation

E{N(l, τ)N∗(l′, τ ′)} =
NASE

L
δ(l − l′)δ(τ − τ ′), (2.3)

where δ(·) is the Dirac delta function, and the power spectral density (PSD) after length L,

denoted by NASE, is determined based on the type of the amplification.

EDFA

A relatively short length of fibre (∼ 10 m) doped with an element, such as Erbium ions, can

serve as an amplifier if it is pumped at a suitable wavelength. Semiconductor lasers operating

at near 0.98 or 1.48 µm are used for pumping in EDFAs. Periodical lumped amplification is

performed by placing EDFAs at fibre spans of typically between 40 and 120 km (corresponding

to about 8 and 24 dB loss per span) [9]. The length of each span is determined by different

system parameters and requirements. The PSD of noise for a fibre length L consisted of NA

fibre spans is given by

NEDFA
ASE = NAhν0nsp(G− 1),

where G = eαlsp is the amplifier gain for fibre span lsp = L/NA. Parameters h and ν0

are respectively the Planck’s constant and the carrier frequency of the signal being amplified,

so that hν0 corresponds the average photon energy. Also, the parameter nsp ≤ 1 is the

spontaneous emission factor. Noise figure NF = 10 log10 (input SNR / output SNR) for

EDFAs is given by

NF = 2nsp(1−
1

G
) +

1

G
,

which shows that NF for EDFAs is generally larger than 3dB (NF≈ 3dB for nsp = 1 and

G >> 1).
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Raman amplifier

In distributed amplification, simulated Raman scatering in fibre itself is used for amplification.

Pump lasers are periodically placed along the link for power injection. Through several

fibre couplers, placed along the fibre link, the pump and signal beams with different carrier

frequencies are injected into the fibre. The energy is transferred from pump to the signal

through simulated Raman scattering process, which happens continuously along the fibre.

Raman amplifiers can provide better signal-to-noise ratio compared to EDFAs by maintaining

the signal power along the fibre [9]. The effective noise figure in a Raman amplifier, removing

the effect of passive fibre exp(−αL), can be less than 1 (negative in dB), which makes it

attractive for optical fibre communication [99]. Compared to the lumped amplification, in

which the fibre loss is compensated at the end of the fibre section, the distributed Raman

amplification compensates the loss during the transmission that results in less noise and

improved SNR. However, the deployment of Raman amplifiers in commercial optical fibre

communication systems is still in progress due to a few practical issues such as laser safety and

power handling of optical connectors [2].

Similar to EDFAs, spontaneous Raman scattering adds a noise to the amplified signal during

the amplification process. The PSD for Raman amplifiers can be obtained similar to EDFAs

using the limit lsp → 0 and is given by

NASE = αLhν0KT , (2.4)

where KT is the phonon occupancy factor approximately equal to 1.13 [9].

Considering ideal distributed amplification using Raman amplifiers allows assuming gA(l) =

α in (2.2). Such scenario is called ideal distributed amplification. Near ideal distributed

amplification is demonstrated by experiment in [105, 106]. The NLSE considering ideal

distributed amplification is given by

∂Q

∂l
= −j β2

2

∂2Q

∂τ2
+ jγQ|Q|2 +N(l, τ), (2.5)

where the PSD of noise N(l, τ) is given in (2.4).
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2.2 Nonlinear Fourier transform

In this section, the nonlinear Fourier transform (NFT) is introduced briefly as it is needed

throughout the thesis. More details can be found in numerous book and papers such as [24–27,

36, 100].

2.2.1 Brief History of inverse scattering method

The first documented observation of solitary waves was reported in 1834, when J. Scott Russell

followed the “the great wave of translation” along a canal in Edinburgh, Scotland [107]. He

described his observation as:

“I was observing the motion of a boat which was rapidly drawn along a narrow

channel by a pair of horses, when the boat suddenly stopped - not so the mass of

water in the channel which it had put in motion; it accumulated round the prow

of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled

forward with great velocity, assuming the form of a large solitary elevation, a

rounded, smooth and well-defined heap of water, which continued its course along

the channel apparently without change of form or diminution of speed. I followed

it on horseback, and overtook it still rolling on at a rate of some eight or nine miles

an hour, preserving its original figure some thirty feet long and a foot to a foot and

a half in height. Its height gradually diminished, and after a chase of one or two

miles I lost it in the windings of the channel. Such, in the month of August 1834,

was my first chance interview with that singular and beautiful phenomenon which

I have called the Wave of Translation”. [107]

The mathematical formulation of Russell’s observation, currently known as Korteweg-de Vries

(KdV) equation, was derived in 1871 [108,109]. More importantly, it was discovered that many

other physical phenomena, such as lattice dynamics of Fermi-Pasta-Ulam [110], can also be

modelled by the KdV equation [111]. Zabusky and Kruskal named the solitary wave solution

of KdV equation “soliton” which possessed a particle-like characteristic. Solitons could pass

through each other and retain their shape and velocity. After Zabusky and Kruskal’s work

until now, the term soliton refers to any nonlinear wave which retains its initial shape after
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an arbitrary local disturbance [36]. Searching for a method for solving KdV equation led to

discovering interesting mathematical theory by Gardner, Greene, Kruskal and Miura [32, 33],

which later led to the NFT.

The KdV equation is expressed as

∂q

∂z
= q

∂q

∂t
+
∂3q

∂t3
, (2.6)

for a real-valued pulse q ≡ q(t, z) as a function of time t and distance z. Gardner, Greene,

Kruskal and Miura found that the solution of (2.6), fits as the external potential term for linear

Schrödinger equation

i
∂u

∂z
=
∂2u

∂t2
+ qu, (2.7)

provided that the eigenvalues of the linear Schrödinger operator remain constant respect to z.

This observation can be regarded as a linearization method for a nonlinear partial differential

equation (PDE) such as KdV.

It was not clear whether or not such method, which perfectly worked for KdV, can be applied

to any other PDE. In a remarkable work by Lax [112], it was mathematically proved that

integrable nonlinear PDEs can be related to some linear operators (Lax pair) with invariant

eigenvalue. If Lax pair for a nonlinear PDE are found by satisfying the compatibility condition

between the linear operators, that nonlinear PDE can be solved in a way similar to the KdV

equation [33]. However, the problem was that one should mainly guess Lax pair for a certain

nonlinear PDE. In 1972, Zakharov and Shabat found Lax pair associated with the NLSE,

and subsequently provided a mathematical technique for solving it. Manakov extended the

approach to a pair of coupled NLSE [113]. It should be noted that, apart from nonlinear optical

fibre, NLSE may appear in several other fields [100], such as deep water waves [114], plasma

physics [115], magneto-static spin [116], and other nonlinear media [117]. Ablowitz, Kaup,

Newell and Segur developed similar method for integrable PDEs, and called the more general

method inverse scattering transform (IST) [37, 118]. As mentioned in [36, 100] by Ablowitz

et al., the IST can be regarded as a nonlinear version of Fourier transform or in other words

nonlinear Fourier transform.

The NFT framework provides the opportunity to solve the evolution of an initial value
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according to an integrable nonlinear PDE in the nonlinear spectral domain (sometimes

referred as nonlinear frequency domain). Recall that the linear spectrum is defined by ordinary

Fourier transform. In contrast, the nonlinear spectra or the scattering data are found by NFT,

for which all the nonlinearity and dispersion turn into a simple exponential term in nonlinear

spectral domain. Thus, the solution of a nonlinear evolution equation (e.g., NLSE), having the

initial value, can be found following the IST by three steps:

• The forward transform: Evaluation of the scattering data, which are independent of time,

from the given initial value (e.g., input optical signal).

• The evolution: Transmission of the scattering data in their corresponding domain (i.e.,

nonlinear frequency domain) according to simple solvable evolution equations.

• The inverse transform: Evaluation of the evolved time-domain solution based on the

evolved scattering data.

2.2.2 Evolution equation and Lax pair

The NLSE (2.5), governing the propagation of the complex envelop of optical wave in the fibre,

can be normalized as

j
∂q(t, z)

∂z
=
∂2q(t, z)

∂t2
+ 2|q(t, z)|2q(t, z) + n(t, z), (2.8)

by normalization rules

q =
√
γLDQ, z =

l

2LD
, t =

τ

T0
, (2.9)

where LD = T 2
0 /|β2|, and the normalizing parameters T0 can be chosen independent of other

parameters. For isolated pulses, T0 and LD indicate the pulse width in time domain and

dispersion length. For more complex signal shapes, these normalization parameters do not

correspond to the same physical attributes, but they can be modified to control the physical

characteristics of the system such as bandwidth, temporal duration, or induced dispersion.

Therefore, the autocorrelation of the normalized noise can be described as

E[n(t, z)n∗(t′, z′)] = σ2δ(t− t′)δ(z − z′), (2.10)

26



Chapter 2. Background

where based on (2.9)

σ2 =
NASE

L

2γL2
D

T0
. (2.11)

In the noise-free scenario (n ≡ 0 in (2.8)), an evolution equation, basically a nonlinear PDE,

can be defined as
∂q(t, z)

∂z
= K(q), (2.12)

where K(q) depends on q and its temporal derivatives respect to t.

Based on Lax formulation, a linear eigenvalue problem and another associated linear problem

should be found for a nonlinear evolution equation, such as (2.12), so that IST can be applied.

The eigenvalue problem is defined for the operator L ≡ L(z), a square matrix dependent to z,

as

Lv = λv, (2.13)

which can be solved to determine the eigenfunctions that depend on the spectral parameter λ

(eigenvalue) and temporal parameter t. The eigenvalues of the linear operator L(z) are invariant

during the evolution in z, and such a linear operator is called isospectral. Scattering data are

then evaluated using the eigenfunctions

v(t, λ) =

v1(t, λ)

v2(t, λ)

 .

The evolution of the scattering data is determined by a second linear problem defined for

operator M as
dv

dz
= Mv. (2.14)

Taking the derivative of (2.13), using dλ/dz = 0, and substituting in (2.14), the compatibility

condition for diagonalizable operator L and some operator M is determined as

dL

dz
= [M,L], (2.15)

where [M,L] , ML− LM is the commutator bracket. The equation (2.15) can be used to

construct a nonlinear evolution equation as in (2.12). Once the linear problems (2.13) and
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(2.14) are found the IST can be used for solving the nonlinear evolution equation. For instance,

the KdV equation (2.6), can be constructed by

L = D2 + q

M =
3

2
D3 +

1

2
(Dq + qD),

whereD = ∂/∂t is the temporal derivative operator. The Lax pair for NLSE are given by [115]

L = j

 D q

−q∗ −D

 , (2.16a)

M =

2jλ2 − j|q|2 −2λq − jqt

2λq∗ − jqt −2jλ2 + j|q|2

 . (2.16b)

2.2.3 (Forward) nonlinear Fourier transform

The Zakharov-Shabat eigenvalue problem is derived by differentiating both sides of (2.13) as

∂v(t, λ)

∂t
=

 −jλ q(t, z)

−q∗(t, z) jλ

v(t, λ), (2.17)

which in some references is refereed to as AKNS (Ablowitz, Kaup, Newell, and Segur) or

ZS/AKNS eigenvalue problem. It should be noted that the equality ∂2v/∂t∂z = ∂2v/∂z∂t

leads to the evolution equation (2.12) for q. We assume that q → 0 rapidly as |t| → ∞, and

q ∈ L1(R). Thus, the integral

Q(x) =

x∫
−∞

|q(y)|dy

exists, and also, the Neumann series of the Volterra integral equations converge in the upper

half complex plan ={λ} > 0 [36].

The NFT is defined based on (2.17), and the evolution of the scattering data is derived using

(2.14). There are infinite number of solutions to (2.17) for λ ∈ C associated with all possible

boundary constitutions. Considering the vanishing boundary condition q → 0 rapidly as t →
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±∞, the problem (2.17) reduces to

∂v(t, λ)

∂t
=

−jλ 0

0 jλ

v(t, λ),

for large t. Thus, the boundary conditions of the eigenfunctions, solutions of above equation,

are defined as

ψ∞ =

1

0

 e−jλt, ψ̃∞ =

 0

−1

 e+jλt, as t→ −∞, (2.18)

φ∞ =

0

1

 e+jλt, φ̃∞ =

1

0

 e−jλt, as t→ +∞, (2.19)

where ψ(t, λ) = (ψ1(t, λ), ψ2(t, λ))T and φ(t, λ) = (φ1(t, λ), φ2(t, λ))T are the solutions

for all t ∈ R. Assume v(t, λ) and u(t, λ) (both 2 × 1 vectors) be two solutions of (2.17), the

Wronskian of u and v defined as

W (u,v) = u1v2 − u2v1,

is constant and independent of t. If W (u,v) 6= 0, then v and u are linearly independent and

form a basis of the subspace formed by all solutions. For the boundary values (2.18) and (2.19),

we have

W (ψ∞, ψ̃∞) = 1, W (φ∞, φ̃∞) = −1,

and thus we can write

ψ(t, λ) = a(λ)φ̃(t, λ) + b(λ)φ(t, λ), (2.20a)

φ̃(t, λ) = b∗(λ∗)φ̃(t, λ)− a∗(λ∗)φ(t, λ), (2.20b)

where a(λ) = W (ψ(t, λ),φ(t, λ)) and b(λ) = −W (ψ(t, λ), φ̃(t, λ)) are called nonlinear

Fourier coefficients. Since q ∈ L1(R) (i.e., absolutely integrable) a(λ) is analytical in the

upper half of complex plane. Also, for analyticity of a(λ) on real axis ={λ} = 0, it is needed

that

|q(t, 0)| ≤ c1e
−2c2|t|,
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for sum constants c1 and c2 > 0. Then, a(λ) is analytical for ={λ} > −c2.

The Zakharov-Shabat eigenvalue problem has two types of spectra (i.e., scattering data). For

sufficiently large values of |q|, (2.17) may have discrete eigenvalues in upper half complex

plane C+, which are zeros of a(λ). The discrete eigenvalues are shown by λm ∈ C+ for

m = 1, 2, · · · ,M , where M is the number of eigenvalues. For discrete eigenvalues, (2.20a)

leads to ψ = b(λm)φ, and the ratio

Cm =
b(λm)

a′(λm)
, (2.21)

is referred to as norming constants. Here, a′(λm) is the derivative with respect to λ at λ = λm.

The continuous spectrum is defined on the real axis λ ∈ R as

ρ(λ) =
b(λ)

a(λ)
, (2.22)

where the spectral coefficients are given by

a(λ) = lim
t→∞

ψ1(t, λ)ejλt, (2.23a)

b(λ) = lim
t→∞

ψ2(t, λ)e−jλt. (2.23b)

Note that discrete eigenvalues can only happen for the focusing case considered in this thesis.

In order to have an estimation on the condition for which the eigenvalues emerge, one can use

the asymptotic expansion of the scattering coefficients. Without presenting the details, it can

be shown that [36]

|a(λ)− 1| ≤ I0(2Q0(∞))− 1,

where I0(·) is the modified Bessel function of the first kind. Thus, ifQ2
0(∞) < 0.817 there are

no discrete eigenvalues (i.e., zeros of a(λ)).

The scattering data, needed for IST application, are {ρ(λ), {λm}Mm=1, {Cm}Mm=1} for i =

1, · · · ,M which are defined in the so-called nonlinear spectral domain. In this thesis the

term nonlinear frequency refers to λ for the continuous spectrum. When the scattering data

are available the evolution in the nonlinear spectral domain can be derived using the linear
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evolution equation (2.14).

2.2.4 Evolution of scattering data

For t→ ±∞, the equation (2.14) with M defined in (2.16b) reduces to

∂v(t, λ)

∂z
=

2jλ2 0

0 −2jλ2

v (2.24)

because |q| → 0 for large t. The solutions of (2.24) are not compatible with the boundary

conditions (2.18) and (2.19) because the equation (2.14) does not allow fixed boundary

conditions. Therefore, distance dependent eigenfunctions should be defined. For instance,

Ψ = ψe2jλ2 should satisfy (2.14), which results in

∂zψ =

2jλ2 − j|q|2 − 2jλ2 −2λq − jqt

2λq∗ − jqt −2jλ2 + j|q|2 − 2jλ2

ψ.
Using (2.20a) for t→∞ leads to

a(λ, z) = a(λ, 0), (2.25a)

b(λ, z) = e−4jλ2zb(λ, 0). (2.25b)

which clearly show that eigenvalues (i.e., zeros of a(λ)) remain unchanged during the

evolution. The evolution equation for continuous spectrum and norming constants are then

expressed by

ρ(λ, z) = e−4jλ2zρ(λ, 0), (2.26)

Cm(z) = e−4jλ2mzCm(0). (2.27)

Infinite number of conserved quantities also exist for any set equations solvable by

Zakharov-Shabat problem (2.17), such as NLSE [36]. In fact, the existence of conserved

quantities originates from the fact that a(λ), is time independent. It is shown in [36] that

the nonlinear evolution equations with time independent a(λ) are completely integrable
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Hamiltonian systems. The trace formula is given by [119]

log a(λ) =

+∞∑
n=0

Γn
(2jλ)n+1

,

where

Γn =

M∑
m=1

[
(2jλ∗m)n+1 − (2jλm)n+1

n+ 1

]
− 1

π

∫ +∞

−∞
(2jζ)n log

(
1 + |ρ(ζ)|2

)
dζ.

Also the conservation law can be derived using [34]

Γn =

∫ +∞

−∞
γn(x)dx,

where

γ0 = −|q|2,

γ − 1 = qq∗t ,

γn+1 = q

(
γn
q

)
t

+
n−1∑
k=1

γkγn−k, n ≥ 2.

The equivalent of Parseval equation for ordinary Fourier transform is derived for n = 0 as

∫ +∞

−∞
|q(t)|2dt =

1

π

∫ +∞

−∞
log
(
1 + |ρ(λ)|2

)
dλ+ 4

M∑
m=1

=(λm).

2.2.5 Inverse nonlinear Fourier transform

The inverse nonlinear Fourier transform (INFT) includes finding the time domain signal q(t, z)

from the scattering data. The eigenfunctions φ and φ̃ can be represented as [36]

φ =

0

1

 ejλt +

∞∫
t

K(t, s)ejλsds (2.28a)

φ̃ =

0

1

 e−jλt +

∞∫
t

K̃(t, s)e−jλsds, (2.28b)
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where K and K̃ are the kernel 2 × 1 vectors independent of λ. The integral terms in (2.28)

determine the eigenfunctions based on the boundary values at t =∞. In [36], it was proved that

the solution for K and K̃ exist and are unique by substituting (2.28) in the Zakharov-Shabat

problem (2.17) satisfying the necessary and sufficient conditions

(∂x − ∂s)K1(x, s)− q(x)K2(x, s) = 0,

(∂x + ∂s)K2(x, s) + q∗(x)K1(x, s) = 0,

subject to boundary conditions

K1(x, x) = −q(x)/2, (2.29a)

lim
s→∞

K2(x, s) = 0. (2.29b)

The Gelfand-Levitan-Marchenko (GLM) integral equations can be derived as follows [120,

121]. Substituting (2.28) in (2.20a) divided by a(λ), we have

ψ

a
=

1

0

 e−jλt +

∞∫
t

K̃(x, s)e−jλsds+ ρ(λ)

0

1

 ejλt +

∞∫
t

K(x, s)ejλsds

 . (2.30)

Assume contour C in complex plane starting from λ = −∞ + j0+ and ending at λ =

+∞ + j0+, which does not contain zeros of a(λ). Then, by multiplying (2.30) in ejλy/2π

and integrating respect to λ on contour C for y > x, we have

K̃(x, y) +

0

1

F ∗(x+ y) +

∞∫
x

K(x, s)F (s+ y)ds = 0 (2.31)

where

F (x) =
1

2π

∞∫
−∞

ρ(λ)ejλxdλ− j
M∑
m=1

Cme
jλmx. (2.32)

The zero on the right side of (2.32) is obtained from the fact that ψejλx is analytical in C+, and

the contour C does not contain any zero of a(λ). Note that

K̃(x, y) =

 K∗2 (x, y)

−K∗1 (x, y)

 ,
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and thus the GLM equations (2.31) can be rewritten as

K1(x, y)− F ∗(x+ y) +

∞∫
x

∞∫
x

K1(x, s)F (s+ s′)F ∗(s+ y)dsds′ = 0. (2.33)

Finally, using (2.29), it is concluded that

q(t) = −2K1(t, t). (2.34)

In [122], it was shown that the NFT tends to ordinary Fourier transform for small amplitudes

of q. This can be easily confirmed using (2.31) when F → εF for ε << 1. Another method

can also be used for evaluating q(t, z) from the scattering data [123]. Such method, which

originates from quantum mechanics, is based on Riemman-Hilbert factorization problem in

complex analysis [124]. In this thesis, we only use the GLM approach because it is more

tractable through numerical methods.

2.2.6 Data transmission using nonlinear Fourier transform

The NFT transforms the time domain optical signal into scattering data consist of discrete

and continuous spectra which evolve linearly along the fibre in nonlinear spectral domain. It

is therefore natural to map the data on the scattering data in nonlinear spectral domain, and

the input of the communication channel would be X = {ρ(λ, 0), {Cm(0)}Mm=1, {λm}Mm=1}.

Figure 2.2, schematically demonstrates the input data X for M = 7. It can be seen that

X contains a continuous waveform and several discrete points with positions according to

{λm}Mm=1 and amplitudes (norming constants) {Cm(0)}Mm=1. The physical optical signal

transfers through the fibre in time domain and is affected by nonlinear and dispersion effects.

However, the communication channel in nonlinear spectral domain is linear and expressed by

Y = X +N , where N is the transformed effective noise. Such approach has recently gained

attention in the field of long-haul optical fibre communication and is regarded as a potential

solution for the capacity crunch problem (refer to section 1.2 in chapter 1).

Figure 2.3 demonstrates a general NFT-based optical fibre communication system. The data is

directly encoded on CS and/or DS in the nonlinear spectral domain. Data is first converted to

34



Chapter 2. Background

Figure 2.2: Schematic demonstration of input data for NFT-based systems.

a sequence of digital symbols of a specific modulation format, such as quadrature amplitude

modulation (QAM), via serial to parallel conversion and constellation mapping. The sequence

of digital symbols associated to CS are then converted to an oversampled continuous waveform

using a pulse shaping filter (e.g., raised-cosine or sinc pulses). The pulse shaping is required to

make the symbols as close as possible while avoiding a high signal bandwidth and consequently

enhance the spectral efficiency. Note that since the integral equations of INFT are solved

digitally in practice, oversampling is essential for minimizing numerical errors. Then, INFT is

applied to the generated CS waveform along with the encoded DS to generate the signal in time

domain. The optical transmitter and receiver consist of all operations needed for launching the

signal into the fibre and detecting it as a digital signal, such as filtering and analogue/digital

conversion. As indicated before, SSMF and ideal distributed amplification are assumed. After

photo-detection at the receiver, NFT is performed, and the noisy outputs are obtained. The

linear dispersion removal is then performed based on equations (2.26) and (2.27), which allows

detection of data symbols.
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Figure 2.3: General block diagram of a NFT-based communication system.

The structure, shown in Fig. 2.3, is similar to an OFDM structure but using NFT instead

of Fourier transform. The NFT decomposes the signal propagating in the nonlinear optical

fibre channel to scattering data, which travel linearly in nonlinear frequency domain. This

makes the channel tractable. However, using ordinary Fourier transform does not lead to such

decomposition to linear channel, and the fibre channel in ordinary frequency domain is still

nonlinear and difficult to study. Therefore, NFT is regarded as a useful tool to study and

analyse the nonlinear optical fibre, and signalling in nonlinear frequency domain is expected to

lead to superior performance.

2.3 Numerical methods

In this section, numerical methods for implementation of NLSE, NFT, and INFT, which are

used in this thesis, are presented.

2.3.1 Split-step Fourier method

The NLSE (2.1) can be solved by numerical methods such as finite-difference or split-step

Fourier. The former is usually quite complex. The latter, however, is less complex and can be

modified for different scenarios. The NLSE (2.1) can be writen as

∂Q

∂l
=
(
D̂ + N̂

)
Q, (2.35)

where D̂ is the dispersion and loss operator defined as

D̂ = −j β2

2

∂2

∂τ2
− α

2
,
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and N̂ is the nonlinearity operator defined as

N̂ = jγ|Q|2.

The accurate solution of (2.35) for a small step (i.e., fibre length) of hss is given by

Q(τ, l + h) = exp
[
hss(D̂ + N̂)

]
Q(τ, l),

which may be approximated by

Q(τ, l + hss) ≈ exp(hssD̂) exp(hssN̂)Q(τ, l), (2.36)

by assuming that nonlinearity and dispersion affect the wave propagation separately. It is

assumed that first the nonlinearity operator ia applied, and an intermediate solution, only

applying the nonlinear operator, is given by

Qn(τ, l + hss) = ejhssγ|Q(τ,l)|2Q(τ, l). (2.37)

The dispersion operator is then applied in the frequency domain as

Q̃(ω, l + hss) = e+jhss
β2
2
ω2−hss α2 Q̃(ω, l), (2.38)

where Q̃(ω, l) is Fourier transform of Q(τ, l). Since the Fourier transform is performed by

fast algorithm (FFT), the split-step Fourier method is two orders of magnitude faster than

finite-difference [125]. The error using the split-step method (2.36) can be reduced by using

the symmetric method [126]

Q(τ, l+ hss) ≈ exp

(
hssD̂

2

)
exp

(
hss

N̂(l) + N̂(l + hss)

2

)
exp

(
hssD̂

2

)
Q(τ, l), (2.39)

in which the nonlinearity is applied in the middle of the step length. The choice of step size

hss is another factor which determines the induced error. Depending on the scenario, it can

be defined based on different criteria [127]. In this thesis, we use constant step size based on

the error observed on the continuous spectrum for noise-free case. The step size hss is chosen
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small enough so that the numerical error added by split-step method to the continuous spectrum

is negligible.

It should be noted that, for numerically implementing the noisy NLSE (2.5), the ASE noise is

added at the end of each step as a white Gaussian noise with PSD equal to NASEhss/L using

(2.4).

2.3.2 Numerical implementation of NFT

Several numerical methods can be used for implementation of NFT [25, 27, 77]. Here, the

so-called Ablowitz-Ladik discretization method is used [25]. The feature of this technique is

that it leads to discrete version on NLSE which is also integrable [128].

In the definition of the NFT, it is assumed that the |q(t)| is rapidly vanishing for large t. In

practice, it is assumed that q(t) = 0 outside the finite interval t1 ≤ t ≤ t2. Assuming that

the time interval is divided to NAL equidistant points with ε = (t2 − t1)/NAL, the eigenvalue

problem (2.17) can be discretized as

1

ε
(v[n+ 1]− v[n]) =

 −jλ q[n]

−q∗[n] jλ

v[k], n = 0, · · · , NAL,

where q[n] = q(t1 +nε). Considering e±jλε = 1± jλε, the eigenvalue problem can be written

as

v[n+ 1] =

 ejλε εq[n]

−εq∗[n] e−jλε

v[k], n = 0, · · · , NAL,

with the initial value determined based on (2.18) as

v[0] =

1

0

 e−jλt1 .

Then, the scattering coefficients are found based on the limit (2.23) as

a(λ) = v1[NAL]ejλt2

b(λ) = v2[NAL]e−jλt2
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It is clear that continuous spectrum can be simply found as ρ(λ) = b(λ)/a(λ). For calculation

of eigenvalues and norming constants, a(λ) is found using the method above with required

resolution of nonlinear frequency λ. Then, a′(λ) is estimated and zeros of a(λ) are found by

searching the finely gridded upper complex plane.

2.3.3 Numerical implementation of INFT

Here, a simple method is presented for numerical INFT calculation. Considering F (x) = 0 for

|x| ≥ A, the solution to the GLM equations (2.31) would be zero for x+y ≥ A. Therefore, the

integrals are needed to be solved in the area between x+ y ≤ A and y ≥ x. We may discretise

the GLM integral equations for a uniform grid on x-y plane. Assuming xi = A
2 − iĥ, i =

0, 1, 2, · · · , for each i there are 2i+ 1 points yij = xi+ jĥ, j = 0, 1, · · · , 2i, where ĥ denotes

the resolution which is equal for both dimensions x and y. The discretised GLM integral

equations, stated below, should be solved in order to determine K1(xi, xi).

K∗2 (xi, yj) + ĥ

i−j∑
n=−i

K1(xi,
A

2
+ nĥ)F (A+ (n− i+ j)ĥ) = 0, (2.40a)

K1(xi, yj)− ĥ
i−j∑
n=−i

K∗2 (xi,
A

2
+ nĥ)F ∗(A+ (n− i+ j)ĥ) = F ∗(xi + yj). (2.40b)

The GLM integral equations are then converted into the matrix form as

 I −Ri
∗

Ri I

K1

K∗
2

 =

F ∗
0

 , (2.41)

where considering fk = ĥF (A− kĥ), Ri can be expressed as

Ri =


f2i f2i−1 · · · f1 f0

f2i−1 f2i−2 · · · f0 0
...

f0 0 · · · 0 0

 , (2.42)

and F = 1
ĥ
{f2i f2i−1 · · · f1 f0}t.
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We need to find the first element ofK1 (i.e. K1(xi, xi)). To determineK1(x0, x0),K1(x1, x1),

· · · , K1(xN−1, xN−1), we need to solve N linear equations as in (2.41) with sizes 2 × 2, 6 ×

6, · · · , (4N − 2) × (4N − 2), respectively. These systems can be solved through different

methods, but symmetry in the elements of the matrix and the fact that we only need to find

the first element of the unknown vector K1 can be used to reduce the complexity of numerical

computations. Expanding (2.41), one can see that the particular arrangement of elements in the

matrix system (2.43) allows to find the first element of K1 for every i by performing only one

Gaussian elimination on the highest order system (i.e. (4N − 2)× (4N − 2)). Also, note that

half of the Gaussian elimination operations can be performed analytically, and consequently,

the rest of operations are carried out numerically for the equation (I + RR∗)K1 = F∗.

[
I −R∗

R I

]
=



1 · · · 0 0 0 f∗2N−2 f∗2N−3 f∗2N−4 · · · f∗0
...
0 · · · 1 0 0 f∗2 f∗1 f∗0 · · · 0
0 · · · 0 1 0 f∗1 f∗0 0 · · · 0
0 · · · 0 0 1 f∗0 0 0 · · · 0

f2N−2 · · · f2 f1 f0 1 0 0 · · · 0
f2N−3 · · · f1 f0 0 0 1 0 · · · 0
f2N−4 · · · f0 0 0 0 0 1 · · · 0

...
f0 · · · 0 0 0 0 0 0 · · · 1


(2.43)
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Capacity of signalling on the continuous

spectrum

In this chapter, a model is developed for the channel in nonlinear spectral domain when data

is mapped only on the continuous spectrum (CS). It is observed that the effective noise added

to the CS signal is dependent on the signal amplitude. The channel model of such NFT-based

optical fibre communication systems is studied based on the behaviour of the propagated optical

signal in time domain for an asymptotically long fibre length. The derived channel model is

validated using simulation for different scenarios of practical interest. A variance normalizing

transform is applied as a tool to obtain an estimate on the capacity of the underlying channel.

At the end, achievable data rates in bits per second are estimated by taking into account the

temporal dispersion and available bandwidth.

Providing an accurate noise model and estimating the capacity of NFT-based systems is an

important open problem. In [46], the noise in the CS channel was modelled using low order

perturbation theory and a lower bound of 10.7 bits per symbol for WDM Nyquist and OFDM

was derived using Pinsker estimation over 500 GHz bandwidth and 2,000 km fibre length.

Also, in [43], similar results were obtained for defocusing case using direct modulation and

sampling. Although, the general results obtained using novel approaches in this chapter agree

with previous works, the results in this chapter are significant because of more accurate analysis

of the communication system for practical scenarios, the obtained distinctive feature of the CS

channel, and the estimation of achievable data rates in bits per second.

For simplicity in notation, the dependence to distance is dropped and shown as subscript

wherever possible. For instance, q(t, L) may be represented by qL(t) for fibre length L.
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3.1 Communication system with signalling on CS

The block diagram of a typical NFT-based system with direct mapping of data on CS is

demonstrated in Figure 3.1. Here, we consider only CS, which correspond to the dispersive

radiation waves. In other words, {Cm(z)}Mm=1 and {λm}Mm=1, which correspond to solitonic

waves, are zero throughout this chapter. In Figure 3.1, D0 is the vector of K symbols, which

are derived from the binary data using a specific modulation format. The symbols in D0 are

then converted to an oversampled continuous waveform ρ0(λ) using a pulse shaping filter (e.g.,

raised-cosine or sinc pulses). Note that since the integral equations of INFT are solved digitally

in practice, oversampling is essential for minimizing numerical errors. Then, INFT is applied

to generate the time domain signal q0(t). The optical transmitter (Tx) and receiver (Rx) consist

of all operations needed for launching the signal into the fibre and detecting it as a digital signal,

such as (de)normalization in (2.9), optical filtering, and analogue/digital conversion. Standard

single mode fibre (SSMF) and ideal distributed amplification are assumed. At the receiver,

after NFT operation and removing the phase shift introduced according to (2.26), the noisy CS

signal ρ̃L(λ) is obtained, from which the data symbols can be recovered.

INFT Tx

S
S

M
F

D0 Q0(τ)

QL(τ)

Mapping

On CS

ρ0(λ) q0(t)

NFT Rx
DL

Sampling
qL(t)Equalizer 

eq. (2.27)

ρL(λ) ρL(λ)  

Figure 3.1: Block Diagram of a NFT-based system with direct mapping on CS.

3.2 Asymptotic analysis

In this section, asymptotic analysis of the noise in a NFT-based system with signalling on

CS is presented. Asymptotic here refers to long distances of fibre L → ∞. However,

the asymptotic solution may be valid for many practical scenarios as well. Specifically for

the signal only containing radiation and without soliton, the large dispersion can lead to the
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asymptotic solution even in practical cases.

3.2.1 Asymptotic solution of NLSE

For relatively long fibre length, it can be shown that signal can be expressed in a slow-varying

similarity solution form [36]

q(t, z) =
1√
z
A(t, z)ejzθ(t,z) (3.1)

A(t, z) = f

(
t

z

)
+

∞∑
n=1

n∑
k=0

(log z)k

zn
fn,k

(
t

z

)

θ(t, z) =
1

4

(
t

z

)2

+
∞∑
n=1

n∑
k=0

(log z)k

zn
θn,k

(
t

z

)
where

θ1,0 = g

θ1,1 = 2f2

f1,0 = fg
′′

+ 2g
′
f
′
+ 4f(2(f

′
)2 + ff

′′
)

f1,1 = 4f(3(f
′
)2 + ff

′′
)

where f( tz ) ≥ 0 and g( tz ) are real valued functions. For simplicity, terms ( tz ) are omitted in

above equations. The order of remaining terms would be O(( log z
z )2), so for large z higher

orders can be ignored without introducing significant error. It should be recalled that z =

L/2LD. Thus, asymptotic scenario (large z) can be satisfied for long fibre or high signal

bandwidth (small T0) or a combination of both.

There are different ways to find f( tz ) and g( tz ) in terms of spectra [36, 129, 130]. For the case

that DS is zero, the asymptotic solution for the NLSE can be related to the CS as follows:

f2(
t

z
) =

1

4π
log{1 + |ρ(

−t
4z

)|2}, (3.2)
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g(
t

z
) =− arg{ρ(

−t
4z

)}+
3π

4
− arg{Γ(1 + 2jf2(

t

z
))}

− 2 log 2f2(
t

z
)− 2

∞∫
t/z

log(y − t

z
)
∂f2(y)

∂y
dy

+ 2

t/z∫
−∞

log |y +
t

z
|∂f

2(y)

∂y
dy.

The equation (3.2) can be easily verified using the conserved quantities described in section

2.2.4. Therefore, the asymptotic temporal signal can be expressed in terms of ρ(·). Now by

only considering the leading factor in (3.2.1), we have

A(t, z) ≈ f
(
t

z

)
,

and therefore the amplitudes of temporal signal q(t, z) at length z can be expressed in terms of

amplitude of CS by

|q(t, z)|2 =
1

z
f2(

t

z
) =

1

4πz
log{1 + |ρ(

−t
4z

)|2} (3.3)

or inversely

|ρ(λ)|2 = e4πz|q(−4zλ,z)|2 − 1. (3.4)

Figure 3.21 compares the simulated amplitude of the temporal signal propagated over the fibre

at z = 10 with the corresponding signal predicted by the asymptotic equation in (3.3). We

first generate a CS continuous waveform by applying raised-cosine filtering to a sequence of

16 random symbols from the 16QAM constellation. By applying INFT on this CS signal, the

temporal signal is generated at the input of the fibre which occupies a bandwidth of W = 30

GHz measured based on 99% energy of the signal Q0(τ). It can be seen that the temporal

signal can be well approximated by asymptotic equation (3.3) while increasing z would

further reduces the error. Note that inverse scattering implies that this asymptotic solution for

propagation over optical fibre can be also used to describe the behaviour of nonlinear Fourier

transform at the end of the fibre.
1The parameters in the figure are the normalized parameters and are unit-less.
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Figure 3.2: Accuracy of the asymptotic formula for temporal signal in (3.3) at z = 10 where t is the
normalized time defined in (2.9) for T0 = 0.05 ns.

3.2.2 Channel statistics based on the asymptotic analysis

The nonlinear Fourier transform allows us to describe nonlinear optical fibre channels in a

linear form based on signalling over the nonlinear spectrum. For CS, this linear channel model

is give by

ρ̃L(λ) = ρ0(λ) + ηL(λ), (3.5)

where

ρ̃L(λ) = ρL(λ) exp(4jλ2L/2LD)

refers to noisy CS signal after phase shift removal according to (2.26), and ηL(λ) is the noise.

It can be shown that the noise is zero-mean, i.e., E{ρ̃L(λ)} = ρ0(λ). This can be done readily

by considering that E{n(t, z)} = 0 in the normalized NLSE (2.8) and taking an ensemble

average from the Zakharov-Shabat eigenvalue problem (2.17) which are basically two coupled

differential equations.

In order to obtain the second order statistics of the noise in CS domain, we use the asymptotic

solution introduced in previous subsection to describe NFT at the end of the fibre. Note that
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the term ”asymptotic” refers to the long fibre length L, at which the signal is significantly

dispersed. In asymptomatically long fibre lengths, the signal amplitude is largely reduced due

the dispersion. Thus, nonlinear signal-noise interactions would not be significant after the

signal is propagated along the fibre for lengths larger than dispersion length. Here, we assume

qL(t) = qNF(t) + nL(t) resemble the propagated signal in time at the end of fibre where

nL(t) = nrL(t) + jniL(t) is the noise at the end of fibre, and qNF(t) = qrNF(t) + jqiNF(t)

is the signal when noise is absent. Note that the noise nL(t) includes the ASE noise and its

interactions with signal at the initial distances of signal propagation. A simple simulation is

performed to demonstrate that included assumptions are acceptable. Figure 3.3a shows signals

at L = 3000 km or z = 78 with and without noise for a complex Gaussian input pulse, and

the probability distribution of noise on the real part of the signal (similar results for imaginary

part) as well as its Gaussian fit are demonstrated in Figure 3.3b. It is observed that the signal at

this length can be regarded as the noise-free signal plus a noise which happens be to very close

to Gaussian.

-200 -100 0 100 200
t

0

0.002

0.004

0.006

0.008

0.01

0.012

A
m

pl
itu

de

(a)

-0.01 -0.005 0 0.005 0.01
Noise 

0

0.05

0.1

P
D

F

(b)

Figure 3.3: (a) Received signal with and without noise at an asymptotically long fibre length L = 3000
km or z = 78. (b) PDF of noise on the real part (or imaginary part) of the signal in the time domain.

Using (3.4), the intensity of CS signal after applying NFT can be expressed as

|ρ̃L(λ)|2 = e4πz|qNF(t)+nL(t)|2 − 1. (3.6)
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Accordingly, the second moment of the noise in CS can be written as

E{|ηL|2} = E{|ρ̃|2} − |ρ0|2 (3.7)

= e4πz|qNF|2
(
E{e4πz((nrL)2+(niL)2+2qrNFn

r
L+2qiNFn

i
L)} − 1

)
.

Here, for simplicity, the dependence on λ and time is omitted and qNF = qNF(t). Assuming

circularly symmetric Gaussian noise nL ∼ N (0, σ2
0) at the end of fibre, the part corresponding

to the real noise in time can be described as

E{e4πz((nrL)2+2qrNFn
r
L)} =

e
(4πzqrNF)2

cρ√
πσ2

0

∞∫
−∞

e−cρt
2
dt,

where cρ = 1
σ2
0
− 4πz. For practical ranges of fibre-optic channel parameters, the parameter cρ

remains positive1 for which we have

E
{
e4πz((nrL)2+2qrNFn

r
L)
}

=
1√
cρσ2

0

e
(4πzqrNF)2

cρ . (3.8)

Similar derivations can be made for imaginary part of (3.7) and thus, the noise variance in CS

can be asymptotically calculated as

E{|ηL|2} = e4πz|qNF|2

e |4πzqNF|
2

cρ

cρσ2
0

− 1


=
(
|ρ0|2 + 1

)(|ρ0|2 + 1
) 4πz
cρ

cρσ2
0

− 1

 .

(3.9)

The random variable X = |qNF + nL|2/σ2
0 has a noncentral Chi-squared distribution with non

centrality parameter ζ = |qNF|2/σ2
0 and two degrees of freedom. Thus, the probability density

function (PDF) of amplitude of CS as a random variable Y =
√
e4πzσ2

0X − 1 can be calculated

as
1The normalized noise power at the end of the fibre can be expressed as σ2

0 = αhνsKT γLDLW where W
is the linear signal bandwidth. Then, the criteria for positive c can be obtained as W < 1/(2παhνsKT γL

2). For
example, for the parameters used in this paper and L = 3000 km we should have W < 2 THz.
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fY (y) =
2y

4πzσ2
0(1 + y2)

fX

(
1

4πzσ2
0

log(1 + y2)

)
=

ye−ζ/2

4πzσ2
0(1 + y2)1+1/8πzσ2

0

I0

(√
ζ

4πzσ2
0

log(1 + y2)

)

where I0(x) is the modified Bessel function of the first kind. It should be noted that the

noncentrality parameter can be related to the input CS as

ζ =
1

4πzσ2
0

log
(
1 + |ρ0|2

)
The PDFs for different amplitudes of CS (|ρ0|) are depicted in Figure 3.4 for 4πzσ2

0 = 0.5. It

can be seen that the PDF depends on the signal amplitude |ρ0|, and the variance increase for

higher amplitudes.
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Figure 3.4: PDF of noise in CS channel for asymptotic scenario for different amplitudes of CS and
4πzσ2

0 = 0.5.

It can be seen from (3.9) that the noise variance depends on the signal amplitude |ρ0|, and the

order of dependence is 2 + 8πz/cρ which is larger than two. In the following sections, it will

be demonstrated that this characteristic plays an important role in determining the capacity of
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the channel. We also expect that the probability density function of noise not to be normal in

practical case similar to the asymptotic PDF found above. In the next section, the behaviour

of the CS channel will be studied numerically and these main characteristics (i.e. signal

dependency of noise, order of dependence larger than 2, and non-Gaussian distribution) are

verified even at not necessarily asymptotic regimes.

3.3 Numerical study of noise

In this section, simulation results are presented to study the characteristics of noise in CS. Only

the effect of ASE noise as a result of amplification and its interaction with signal during the

propagation along the fibre is considered here. It is essential to minimize the numerical error

in NFT and INFT calculation as well as split-step Fourier method for fibre propagation, so

that only noise remains as the source of distortion. This would increase the computational

complexity, and since large number of samples are needed for estimating the noise statistics,

the simulations would be highly time consuming. To overcome this problem, the simulations

were all performed using more than 500 CPUs available for parallel computing at the Institute

for Digital Communication at the University of Edinburgh without which the time needed for

these simulations would have been escalated.

It should be noted that the complexity of numerical methods increases when the input power

increases as observed in [42]. For a larger signal amplitude of CS a higher time resolution

is needed for INFT in order to achieve the same error as for smaller amplitudes of signal.

Therefore, it is essential to adaptively increase complexity for noise analysis to keep the

numerical errors constant and below a desired value. However, downsampling is performed

after calculation of q0(t) for launching the signal into the fibre which will not affect the

numerical errors in the next steps.

In order to obtain the noise statistics, several streams of random symbols in various nonlinear

frequencies λ with different noise realizations were analysed, truncated sinc pulses were

utilized for pulse shaping, and T0 = 0.1 ns was chosen. A signal was generated using

32 random complex symbols with the aforementioned pulse shaping and the required

oversampling. It was transmitted through the fibre channel 20000 times for different noise

realizations. Over all about 1.6 × 107 random samples were used. Split-step Fourier method

49



Chapter 3. Capacity of signalling on the continuous spectrum

was used for propagation of signal along the fibre, and ASE noise was added in each step.

After NFT, the noise samples were first extracted and then their statistic were calculated. Note,

however, that although the main features of the asymptotic channel model described in section

3.2.2 are verified here at non-asymptotic ranges of z, we do not expect that the numerical

values match accurately.

The dependence of noise variance on the amplitude of signal in CS is shown in Figure 3.5. In

order to plot this figure, several combination of real and imaginary signals are considered for

each amplitude, resulting in the same noise statistics for all of them. It can be seen in Figure

3.5 that the variance of noise drastically increases for longer fibres. The Simulation results also

show that the variance of noise has a dependency to signal amplitude with an order larger than

two if the variance is approximated by a polynomial. For example, in Figure 3.5, the orders

of dependence for different fibre lengths are about 4. This result numerically confirms that the

asymptotic statistical behaviour of the noise in CS as shown in equation (3.9) is even true for

these lower values of z which correspond to some practical scenarios.
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Figure 3.5: Variance of noise E{|ηL|2} for different signal amplitudes |ρ0|.

In Figure 3.6, the PDF of the received signal amplitude in CS is demonstrated. Many noise
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samples are extracted at different nonlinear frequencies for which ρ0(λ) = 1, 2, or 3. As

expected, it can be seen that the distribution is not normal, and moreover the variance is

increasing for higher values of input signal.
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Figure 3.6: PDFs of received noisy CS for different input signal ρ0(λ) = 1, 2, 3 from left to right.

Note that the asymptotic model described in section 3.2 does not deliver explicit information

about the noise on real and imaginary parts of CS. Here, we introduce additional variables in

order to investigate the behaviour of the noise for real and imaginary parts of CS.

ρ̃L(λ) = ρ̃rL(λ) + jρ̃iL(λ), ρ̃rL(λ), ρ̃iL(λ) ∈ R,

ηL(λ) = ηrL(λ) + jηiL(λ), ηrL(λ), ηiL(λ) ∈ R,

Furthermore, the conditional noise variance of real and imaginary parts of CS are defined below

to demonstrate the dependency between real and imaginary parts.

σ2
ry(x) = E{|ηrL(λ)|2|ρr0(λ) = x, ρi0(λ) = y},

σ2
iy(x) = E{|ηiL(λ)|2|ρi0(λ) = x, ρr0(λ) = y}.
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As depicted in Figure 3.7, the simulation results of the conditional variances, σ2
r1(x) and

σ2
r2(x), show that the noise on real and imaginary parts of signal are dependent. Hence, real

and imaginary channels on CS cannot be considered as independent channels, but nonetheless,

these two channels have identical noise behaviour. This is concluded from the fact that

σ2
ry(x) = σ2

iy(x) as demonstrated in Figure 3.7. The dependence of real and imaginary parts

of signal means that the capacity estimation cannot be performed independently in real and

imaginary channels. Even if it is considered that information is mapped on the amplitude and

phase of the signal, it can be easily demonstrated that the noise on both quantities depend

of the signal amplitude. Therefore, the capacity estimation here is not straightforward. It

should be emphasized that despite dependence of real and imaginary channels, the variance

of noise E{|ηL(λ)|2} perfectly depends only on the amplitude of signal |ρ0(λ)| as shown in

Figure 3.5. Therefore, it can be concluded that if signalling is only performed on the real

channel (ρi0(λ) = 0), the variance of the real noise would be perfectly dependent on the signal

amplitude.
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Figure 3.7: Dependence of variance of noise in real (imaginary) channel on the amplitude of signal in
imaginary (real) channel.

It should be noted that the dependence of real and imaginary parts of the noise is
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comprehensively studied using perturbation theory in [131]. It is specifically shown that,

in asymptotic regime, the variance of real and imaginary parts of the noise are equal

E{|ηrL(λ)|2} = E{|ηiL(λ)|2} and depend on the signal amplitude. It is also demonstrated

that the correlation E{ηrL(λ)ηiL(λ)} is non-zero and dependent to the amplitude. The results

of [131] confirm the observations from the simulations presented in this section.

3.4 Capacity problem

In this section, the capacity of the CS channel is investigated based on the channel model

introduced in the last section and using a variance normalizing transform, which will be defined

next.

3.4.1 Variance Normalizing transform

In this section, a variance normalizing transform (VNT) is introduced that can be applied to

any random variable with a variance that is a function of its mean to generate an approximately

Gaussian random variable with a variance independent of its mean [132–134]. VNT can

be essentially used to convert an additive (possibly non-Gaussian) noise channel with

signal-dependent noise to a conventional additive Gaussian noise channel where signal and

noise are independent [132–134]. In effect, the conventional coding and signal processing

techniques would be sufficient for efficient communication over the transformed channel. Shot

noise is an example of a signal-dependent noise and VNT has been recently used for efficient

signalling and capacity approximation over shot-noise-limited channels [135, 136].

The variance normalizing transform that normalizes the random variable W , with mean µW

and variance

σ2
W = f2(µW ), (3.10)

is defined as [132]

T (s) =

∫
1

f(s)
ds. (3.11)

The normalized (i.e., transformed) random variable Y = T (W ) has then the statistics of σ2
Y '
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1 and µY ' T (µW ) for sufficiently large values of µW . This arises from the fact that

σ2
Y = E{|Y − µY |2} = E{

[
T (µW + T ′(µW )(W − µW )

]2} − T 2(µW ), (3.12)

where the Taylor series expansion is used as

T (W ) ' T (µW ) + T ′(µW )(W − µW ),

which indicates that µY ' T (µW ). Thus, by applying the VNT (3.11) to (3.12), we have

σ2
Y =

[
T ′(µW )

]2
σ2
W =

[
T ′(µW )

]2
f2(µW ) = 1.

For instance, if W has Poisson distribution with parameter µW , the VNT can be defined as

T (s) =
√
s+ c for an arbitrary constant c at s ≥ −c. This transform is called square

root transformation [133, 135]. The distribution of random variable Y for µW → ∞ tends

to Gaussian distribution with mean
√
µW + c and variance 1/4 [133]. In [134], it was also

shown that the probability distribution of the normalized random variable tends to Gaussian

distribution for a family of originally non-Gaussian probability distribution.

It is obvious from (3.11) that the VNT exists for any well-behaving finite and positive function

f . Thus, the VNT T exists and is injective. Also, inverse function T−1 exists that is an

important factor in definition of communication channel based on VNT. Based on (3.11), the

VNT is always a positive, but it can be a linear or nonlinear function.

Let random variable W be the output of a channel where the signal S = µW is corrupted by a

zero-mean signal dependent noise N with variance as in (3.10). Applying VNT as defined in

(3.11) to the noisy signal W = S +N (i.e., E{W} = S), we will have

Y = T (W ) = T (S +N) ' T (S) +NT ,

where NT is a zero mean Gaussian noise with unit variance independent of the transformed

signal T (S). Consequently, a communication channel can be defined as shown in Figure 3.8,

in which the signal is originally generated in a transformed domain and then mapped into
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Figure 3.8: Transforming the communication channel with signal-dependent noise to an AWGN
channel using VNT.

the original signal domain S using inverse VNT. After transmission through the channel and

addition of signal-dependent noise N , VNT is applied, and the output signal can be expressed

as

Y = X +NT . (3.13)

which defines a conventional additive white Gaussian noise (AWGN) channel. The following

lemma shows that the capacity of this transformed channel is equal to the capacity of the

original channel W = S +N with signal-dependent noise.

Lemma 1. I(X;Y ) = I(S;W ) for the communication system in Figure 3.8.

Proof. For the communication system in Figure 3.8 we have the Markov chain X ↔ S ↔

W . Thus, based on the data processing inequality [137], I(S;W ) ≥ I(X;W ). Since VNT

is a deterministic injective function (i.e., f(s) > 0 and consequently T (s1) > T (s2) for

s1 > s2), the Markov chain S ↔ X ↔ W also exists, and therefore I(X;W ) ≥ I(S;W ).

Consequently, I(X;W ) = I(S;W ). Similarly, for the two Markov chains X ↔W ↔ Y and

X ↔ Y ↔ W , it can be shown that I(X;W ) = I(X;Y ). Hence, the equation I(X;Y ) =

I(S;W ) is proved.

Based on this lemma, the capacity of the original channel with signal dependent noise can be

expressed in terms of transformed input and output as

C = sup I(X;Y )
E{|T−1(X)|2}≤P

. (3.14)

Note that the mutual information maximization is performed subject to a transformed average

power constraint where P denotes the average power limit in the original channel.

The following section will study the capacity of the CS channel defined in (3.5) based on the
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assumption that the signal bandwidth is not greater than the bandwidth for which the spectral

density of noise remains constant, and consequently noise can be considered as white. In effect,

using VNT, the CS channel can be transformed into an AWGN channel. We will further discuss

the effect of correlation of noise in CS later.

3.4.2 Capacity of signalling on CS

The statistical behaviour of the noise in nonlinear spectral domain has been investigated

concluding that the noise becomes signal-dependent and non-Gaussian in CS. In addition, real

and imaginary parts of the noise in CS are dependent. In this section, we first consider real

CS signalling (={ρ0(λ)} = 0), for which the noise variance is only dependent on the signal

amplitude, and employ VNT as a tool to estimate the capacity of CS channel. We can then

provide a bound for the capacity of complex signalling on CS.

We first start with the following theorem to show that if the dependency of the noise variance

to signal is defined by a polynomial with an order higher than two, the signal space in the

transformed channel (i.e., X = T (S)) is not only limited by the transformed average power

constraint in (3.14) but also by an imposed peak power constraint. Note that both asymptotic

analytical result in equation (3.9) and simulation results in Figure 3.5 confirm that the variance

of noise in CS is dependent to signal’s amplitude by a polynomial of order higher than 2.

Theorem 1. Let the dependency of the variance of noise to the amplitude of the real valued

signal s be approximated by a polynomial f(s) = an|s|bn + an−1|s|bn−1 + ...+ a1|s|b1 + a0,

where ai ≥ 0 for i = 0, ..., n and bn > bn−1 > ... > b1 are not necessarily integers. Then, the

transform function, T (·) defined in (3.11) is bounded if bn > 2.

Proof. It should be noted that the transform properties imposes T (0) = 0. For large values of

s > Γ > 0 the polynomial can be approximated by its largest order, and thus for ν > 0
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T (ν) =

ν∫
0

1√
f(s)

ds

≤ MΓ +

ν∫
Γ

1√
ansbn

ds

= MΓ +
1

(1− bn/2)
√
an
t
−bn
2

+1|νΓ

= Aρ +
1

(1− bn/2)
√
an
ν
−bn
2

+1. (3.15)

where M and Aρ are finite values, and

MΓ =

Γ∫
0

1√
f(s)

ds,

Aρ = MΓ −
1

(1− bn/2)
√
an

Γ
−bn
2

+1.

It can be further shown that

lim
ν→∞

ν
−bn
2

+1 =

 ∞ bn ≤ 2

0 bn > 2
,

Considering the limit above and noting that the second term in (3.15) is negative for all bn > 2,

we can write T (ν) ≤ Aρ. Replacing variable s with −s in the equations above, it can be also

shown that T (ν) ≥ −Aρ for ν < 0. Finally, we can conclude that

|T (ν)| ≤ Aρ

Note that VNT reveals an important consequence of the signal-dependency of the noise with

an order higher than two which renders the signal space further limited by a peak power

constraint. In other words, the signal dependency in nonlinear spectral domain is translated

to peak-power-limited signal space in the transformed domain.

Applying the theorem above to the asymptotic statistics of the CS channel in (3.9), the signal
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Figure 3.9: Asymptotic value of normalized peak amplitude constraint Aρ for different signal
bandwidth and normalized link length.

amplitude in the transformed channel is limited by

Aρ =

∞∫
0

1√
(s2 + 1)

(
(s2+1)

4πz
cρ

cρσ2
0
− 1

)ds, (3.16)

which is determined by channel parameters z and cρ which are related to fibre length, signal

bandwidth, and ASE noise spectral density. Note that although the value of Aρ in (3.16) is

only accurate at asymptotic regimes but it gives some insight about how the maximum value

of signal in the transformed channel and consequently the capacity depends on the channel

parameters. For instance, for longer fibre links the limiting amplitude would be smaller because

the noise variance is higher. This is shown in Figure 3.9 for different bandwidths of signal. The

same parameter as before are used here for calculating noise variance σ2
0 . It can also be seen

that higher bandwidth limits Aρ more becasue of increased dispersion and consequently larger

noise variance in CS.

Here, some numerical results are presented on the effectiveness of the VNT approach before

finalizing the capacity analysis. Figure 3.10 depicts the variance normalizing transforms
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required to normalize the signal-dependent noise in CS for different fibre lengths. These are

obtained directly from the simulation results, shown in Figure 3.5, without any approximation.

It can be seen that the transforms are limited to certain values. For instance, maximum

amplitude Aρ for fibre lengths L = 1000, 2000, and 3000 km are respectively 28.63, 14.35,

and 9.11. Therefore, in the AWGN channel resulted from the VNT, the signal amplitude cannot

be higher than a specific value determined by VNT.
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Figure 3.10: Variance normalizing transform for different fiber lengths.

In order to demonstrate the effectiveness of the VNT, the transform is performed on a symbol

with amplitude ρ0 = 2 for a 2000 km fibre. Applying the VNT the PDF of transformed samples

tend to Gaussian distribution with mean T (2) = 11.6 and variance of approximately equal to

one as demonstrated in Figure 3.11a. The quantile-quantile plot in Figure 3.11b confirms this

statement.

Now, it is time to establish some results on the capacity of the CS channel. LettingW = ρ̃L(λ),

S = ρ0(λ), and N = ηL(λ) and considering Figure 3.8, the capacity of the CS channel can be

derived based on the capacity of the equivalent AWGN channel in (3.13) as in (3.14). Assuming

real signalling on CS, the variance of the noise N is dependent to the amplitude of signal S

with a polynomial of an order higher than two. Therefore, based on the theorem presented
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Figure 3.11: (a) Probability density of transformed received signal when the noise-free amplitude is
equal to 2. (b) quantile-quantile plot for the 2 samples.

earlier, the real signal space of the transformed CS channel is limited not only by an average

power constraint but also by a peak amplitude constraint. Hence, (3.14) needs to be modified

to determine the capacity CR of the real CS channel by maximizing mutual information for the

transformed AWGN channel with both peak amplitude and average power constraint as

CR(P,Aρ) = sup I(X;Y )
E|T−1(X)|2≤P, |X|≤Aρ

. (3.17)

The optimization problem (3.17) gives the capacity of a scalar Gaussian channel with peak and

average power constraints. The average power constraint is modified according to the variance

normalizing transform, but still has the same effect on the optimization problem. Obviously,

a peak power constraint imposes a maximum for the capacity of channel at large average

signal power because the average power cannot exceed the peak power. More importantly,

as proved in [138], the introduction of the peak power constraint in problem (3.17) leads to

a capacity-achieving input distribution that is a finite set of discrete points. For each fixed

amplitude limit Aρ, an optimal capacity-achieving input distribution exists which satisfies

certain necessary and sufficient conditions [138]. Furthermore, it is known that this optimal

distribution is discrete with finite number of points. The unknown variables are the number

of points, their position, and the probability at each point. Therefore, the original problem

of an optimal input distribution for the maximum average mutual information is essentially

reduced to determination of a finite number of values (i.e., positions and probabilities). If the
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number of points are known, called NC , the capacity can be calculated using many available

optimization algorithms for maximization of a function (i.e., mutual information) over a vector

of size 2NC . This unknown vector is defined in a well-restricted region since the probability

is bounded between zero and one, and the position of points (i.e., signal amplitudes) are also

limited by peak amplitude constraint. However, the number of points is generally unknown.

Thus, an algorithm can be used that increases the number of points, starting from 2 points

corresponding to 4 unknown variables, until all necessary and sufficient conditions are met.

The optimal distribution and the resulting capacity for the CS can be calculated numerically

using the algorithm proposed in [138]. Since the signalling is performed in nonlinear spectral

domain, the maximum average signal power in CS (i.e., P ) is considered as the constraint.

However, the actual power in time domain cannot be readily expressed as a function of P . The

relationship between P and signal power in time domain will be discussed later.
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Figure 3.12: Capacity for different fibre lengths.

Figure 3.12 shows the capacity of the real CS channel, CR, for different link lengths calculated

by solving the problem (3.17) using the algorithm provided in [138]. Note that average power

constraint needs to be converted to a constraint in the transformed domain. This imposes

a modification to the algorithm in [138]. The results clearly demonstrate that the capacity

saturates for high signal power for different fibre lengths. Similar saturation effects have been
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previously observed for achievable data rates on nonlinear optical fibre channels [9]. The

maximum capacity for each fibre length is equal to the capacity without an average power

constraint or P → ∞. These values are respectively 3.873, 2.981, and 2.425 bits per symbol

for fibre lengths 1000 km, 2000 km and 3000 km. The capacity of an AWGN channel with

power P and noise spectral density σ2z, defined in (2.11), is also demonstrated for comparison.

As shown in [138], for high values of Aρ and P , the capacity-achieving distribution tends to a

set of uniformly distributed discrete points for which the capacity can be derived in closed-form

as

CR = log(2Aρ/
√

2πe). (3.18)

For instance, for the 1000 km fiber, the capacity achieving distribution for high average powers

is approximately uniform and consequently the capacity tends to log(2Aρ/
√

2πe) = 3.79

which is close to the value (i.e., CR = 3.873) numerically calculated in Figure 6.4 at high

signal power.

In the previous section, it was demonstrated that the noise on real and imaginary parts of CS

(ηrL(λ) and ηiL(λ)) are correlated, and increasing real or imaginary amplitude increases the

noise variance in both channels. Since, the details of this correlation is not yet known, we use

the capacity results of real singling on CS to present bounds on the capacity of the complex CS

signalling in bits per complex symbol as

CR(P,Aρ) ≤ C(P,Aρ) ≤ 2 CR(P/2, Aρ). (3.19)

where we have used the fact that the real and imaginary channels are identical.

3.5 Approximation of achievable data rates

In the previous section, we derived an estimate on the capacity of CS channel in bits per symbol

or, in other words, the capacity of the discrete-λ channel. It would be also beneficial to estimate

achievable data rates by taking into account available time-frequency resources and addressing

continuous-λ channel capacity. Due to nonlinear nature of the system, however, we cannot

simply apply Nyquist theorem to relate these two quantities. Here, we briefly discuss how
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this relationship looks like for the nonlinear fibre channel considering several properties of the

NFT-based system.

Note that the simulation results presented in this section are derived based on the same

simulation method explained in section 3.3. Here, the width of signal ρ(λ) is called spectral

width denoted by Λ. Unless otherwise stated, 64 random symbols are considered for CS with

Λ = 16 and T0 = 0.1 ns. Temporal width, bandwidth, and spectral width are calculated as the

interval consisting 99% of energy.

3.5.1 Bandwidth

Considering a low power regime, F (x) can be replaced by εF (x) (ε << 1) as the Fourier

transform of ρ(λ) in GLM equation (see (2.33)). As a result, it can be easily concluded that

q(t) = INFT{ρ(λ)} ' −2εF (2t) . This shows that, for low signal energy, INFT behaves

similar to ordinary inverse Fourier transform (IFT). Therefore, the bandwidth of signal after

INFT is related to the spectral width as B ' Λ/π. For higher power, the INFT causes the

bandwidth B to increase beyond Λ/π. Figure 3.13 shows the frequency spectrum of the signal

after IFT and INFT for Pρ = 13.5 dB. It is observed that the spectrum of signal after INFT is

larger than twice that of IFT.
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Figure 3.13: (a) Bandwidth of signal after ordinary inverse Fourier transform (IFT) (a) Bandwidth of
signal after inverse nonlinear Fourier transform (INFT).
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Table 3.1 shows simulation results for bandwidth for different values of signal power in

nonlinear spectral domain (Pρ). It can be seen that for the lowest power value, the measured

bandwidth is very close to the actual value of Λ/π = 5.09 and for higher power values B

increases. It should be noted that B is the normalized bandwidth, and the actual bandwidth of

the signal would be W = B/T0.

Table 3.1: Bandwidth for different CS powers

Pρ [dB] -10 -2 4 10 13.5 16
B 5.09 5.11 5.16 5.43 5.62 5.89

Moreover, the bandwidth of signal may increase during propagation along the fibre due to

nonlinear spectral broadening [98]. Therefore, both INFT and fibre propagation result in

increased signal bandwidth, and consequently, the nonlinear spectral width in CS available

for information transmission is limited by the available bandwidth as Λ ≤ πB.

3.5.2 Temporal width

Equation (3.3) shows that the width of signal in time domain at the receiver asymptotically

equals to ∆t∞ = 4zΛ. This is based on the asymptotic scenario in which the dispersion

effect is high and ∆TL >> ∆T0 where ∆TL is the temporal width of signal at length L.

In non-asymptotic distances, this approximation can be used as the added temporal width

due to dispersion. Similarly, in linear fibre, the temporal width of signal can be estimated

as ∆TL = ∆T0 + 2πβ2LW [98]. Table 3.2 presents the simulation results of the signal

temporal width after propagation over different lengths of fibre for Pρ = 10 dB. It is observed

that the approximation ∆TL = ∆T0 + 4zΛT0 is slightly better (i.e., smaller) than the

linear approximation in every fibre length because the spectral width Λ ≤ πWT0 is used

instead of bandwidth W . Consequently, the effect of nonlinearity is somehow included in the

approximation of the temporal width of the signal which leads to better results. Therefore,

this estimate can be used to determine the temporal width at the receiver for an NFT-based

communication system. Note that based on normalization (2.9) we have z = L/2LD.

Following the linear approximation argument in section 3.5.1, it can be concluded that the

temporal width for low power signals can be obtained as ∆̃T0 = T0πK/Λ based on Nyquist
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Table 3.2: Approximation for temporal broadening

L [km] z ∆TL [ns] ∆T0 + 4zΛT0 ∆T0 + 2πβ2LW

1000 1.05 8.62 10.57 11.04
3000 3.15 22.12 23.98 25.36
6000 6.30 42.82 44.09 46.84

theorem and denormalizing by T0. Here, K is the number of symbols. However, when the

signal power increases in nonlinear spectral domain, the temporal width after INFT increases

beyond this linear estimate. Table 3.3 presents a comparison between the actual measured

temporal width of signal after INFT and the linear estimate. Parameter r = ∆T0/∆̃T0 is

defined which demonstrates the excess temporal width due to INFT. It can be seen that r

increases beyond 1 as the signal power increases. It is also observed in Table 3.3 that the

power in spectral domain (Pρ) and time domain (Pq) are not linearly related. For instance, Pρ

increases 6 dB for twice the amplitude, but this is not the case for Pq. As a matter of fact, the

power in time domain increases slowly compared to the power in nonlinear spectral domain

since the temporal width after INFT, ∆T0, increases for higher CS power. The Parseval’s

equality for NFT [24] when considering only CS gives an insight on this effect as the square of

temporal signal is related to the logarithm of the square of CS.

Table 3.3: Time domain power and width for different CS powers

Pρ [dB] Pq [dBm] ∆T0 [ns] r
-10 -12.12 1.26 1
-2 -5.99 1.47 1.17
4 -3.26 1.94 1.54
10 -1.73 2.59 2.06

13.5 -1.09 2.97 2.36
16 -0.76 3.26 2.56

3.5.3 Achievable rates

In order to estimate the effective data rates, we need to take into account the dispersion effect

and the corresponding guard interval required for signal transmission using NFT based systems.

We thus introduce a new parameter Wd which determines the number of symbols received per

second as

Wd =
K

∆T0 + ∆T
[symbol/sec], (3.20)
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Table 3.4: The effect of number of symbols on the data rate. ∆T0 [ns], ∆TL [ns], Wd [Gsymbol/sec],
W̃d [Gsymbol/sec] ,R [Gbps]

K ∆T0 ∆TL Wd W̃d R = CWd

16 0.92 15.64 1.02 1.14 6.14
32 1.3 15.04 2.13 2.18 12.77
64 2.59 15.29 4.19 4.01 25.12
128 5.51 17.06 7.5 6.93 45.02
256 9.56 20.38 12.56 10.90 75.36

where ∆T is the increase in temporal width because of dispersion andK is number of symbols.

Then, data rate in [bits/sec] can be estimated by R = CWd, where C is the complex capacity

bound derived in section 3.4.2 as C = 2CR and the capacity of real signalling, CR, is shown

in Figure 3.12. Parameter Wd can be derived by simulation considering different number of

random symbols in a fixed nonlinear frequency interval. For instance, in Table 3.4, Wd is

calculated for a 2000 km fibre link and Pρ = 10 dB. It is also possible to estimate Wd based

on the approximations for bandwidth and temporal width derived in previous subsections. The

temporal width at the transmitter after INFT is approximated by ∆T0 = rT0πK/Λ. Therefore,

we have

W̃d '
K

T0

(
r πKΛ + 4zΛ

) , (3.21)

where r is given by Table 3.3, for instance, r ' 2 for Pρ = 10 dB and K = 64. Table 3.4

compares Wd and W̃d and also presents achievable data rate, For instance, R = 75.36 Gbps

is achieved for K = 256. Note that this data rate is achieved taking into account the needed

guard interval due to dispersion. This table also shows that increasing K results in higher data

rate.

Using (3.18-3.21), a closed-form expression can be written for achievable data rate based on

complex signalling on CS as

R ' CW̃d =
2K log(2Aρ/

√
2πe)

T0

(
r πKΛ + 4zΛ

) ,

which can be simplified for large K as

R ' 2Λ log(2Aρ/
√

2πe)

rT0π
. (3.22)
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Considering the low power regime, we have r = 1 and W = Λ/(πT0), and therefore (3.22)

would tend to R = WC where C is in bits per complex symbol which can be originally

predicted by Nyquist theorem.

3.5.4 Correlation of noise

In section 3.4.2, we assumed that the noise in CS is white over the signal spectrum. Here,

simulation results are presented to investigate the noise correlation. Figure 3.14 shows the

average of absolute value of correlation coefficients for noise samples with their neighbouring

samples for the fibre length of 2000 km. similar results have been observed for different

fibre lengths. It can be seen that as the difference between the frequencies increases, the

correlation decreases substantially. For instance, if the distance between two data samples

is 0.03 (corresponding to approximately 95 MHz), the noise on the samples can be regarded as

uncorrelated. Since the results presented here are based on simulations, part of the observed

correlation can be caused by numerical errors in NFT and INFT. Since Λ = 16, the maximum

number of symbols without correlation can be estimated as K ' 512 which lead to R ' 92

Gbps based on the capacity and achievable rate results.
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Figure 3.14: Average correlation coefficient plotted for frequency differences.

3.6 Summary

In this chapter, the noise characteristics of the channel for CS in NFT-based optical fibre

communication systems were studied. The channel characteristics were derived analytically

and confirmed by simulation. The noise for CS channel was observed to be dependent
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on the signal amplitude by a polynomial with an order larger than two. Applying a

variance normalizing transform, it is observed that the signal dependency of noise leads to

peak-power-limited signal space. As a consequence, the CS channel capacity is saturated for

high powers. However, it was demonstrated that remarkable data rates can be achieved by

only signalling on CS.
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Signal processing techniques for the

continuous spectrum

This chapter studies different signalling techniques for the continuous spectrum (CS) of

nonlinear optical fibre defined by nonlinear Fourier transform (NFT). First, the effect of

chromatic dispersion on the data rate and noise in nonlinear spectral domain is investigated,

and an optimization method for minimizing such effect is suggested. Also, three different

signalling techniques are proposed based on the specific noise behaviour in nonlinear spectral

domain. The proposed methods, along with the basic signalling described in previous section,

are compared in terms of error performance, distance reach, and complexity. At the end a

simple but effective pre-compensation method is presented for further reducing the dispersion

effect and improving data rates.

Different techniques were used for mapping data symbols on CS and detecting the received

symbols. For instance, in [43, 44], data is directly mapped on the CS and detected by

sampling or matched filtering. In a series of other research papers [38–42], nonlinear inverse

synthesis was proposed and investigated numerically and experimentally. In this method,

the linear spectrum of a predefined time domain signal (e.g., OFDM or Nyquist) rather than

the signal itself is mapped on CS. The important point is that each of the aforementioned

methods manifests a unique behaviour and performance level, but this has not been investigated

thoroughly in the literature. Therefore, in this chapter, some novel methods are proposed based

on the features of the CS channel as well as the effect of chromatic dispersion.

69



Chapter 4. Signal processing techniques for the continuous spectrum

4.1 System model

In the low noise scenario, perturbation theory can be used to determine the characteristics of

noisy CS. Recall from chapter 3 that the channel model in the nonlinear spectral domain can

be expressed as

ρ̃L(λ) = ρ0(λ) + ηL(λ), (4.1)

where ρ̃L(λ) = ρL(λ) exp(4jλ2L/2LD) refers to noisy CS signal after phase shift removal

according to (2.26), and ηL(λ) is a complex non-Gaussian noise, the variance of which

is dependent on the initial signal as E{|ηL(λ)|2} = f [|ρ0(λ)|], where f [|ρ0(λ)|] can be

approximated by a polynomial of order 4 [46]. This means that signals with higher amplitudes

experience higher noise variance. Furthermore, the real and imaginary parts of the noise in CS

may not be assumed independent after propagation over the nonlinear optical fibre unlike the

conventional linear channels, and they can be modelled as E{<[ηL(λ)]2} = E{=[ηL(λ)]2} =

f [|ρ0(λ)|]/2 . However, in many practical scenarios, the noise can be assumed white, i.e.,

E{ηL(λ)η∗L(λ′)} = f [|ρ0(λ)|]δ(λ − λ′). The linearising effect of NFT makes the channel

model of a nonlinear optical fibre much less complex in CS as in (4.1) than in time domain

governed by NLSE (2.8). Nonetheless, due to the special statistical behaviour of the noise,

novel techniques are required for capacity estimation, as we addressed in chapter 3, and

signalling, which is the subject of this chapter.

The block diagram of the system is the same as chapter 3 (see Figure 3.1). We use complex

modulation using sinc pulses as expressed in (4.2), whereDi
0 is the ith symbol from vector D0.

ρ0(λ) =
K∑
i=1

Di
0sinc(

K

Λ
λ+

K

2
− 2i− 1

2
). (4.2)

The width of CS signal in nonlinear spectral domain is called nonlinear spectral width and

is denoted by Λ. Using sinc pulses for pulse shaping make the signalling spectrally efficient

by placing the data symbols as close as possible together without introducing any additional

required bandwidth similar to the OFDM. Note that the NFT operation at the receiver is only

required at K symbol points λi = −Λ
2 + (2i− 1) Λ

2K .
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For a given input symbol vector D0, the question arises that in what rate should the symbols

be placed in nonlinear spectral domain. In other words, how should we choose the nonlinear

spectral width of the signal, Λ, and if there is any optimal value for it? Note that this question

originally arises since we are signalling in the nonlinear spectral domain, which does not

have a linear duality with the time domain, unlike conventional OFDM systems. To answer

this question, the effects of chromatic dispersion on data rate and performance of NFT-based

systems are investigated in section 4.2. Furthermore, due to the signal-dependency of the noise

in this domain, conventional signal processing techniques are no longer as efficient, and thus,

new techniques are studied in section 4.3.

4.2 Dispersion effects and the optimum value of nonlinear spectral

width

By mapping the data only on CS soliton formation is suppressed. In the absence of DS (e.g.,

solitons), the mechanism of cancellation of dispersion with nonlinearity no longer exists, and

consequently excessive temporal broadening is expected. Therefore, large guard bands are

necessary to avoid mixing of neighbouring signals [39, 40, 42]. This reduces the effective

data transmission rate in bits per second. In this section, the effects of chromatic dispersion

on NFT-based communication systems are evaluated. Note that, throughout this section,

”bandwidth” refers to the width of Fourier transform of the time domain signal Ql(τ) (i.e.,

linear bandwidth) rather than the width of ρ(λ) in nonlinear spectral domain. Furthermore,

the width (temporal or spectral) are calculated at the window, which consists 99.5% of signal

energy. Using this definition, the numerical error due to truncation of the time domain signal

is negligible.

Chromatic dispersion is an important effect, which cannot be avoided in time domain in current

NFT-based systems because, based on the inverse scattering theorem, the signal in time domain

needs to be separated from consecutive signals so that the NFT operation works properly and

linearises the channel. The effect of dispersion is removed only after NFT operation (i.e., phase

shift in the CS), and thus the broadening in time domain cannot be ignored. Therefore, it is

beneficial to know how the broadening can be minimized in order to maximize the effective

data rate. As an initial estimate on the dispersion effect, we consider the linear fibre channel as
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in section 2.1.1, where broadening factor is derived for Gaussian pulses assuming a linear fibre.

It is shown that an optimum initial temporal pulse width (or pulse rate) exists that minimizes

the broadening effect of chromatic dispersion while the dispersion effect increases for a higher

bandwidth and fibre length. The same phenomena can be also observed for the NFT-based

system when the data is modulated on the CS.

For a given input symbol vector D0 with fixed number of symbols K, the signal bandwidth is

directly related to the nonlinear spectral width Λ as explained in section 3.5.1. Similar to the

argument about a single Gaussian pulse in the linear regime, it is expected that, for a fixed K,

Λ (or, in other words, the symbol rate) can be adjusted to minimize the received temporal width

of signal. The existence of an optimum nonlinear spectral width Λ in NFT-based systems can

be shown through the asymptotic analysis presented in 3.2. Assuming the data is modulated on

CS with the nonlinear spectral width Λ, the initial temporal width of the signal in time domain

(after INFT and at L = 0) can be estimated as ∆̃T0 = T0πK/Λ for low-amplitude signals by

approximating INFT as a linear Fourier transform. When the amplitude of the signal increases

this temporal width increases and cannot be accurately determined using the linear estimation

any more. Recalling the parameter r as the ratio between the actual temporal width after INFT

compared with the linear estimation above (i.e., r = ∆T0/∆̃T0), the actual temporal width

can be expressed as ∆T0 = rT0πK/Λ, where r has been shown to be increasing as a function

of the signal power in nonlinear spectral domain and it is independent of Λ. In asymptotically

long fibres, the received temporal width at length L denoted by ∆TL can be expressed by

∆TL =
rT0πK

Λ
+ 4zT0Λ, (4.3)

It can be readily seen from (4.3) that the received temporal width ∆TL can be minimized

at Λ =
√
rπK/4z. Consequently, for a given sequence of K CS symbols containing fixed

amount of information, an optimal Λ (or equivalently symbol rate) can be selected to minimize

the required guard interval leading to higher packet rates and effectively higher data rates in bit

per second.

It can be also confirmed numerically that an optimal value exists for spectral width Λ that

minimizes ∆TL in practical (non-asymptotic) scenarios. The same can be shown for linear

bandwidth BW since BW and Λ are directly related. Assuming that K = 128 random QPSK
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modulated symbols are mapped on CS using sinc pulses as in (4.2), Figure 4.1 shows the

existence of the optimal bandwidth for different fibre lengths. The optimal bandwidth decreases

for longer fibres. Furthermore, it is confirmed that the initial width (i.e., ∆TL at L = 0 km)

decreases when the bandwidth increases. It is also confirmed by simulation that r is constant for

all values of spectral width Λ (or bandwidth BW). Signal power in nonlinear spectral domain

used in this simulation corresponds to r = 1.99.
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Figure 4.1: The temporal width of the propagated signal after distance L for different BW and Λ.

It should be noted that, as stated in Table 3.4, by increasing K, the effect of dispersion can be

reduced and higher overall data rates are achieved even when Λ remains fixed rather than being

adjusted to the optimal value for the new K. On the other hand, the computational complexity

increases for larger K and thus K and Λ (or bandwidth) should be optimized based on the

trade-offs between performance metrics such as computational complexity and effective data

rate. Such optimization problems will be the subject of future research.

Another crucial consequence of minimizing the received temporal width by choosing the

optimal value for Λ is the noise reduction in nonlinear spectral domain, which may lead to

higher achievable data rates by reducing the number of errors. In NFT-based systems, each

single sample of data at a nonlinear frequency λ receives signal and noise contributions from

all the components within the received temporal width of signal. Therefore, a larger received

temporal width results in higher noise in nonlinear spectral domain. This is similar to ordinary
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linear communication systems, in which the noise power in time domain is directly related to

the signal bandwidth. In effect, if the received temporal width, over which the NFT operation

is performed, shrinks, the effective noise added to CS in nonlinear spectral domain decreases.

Here, a simulation is performed for different values of Λ = 4, 8, 12, which shows that the

largest received temporal width (corresponding to the smallest Λ = 4) results in higher noise

in nonlinear spectral domain. Figure 4.2 illustrates this result by plotting the noise variance

for different values of Λ against the amplitude of the signal, which also shows the signal

dependency of the noise. The results in Figure 4.2 demonstrate that the noise induced in

nonlinear spectral domain is directly related to the received temporal width at any amplitude

of CS. This figure is obtained by calculating the noise variance for more than 2× 106 symbols

(2 × 107 samples) in different nonlinear frequencies. Figure 4.2 suggests that choosing the

optimum Λ not only minimizes the dispersion effect, but also reduces the noise. Therefore,

improved error performance and achievable data rate is expected.
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Figure 4.2: The variance of the noise in nonlinear frequency domain for different Λ

4.3 Signalling methods

In this section, different methods of mapping data on CS are investigated. In order to properly

understand the effect of signal dependent noise, a ring constellation is used for modulation. It
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should be noted that even in conventional fibre optic systems ring constellation is a popular

choice [9, 139, 140]. In this section, three different methods are introduced for performance

enhancement of the continuous spectrum channel (4.1). The method “direct mapping on CS”

refers to the block diagram shown in Figure 3.1 and channel model (4.1). Unless otherwise

stated, K = 128 random symbols are mapped on CS using sinc pulses as in (4.2) for Λ = 8.

The fibre length is L = 2000 km and the signal bandwidth is 26 GHz.

4.3.1 Nonuniform signalling

Using nonuniform levels for constellation diagram is an effective method for improving the

performance of a channel with signal-dependent noise [139, 141]. If the statistics are known,

the optimum levels can be found by solving an optimization problem such as minimization of

BER. For the CS channel model (4.1), unfortunately, a closed-form description of the noise

statistics is not known. Therefore, deriving and solving an optimization problem for this

channel would be cumbersome. Here, we propose another approach based on the variance

normalizing transform (VNT) which was used in chapter 3 as a tool to approximate the capacity

of CS channel.

Applying VNT to the noisy signal ρ̃L = ρ0 + ηL, we have

Y = T (ρ̃L) = T (ρ0 + ηL) ' T (ρ0) + ηT , (4.4)

where ηT can be well approximated as a zero mean Gaussian noise with unit variance

independent of the transformed signal T (ρ0). Consequently, a communication channel can be

defined, in which the signal is originally generated in a transformed domain and then mapped

into the original signal domain ρ0 using inverse VNT. After transmission through the channel

(4.1) and addition of signal-dependent noise ηL, VNT is applied, and the output signal can be

expressed as Y = T (ρ0) + ηT , which defines a conventional AWGN channel. As in Lemma 1,

the capacity of this transformed channel is equal to the capacity of the original channel (4.1)

with signal-dependent noise. Moreover, the optimal signalling techniques for the conventional

AWGN channels would be also optimum for the transformed channel (4.4).

The analysis above is valid for real signalling on CS and can be extended to complex signalling
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only if the real and imaginary channels of CS are independent. However, when signal is

modulated on CS, the real and imaginary channels are not independent. Moreover, although the

noise on the phase of the signal is not dependent to its mean (i.e., input phase), but it depends

on the input amplitude. Therefore, VNT with the scaler form (3.11) can not be applied to the

complex plane. However, if only real channel is used (={ρ0} = 0), the noise variance would

only depend on the mean (i.e., input signal), and VNT would be applicable. The signalling can

be performed in the transformed channel, but this requires the forward and inverse VNT to be

performed each time a signal is transmitted and received. Alternatively, the nonuniform signal

levels defined by VNT and the corresponding decision boundaries required for detection at the

receiver can be determined for a known channel at the beginning of the communication and

then the determined optimum levels can be used for mapping data on CS.

In this section, first it is assumed that ={ρ0} = 0, and uniform levels are considered for

T (ρ0). Then, inverse VNT is applied to obtain the nonuniform levels for ρ0. Then, the complex

modulation format is defined on the rings with radius equal to the levels found. This makes

our approach a sub-optimal method for complex signalling on CS because of the dependence

of real and imaginary channels. Note that the number of constellation points on each ring

can be chosen based on the variance of the phase of the noise and the required performance.

The variance normalizing transform for the 2000 km link is shown in Figure 4.3a, where it is

observed that T (u) converges to 16.32 at u → ∞ implying that a peak amplitude constraint

exists for the transformed variable T (ρ0). In other words, the signal space is limited in

the transformed domain because the variance of noise depends on the signal amplitude by a

polynomial of order larger than 2 (see Theorem 1). For demonstration purposes, four uniform

levels for T (ρ0) are chosen between 0 and 16.1, and nonuniform levels of ρ0 are calculated

using inverse VNT. The corresponding rings and decision boundaries are shown in Fig. 4.3b.

It is expected that if nonuniform levels in Figure 4.3b are used, the error rate will be lower

compared to uniform levels with the same average power.

4.3.2 Direct mapping on CS and filtering

The second method, which can potentially improve the performance of NFT-based systems, is

the application of linear filtering at the receiver in the original signal space, i.e., continuous

spectrum. This method is similar to match filtering when detecting pulse modulation in the
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Figure 4.3: (a) Variance normalizing transform for 2000 km (b) Nonuniform levels (solid) and decision
boundaries (dotted) derived from VNT.

nonlinear frequency domain [44] and requires oversampling of ρ̃L(λ) at the receiver. If INFT

is applied to ρ̃L(λ) after removing the dispersion induced phase shift according to equation

(2.26), the signal is squeezed into the temporal width of the unpropagated signal q0(t) because

of dispersion compensation in CS and while noise is still present over the uncompensated

temporal width of qL(t). To get back to the signal space, we can then apply an NFT to the time

domain signal after windowing the signal component distributed only within the unpropagated

temporal width thereby removing the excess noise. However, this method requires complex

numerical computation because of the extra NFT/INFT operations on the oversampled signal,

and thus, we use ordinary Fourier transform instead of NFT, which allows for linear filtering

of the CS signal. In other words, linear inverse Fast Fourier transform (IFFT) is applied to

ρ̃L(λ), the noise out of the signal’s window is removed, and then forward linear Fast Fourier

transform (FFT) is applied. It should be noted that I/FFT should not be almost equivalent

to I/NFT (i.e., asymptotic linear regime) to be effective in noise cancellation as significant

amount of noise is observed outside the signal interval even after IFT. In fact, employing FFT

and NFT would result in different signal (and noise) power distributions. For example, as

explained in section 4.2, so-called low-amplitude and long “tails” [96] typically appear after

INFT while compact (finite duration) and much more uniform signal power distribution is

observed after linear Fourier transform operation. Therefore, the employment of a simple
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constant-gain windowing operation can more effectively mitigate the noise effect for linear

filtering compared to the NFT-based filtering which leads to long tails.

Assume H(t) as the ideal filter with width equal to the width of IFFT{ρ0(λ)}, then the output

can be described as

ρ̂L(λ) = FFT{H(t)IFFT{ρ̃L(λ)}}. (4.5)

For the simulation, an oversampled version of ρ̃(λ) by a factor of 20 is first generated using

NFT, and then ρ̂L(λ) is obtained from equation (4.5). The probability distribution of noise

are demonstrated here before and after filtering for signal amplitudes of ρ0(λ) = 1, 2. It

can be seen that the variance of noise after filtering (Figures 4.5a and 4.5b) is substantially

reduced compared to the original noise (Figures 4.4a and 4.4b). Note that although the signal

dependency of noise is not eliminated by filtering, its effect is reduced considerably.

(a) (b)

Figure 4.4: The histogram of noise on the CS signal (a,b) ρ̃L(λ) for amplitudes ρ0(λ) = 1, 2.

(a) (b)

Figure 4.5: The histogram of noise on the CS signal (a,b) ρ̂L(λ) (i.e., filtered signal) for amplitudes
ρ0(λ) = 1, 2.
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4.3.3 GLM-based Signaling

The signal modulated on the continuous spectrum ρ(λ) is related to the time-domain signal

q(t) by the GLM equation

K(x, y) +

∞∫
x

∞∫
x

K(x, s′)F ∗(s+ y)F (s′ + s)dsds′ = F ∗(x+ y), (4.6)

where

F (t) =
1

2π

∫ ∞
−∞

ρ(λ)ejλtdλ (4.7)

is the inverse Fourier transform (IFT) of ρ(λ). One can interpret that the GLM equation

performs a nonlinear mapping on the linear inverse Fourier transform of ρ(λ) (i.e. F (t)),

so that the time-domain signal q(t) = −2K(t, t) only contains CS and no DS. This means that

if GLM is applied to any arbitrary input signal, the output signal would not include any soliton

components. Therefore, GLM can be used as a transformation, based on which a signalling

method can be designed for the CS channel.

GLM Tx
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eq. (2.27)
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Figure 4.6: The block diagram of the GLM-based signalling system.

In this section, a NFT-based structure is proposed for GLM-based signalling as shown in Figure

4.6. The main difference of the system in Figure 4.6 compared to the direct signalling on CS (as

in Figure 3.1) is that the Fourier transform operation included in INFT operation is transferred

from transmitter to the receiver, and, effectively, data is mapped on F (t) (i.e., linear Fourier

transform of CS) defined as

F0(t) =
K∑
i=1

Di
0sinc(

K

τ
t+

K

2
− 2i− 1

2
), (4.8)

79



Chapter 4. Signal processing techniques for the continuous spectrum

where τ is the corresponding signal window in time domain determined based on system

constraints, such as bandwidth and power. Consequently, an IFT block is needed at the receiver

after NFT operation to return to the original signalling space, where the noisy version of (4.8)

is sampled at the center of pulses and are decoded to the original data. It should be also noted

that this GLM-based signalling using sinc pulses is in fact equivalent to the nonlinear inverse

synthesis method with Nyquist pulse shaping studied in [39–42]. However, either in (4.2)

or (4.8), using sinc pulse shapes are not necessary, and more efficient pulse shapes may be

found by optimizing the trade-off between performance and numerical error. A similar method

was also proposed independently in [142], in which data are mapped on the kernel of GLM

equations for discrete and continuous spectrum.

Using the law of large numbers, we can show that applying (inverse) Fourier transform on

the received CS diminishes the signal dependency of the noise [135] while the probability

distribution of the transformed symbols tends to Gaussian according to the central limit theorem

[143]. Therefore, conventional modulation and signal processing techniques should perform

efficiently if applied in the system illustrated in Figure 4.6.

As discussed in earlier, the variance of noise sample on CS, ηL(λ), depends on the input sample

ρ0(λ) = FT{F0(t)}. Let κ denote the number of samples in nonlinear spectral domain, hκ =

Λ/κ be the distance between subsequent samples, and λk be the kth sample point. The noise

for GLM-based signalling is defined as ΓL(t) = FL(t) − F0(t). Therefore, for a given input

signal F0(t) = IFT{ρ0(λ)} and by using the discretized version of (4.7), we have

E{<[ΓL(t)]2} ≈
(
hκ
2π

)2 κ∑
k=1

κ∑
p=1

E{<[ηL(λk)]<[ηL(λp)]} cos(λkt) cos(λpt)

=
1

2

(
hκ
2π

)2 κ∑
k=1

κ∑
p=1

δ(k − p)f [|ρ0(λk)|] cos(λpt) cos(λkt)

=
1

2

(
hκ
2π

)2 κ∑
k=1

f [|ρ0(λk)|] cos(λkt)
2

=
hκΛ

16π2

1

κ

κ∑
k=1

f [|ρ0(λk)|] +
hκΛ

16π2

1

κ

κ∑
k=1

f [|ρ0(λk)|] cos(2λkt) (4.9)

≈ hκΛ

16π2
E{f [|ρ0|]}. (4.10)
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For the last equality, the law of large numbers can be used (at large κ) so that the first sum

term in (4.9) can be described as the expected value of f [|ρ0|], and the second term tends to

zero because of the presence of the cosine term. A similar result can be demonstrated for

=[ΓL(t)], and it is observed from (4.10) that the variance of <[ΓL(t)] and =[ΓL(t)] at every

sampling time of t are independent of signal F0(t) at that time. In other words, noise variance

is constant for every sample FL(t) regardless of the original amplitude F0(t). However, it

is clear that the variance of noise <[ΓL(t)] and =[ΓL(t)] depend on average value of f [|ρ0|],

indicating that higher energy (i.e., higher average power) results in larger noise variance. This

will be investigated in terms of error rate in Section 4.4.1. Also, according to the central limit

theorem [143], the probability distribution of ΓL(t) tends to Gaussian.

Here, a simulation is performed in order to compare the statistics of the noise added to

ρ0(λ) (i.e., direct mapping) and F0(t) (i.e, GLM-based signalling) after fibre propagation and

addition of ASE noise. NFT is applied to the received signal at the output of the fibre, and also

an additional IFT operation is performed to obtain the noise on the signal F0(t). The same

simulation parameters as previous sections are used here, and statistics of ηL(λ) are compared

with that of ΓL(t). Note that oversampling (κ > K) leads to smaller noise variance as a

result of averaging effect of Fourier transform operation [135]. From (4.10), it can be seen

that smaller hκ (larger number of samples κ) results in noise reduction. However, in practical

scenarios, noise samples become correlated if they are so close to each other as shown in section

3.5.4. Thus, reducing hκ is effective up to the point, for which the noise samples are correlated.

In this simulation and later in this chapter hκ = 0.01 is chosen based on observations of noise

correlation. In order to investigate the effect of signal dependency two additional parameters

are defined, which represent signal-to-noise ratio (SNR) associated with ρ(λ) and F (t) at a

specific amplitude of x.

SNRρ(|x|) =
|x|2

E{|ηL|2}||ρ0|=x
,

SNRF (|x|) =
|x|2

E{|ΓL|2}||F0|=x
.

Figures 4.7a and 4.7b show the values for SNR parameters defined above. It can be seen

clearly in Figures 4.7a and 4.7b that SNRF is increasing while SNRρ has a maximum. Also,
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the values of SNRF are higher than SNRρ. Thus, better error performance is expected if data

is mapped on F0(t). Furthermore, the probability distribution for ΓL(t) has a Gaussian-like

distribution with constant variance for all signal amplitudes, as shown in Figure 4.8b, while the

distribution of ηL(λ) is non-Gaussian, as depicted in Figure 4.8a. We can therefore conclude

that if data is mapped on F0(t) (i.e. GLM-based signalling), it is distorted by an approximately

additive signal-independent Gaussian noise as in the conventional AWGN channels where the

underlying uniform amplitude signalling remains efficient. On the other hand, in the direct

mapping scheme, the uniform distribution of the symbol amplitudes causes low SNR at higher

amplitudes rendering it essentially inefficient at high energy levels.
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Figure 4.7: (a) SNRρ for different values of |ρ0(λ)|. (b) SNRF for different values of |F0(t)|.

(a) (b)

Figure 4.8: (a) Distribution of noise ηL(λ) for |ρ0(λ)| = 2. (b) Distribution of noise ΓL(t) for all
values of |F0(t)|.
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4.4 Numerical results and discussions

In this section, we present numerical results on the performance of different signalling

techniques discussed earlier for NFT-based systems. Two-ring constellations are used for

modulation in order to demonstrate the effect of dependence of noise to the signal amplitude.

Unless otherwise stated, 128 symbols are mapped on the nonlinear spectral width of Λ = 8,

which are chosen randomly based on the two-ring constellation. First, the methods described

in previous section are compared regarding symbol error rate (SER) only taking into account

the error due to noise on the amplitude of two particular symbols. Then, bit error rate (BER)

performance is investigated based on different constellation formats on two rings. The

performance results are presented against the energy of the CS signal denoted by E. The

channel bandwidth is 26 GHz for the simulations.

4.4.1 Error rate performance

In the first simulation, SER is compared for different signalling methods assuming only two

symbols on the two rings with an equal phase of zero. This allows us to investigate the effect of

signal-dependency of noise. Figure 4.9 shows the received noisy symbols at the end of a L =

2000 km fibre for different signalling methods with E = 2. Figure 4.9a shows the result for

the benchmark scheme, where the symbols are directly mapped on CS as explained in section

4.1. It is observed that the variance of both real and imaginary parts (or amplitude and phase)

of the noise is dependent on the amplitude of the original transmitted symbol. Figure 4.9b

demonstrates the received symbol for the same energy but for nonuniform levels determined

by VNT. In Figure 4.9a, ring radii are 0.8 and 1.6, and the midpoint decision boundary is at

1.2. However, in Figure 4.9b, ring radii are 0.575 and 1.685 with the decision boundary 0.975.

Note that the statistics of the noise in CS does not change by applying the VNT method, but

the performance improvement is achieved as a results of choosing optimal levels and decision

boundary for the rings. For the next two signalling methods in Figures. 4.9c and 4.9d, the

magnitude of both amplitude and phase of the noise changes. As shown in Figure 4.9c, when

the linear filtering is applied, as described in section 4.3.2, the noise is significantly reduced.

For this simulation, an oversampling of 20 CS samples per symbol is considered. Ring radii

and decision boundaries are the same as Figure 4.9a. It should be noted that the the noise is
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still signal dependent although significantly reduced. Figure 4.9d depicts, the received symbols

when GLM-based signalling is employed. The levels are determined so that the energy E is

the same as previous methods. It can be observed that the noise statistics are almost uniform

for two levels as predicted in section 4.3.3.
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Figure 4.9: Received noisy symbols at L = 2000 km based on (a) Direct mapping on CS, (b)
Nonuniform signalling, (c) Mapping on CS and filtering, (d) GLM-based signalling.

Symbol error rate for two symbols considered in Figure 4.9 are calculated and shown in

Figure 4.10 for different signal energies. It is observed that all proposed methods result in

improved performance compared to the direct signalling on CS. The minimum SER is achieved

at similar energies for three out of the four methods, but for VNT-based nonuniform signalling

the optimum point is different. We conjecture that after E = 3.7 the VNT is not effective

because the noise variance is very large, and the large mean condition for the VNT is not

satisfied. For the filtering method, despite noise reduction, the signal dependency of noise is

not eliminated, and thus performance is degraded after a specific energy. For the GLM-based
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signalling, although signal dependency is eliminated for a constant energy, the noise variance

increases for signals with a higher energy based on (4.10), where higher error rate is expected.
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Figure 4.10: SER for different signalling methods on the CS channel.

Here, the BER performance for three different constellation designs based on the two-ring

pattern is depicted. In general, lower BER are achieved compared to direct mapping on

CS, when each of the proposed methods is employed, and therefore, higher achievable data

rates are expected. However, since NFT-based transmission only eliminates the signal-signal

nonlinear interactions, it is expected that signal-noise and noise-noise nonlinear interactions in

time domain would eventually limit the performance. Soft decision forward error correction

(SDFEC) threshold of 2× 10−2 is also shown in Figures. For constellation (I) in Figure 4.11b,

the minimum BER is achieved with similar values for the filtering method and GLM-based

signalling. Since the symbols are well separated in each ring the behaviour of BER for different

methods is similar to SER in Figure 4.10. Nevertheless, when the outer ring is π/4 shifted in

phase all the methods results in better BER except the nonuniform signalling based on VNT.

This is because the decision boundary levels for nonuniform signalling are defined based on the

one dimensional (i.e., real) signal space considered in Section 4.3.1, which are not optimum for

the complex constellation (II) in Figure 4.12a. An optimal set of decision boundaries could be

only determined based on maximum likelihood requiring full analytical description of the noise

statistics, which are not available or through exhaustive numerical search. Note that, unlike

constellation (II), the decision boundary levels defined based on one dimensional signal space
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are nearly optimal for constellation (I) since errors dominantly occur in the radial directions.

In Figure 4.12b, 8 symbols are chosen on each ring, and BER is obtained by simulation. For

constellation (III), error originated from the noise on the phase is dominant, which causes the

BER for nonuniform signalling not to be as low as other proposed methods. For the GLM-based

signalling, the slope of the performance degradation is higher compared to all other methods.

This can be explained by referring to equation (4.10). Based on this equation the noise variance

increases for higher signal energies with a polynomial of order 4, and this happens equally for

all symbol amplitudes. However, for other methods, the inner ring always experiences lower

error rate compared to the outer ring resulting in a slower increase of BER on average.

Note that, in this section, operating bandwidth is constant and BER is obtained for various

energies, but the effective data rates vary for different signalling methods and constellations. In

fact, the required temporal window for NFT operation without numerical error is different for

each signal energy E and signalling methods. This happens because of the effect of residual

tail at the output of INFT and the different effect of dispersion. For instance, at E = 2, taking

into account the dispersion effect, for Figures 4.11b and 4.12a the effective bit rate is 21.9

Gpbs for first three methods and 20.7 Gbps for GLM-based signalling, while for constellation

in Figure 4.12b these values are respectively 29.2 and 27.6 Gpbs.

The corresponding launch power levels in this section range from -17 dBm to -10dBm. Not

that, due to optimization performed for K = 128 in Section 3, the dispersion effect is

significantly reduced and in turn the nonlinear effect is intensified such that the CS channel

with power levels above can reach the high nonlinearity regimes where the BER performances

start declining. Assuming a larger K, the optimal bandwidth increases, which leads to higher

launch power; however, studying such a scenario would also require dealing with significantly

more time-consuming simulation of NFT and INFT operations.

It is worth mentioning that better performance for techniques presented here are obtained with

a cost of computational complexity. In order to compare the complexity of different methods,

the number of NFT operations at the receiver are taken into account. For direct mapping

on CS and nonuniform signalling, the number of NFT operations is equal to the number of

symbols, which, in our case, is K = 128. For GLM-based signalling, 6×K samples of ρ̃L(λ)
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(corresponding to hκ = 0.01) are computed (768 NFT operations) for calculation of FL(t).

Also for the linear filtering method, as stated earlier, 20 ×K samples of ρ̃L(λ) are computed

(2560 NFT operations), and also additional FFT and IFFT operations are performed.

Direct mapping on CS
Nonunifrom signaling
Mapping on CS and filtering
GLM-based signaling

(I) (II) (III)
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B
E
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Figure 4.11: (a) Figure legends and constellation diagrams. (b)BER for different signalling methods
at L = 2000 km for constellation (I).
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Figure 4.12: (a),(b) BER for different signalling methods at L = 2000 km for constellation (II),(III)
respectively. (Legends as in Figure 4.11a)

4.4.2 Reach distance

Considering soft and hard decision FEC thresholds the reach distance are compared for

different methods. For all methods shifted constellation (II) in Figure 4.11b is used except
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for the nonuniform signalling based on VNT, for which constellation (I) is selected. The input

energy E is chosen for the minimum achieved BER figures for each technique. Considering

SDFEC and ignoring the redundant bits due to FEC coding, the simulation results demonstrate

that distances as long as 7100 km can be reached by applying the linear filtering technique. The

effective bit rate at distance 7100 km is 9.6 Gbps. At second place, with GLM-based signalling,

a reach distance of about 5900 km with effective bit rate 11.7 Gpbs is obtained. When the

levels are optimized using VNT, the achieved reach distance and effective bit rate are 5000 km

and 12.7 Gbps. The corresponding values are respectively 3000 km and 18.5 Gpbs for direct

mapping on CS. Moreover, considering hard decision forward error correction code (HDFEC)

with 7% overhead with threshold of 3.8 × 10−3, reach distances of 1900, 3300, 4300, and

5300 are achieved respectively for direct mapping on CS, nonuniform signalling, GLM-based

signalling, and filtering. It should be noted that, for simplicity and better presentation, E and Λ

are considered to be fixed for all fibre lengths and are chosen based on the best performance of

a 2000 km link. However, for further performance improvement, E and Λ should be optimized

for each individual fibre length. This analysis requires extensive numerical simulation and

marginal improvement is expected.
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Figure 4.13: Reach distance for different methods
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4.5 A dispersion pre-compensation method

It was demonstrated in section 4.2 that dispersion can be minimized by choosing the optimum

value of bandwidth for a NFT-based communication system. However, dispersion affects the

signal even if the optimum value of bandwidth is picked. Moreover, there might be other

reasons that require another system parameter which are not necessarily optimum or near

optimum regarding the induced dispersion. Thus, in this section, a dispersion pre-compensation

(DPC) method is proposed by pre-equalizing the CS signal by the factor of exp(j2λ2L/2LD)

and post-equalizing the received signal with the factor of exp(j2λ2L/2LD). This method can

reduce the effective dispersion and increase overall data rate up to 100%. Note that we do not

include noise in the analysis of this section.

Assume that the input signal is pre-equalized by an exponential factor as

ρ0(λ). exp(−j4λ2(−l1)/2LD), which does not affect the system structure.

Consequently, the received CS after propagation over length L of fibre would be

equal to ρ0(λ). exp(−j4λ2(L − l1)/2LD), and thus a post-equalization factor as

exp(+j4λ2(L−l1)/2LD) yields the original signal. The signal ρ0(λ) exp(−j4λ2(−l1)/2LD)

can be regarded as the CS as if the signal is sent backward in the fibre from l = 0 to l = −l1.

As a result, the signal propagation using DPC over the fibre of length L is equivalent to the

propagation of the pre-equalized signal from l = −l1 to l = L − l1. This means that the

pre-equalized signal shrinks in the first l1 meter of the fibre (equivalent to the virtual negative

part of the fibre) and then expands until the end of the fibre.

Let ∆Tl denote the temporal width of the signal when the propagation starts from l = 0 without

DPC. Then, the initial temporal width with DPC would be ∆T−l1 = ∆Tl1 , and it would be

equal to ∆TL−l1 at the end of propagation. Therefore, the maximum symbol duration with

DPC would be max{∆T−l1 ,∆TL−l1}. It is clear that the optimum value for l1 is L/2 because

if the signal is pre-compensated with a value other than L/2, either ∆T−l1 or ∆TL−l1 would

have a value higher than ∆TL/2, and consequently the effective dispersion would always be

higher. As a result, this method effectively reduces dispersion effect such that the effective

dispersion using DPC is the same as that of a fibre with length L/2. Along with increasing the

bit rate, DPC can reduce the peak power of input signal in time domain since the input signal
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is already dispersed at the input of fibre. In other words, the peak-to-average-power (PAPR)

of the signal at the transmitter is reduced with DPC. This is important because lasers have a

limited region of linear operation. Therefore, less PAPR would result in less distortion due to

the laser nonlinearity. Note that DPC method has no effect on the Kerr nonlinearity of fibre,

and these two types of nonlinearity should not be confused.

Since the amount of dispersion increases with bandwidth or fibre length, it is expected that

increasing bandwidth or fibre length would increase the effectiveness of the method because

simply the difference between the dispersion of signal at l = L/2 and l = L increases. The

simulation results for bit rates are compared for systems with and without DPC for different

fibre lengths and signal bandwidth. Here, 64 symbols with 16QAM modulation are considered.

Figure 4.14 shows the achieved bit rates for fibre lengths from 1000 km to 6000 km. The

simulation is performed for a signal with bandwidth of 26 GHz. As expected, the achievable

data rate decreases as the fibre length grows, but data rate is significantly higher with DPC. It

can be seen that the ratio of bit rate with DPC (RDPC) to bit rate without DPC (R) increases

for longer fibre links, and it reaches 1.65 at 6000 km. In Figure 4.15, the ratio RDPC/R is

shown for optical fibre links with lengths 4000 km and 6000 km. As the bandwidth grows,

RDPC/R increases and tends to 2 at large bandwidth (1.98 for 4000 km and 1.99 for 6000 km

at 96 GHZ). Since dispersion is higher for longer fibre, RDPC/R approaches faster to 2 for

length 6000 km. Fig. 4.16 shows the simulation results for PDF of PAPR of input signal for

a fibre link with length 4000 km and signal bandwidth 26 GHz with and without DPC. The

values of PAPR and its variance is significantly decreased with DPC. The average PAPRs are

14dB for the DPC method compared to 27dB without DPC.

Further reduction in noise variance of the nonlinear spectral domain is also expected if DPC

method is used because the received temporal width and the required guard interval are

decreased. Also, it is possible to introduce a complete pre-compensation by performing INFT

on ρ0(λ) exp(+4jλ2L/2LD) at the transmitter side. It is expected that this method further

reduces the noise in nonlinear spectral domain, but the required guard interval would remain

equivalent to the case, in which no dispersion pre-compensation is used.

As a drawback of DPC, the numerical complexity of INFT increases. As the signal is

pre-compensated the bandwidth increases due to the nonlinearity, and also the temporal width
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Figure 4.14: The bit rates for different fibre length at 26 GHz bandwidth
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Figure 4.15: The ratio RDPC/R for 4000 km and 6000 km fibre links

increases because of the dispersion. Therefore, higher complexity (i.e., larger number of

calculation points and resolution in both domains) is required to maintain the same level of

numerical error compared to the non-compensated system.
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Figure 4.16: PDF of PAPR for fibre link of 4000 km and bandwidth 26 GHz

4.6 Summary

Efficient signalling on CS was studied in this section. First, the effect of chromatic dispersion

on NFDM systems was studied. It was demonstrated that the signal bandwidth can be chosen so

that the temporal signal broadening at the end of the fibre is minimized. By correctly selecting

the bandwidth, not only the data rate is maximized, but also the noise variance is minimized

in nonlinear spectral domain. Moreover, three different techniques were investigated for

improving error performance compared to direct mapping on CS. For instance, our analysis

showed that applying a linear filter on CS at the receiver significantly reduces the noise and

improves the BER performance so that 9.6 Gbps can be transferred over 7100 km of fibre by

only mapping the data on CS. The signal bandwidth was considered 26 GHz in our numerical

results, however, data rates beyond values presented here may potentially be achieved by

exploiting higher bandwidth and mapping data on DS as well. At the end a simple dispersion

pre-compensation method was proposed for scenarios, for which using the optimum value

of bandwidth is not possible, and it was demonstrated that data rate increase up to 100% is

possible.
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Effect of polarization mode dispersion on the

continuous spectrum

As stated earlier in chapter 2, a major assumption is needed in the definition of NFT based on

NLSE, which is the absence of randomly varying birefringence or polarization mode dispersion

(PMD). Nevertheless, this is usually not a practical assumption specifically in long-haul optical

fibre systems, where fibres are subject to unavoidable environmental stress (e.g., pressure on

fibres laid on the sea bed). Although expensive polarization maintaining and PMD-free fibres

can be manufactured, current installed fibres often have high PMD factors [98]. Therefore, it

is crucial to investigate the effect of PMD for the newly proposed NFT-based systems. In this

chapter, the optical fibre model including the PMD is reviewed, and the effect of PMD on the

CS is studied analytically and by simulation for the first time. In a few recent related works

polarization multiplexing for NFT-based systems was studied, for DS in [83, 85] and for CS

in [84]. The feasibility of polarization multiplexing using CS was demonstrated in [84] using

Manakov equation. Also, the effect of PMD was studied on such systems by simulation.

5.1 Fibre propagation model in the presence of PMD

Two orthogonally polarized modes (e.g., x and y) can travel through the single mode fibre at the

same time. These modes are degenerate in the sense that their refractive index are identical as

long as the fibre is perfectly cylindrical and free from environmental stress. In real conditions,

fibre is subject to random effects which violate the ideal condition of perfect symmetry. This

causes random variation of the propagation constants (or refractive indexes) as well as the

orientation of two orthogonally polarized modes along the fibre. Consequently, the fields in
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the two polarization states would randomly interact as the light propagates down the fibre. The

random birefringence results in pulse broadening which is referred to as PMD. In addition, the

random change of polarization axes, which may not be a major concern in direct detection,

becomes an issue in coherent communication systems such as NFT-based structures.

Assuming that the nonlinear effects are not large enough to stimulate the intensity dependant

birefringence (nonlinear birefringence), the coupled nonlinear Schrödinger equation for

constant linear birefringence are expressed as [102, 144]

∂U

∂l
= −∆β1

∂U

∂τ
− j 1

2
β2
∂2U

∂τ2
+ jγ

(
|U |2 +

2

3
|V |2

)
U (5.1a)

∂V

∂l
= +∆β1

∂V

∂τ
− j 1

2
β2
∂2V

∂τ2
+ jγ

(
|V |2 +

2

3
|U |2

)
V (5.1b)

where U ≡ U(τ, l) and V ≡ V (τ, l) are the slowly varying complex envelope of optical fields

in the two orthogonal polarization directions. The coupled nonlinear Shcrödinger equations

(CNLSE) (5.1) are derived for the practical physical case of small beat length compared

to the other length scales (i.e., nonlinearity, chromatic dispersion, and polarization induced

differential group delay), for which the effect of rapid variations due to the birefringent beating

is cancelled out by averaging over the rapidly varying term (containing exp(±∆β0l)) [102].

This condition is almost always satisfied for practical scenarios of optical fibre communication.

In (5.1), 2∆β1 is the inverse group velocity difference between two polarizations and is

randomly varying along the fibre.

Propagation of signal along the fibre accounting for random birefringence and PMD can be

modelled by considering (5.1) for random ∆β1. In order to include random alteration of

polarization directions, the fibre is split into segments of correlation length lc (the length

over which two polarization components remain correlated), and at each segment the fields

are rotated randomly by a unitary complex rotation matrix as

U(τ, l + lc)

V (τ, l + lc)

 =

 cos(θ) sin(θ)ejφ

− sin(θ)e−jφ cos(θ)

U(τ, l)

V (τ, l)

 (5.2)

where −π ≤ θ ≤ π and −π/2 ≤ φ ≤ π/2 are uniform random variables. Therefore, if the

initial signal is polarized in one of the orthogonal polarization states, about half of the energy
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is coupled to the other polarization state at the end of a sufficiently long fibre link. Note that

the split-step Fourier method can be easily modified for numerical evaluation of CNLSE (5.1).

It is only needed to include the term proportional to ∆β1 in the dispersion operator (see section

2.3.1) and include the rotation (5.2) at the proper length steps.

5.2 Effect of PMD on CS

The NFT is defined based on single-polarization transmission without PMD, and this is an

inherent assumption in all the research on the NFT-based systems. Here, we intend to study

the PMD effects on such NFT-based system, specifically the CS1. Based on (5.1), even if the

signal is transmitted only in one of the orthogonal polarizations, almost half of the energy is

coupled to the other polarization mode at the receiver. Therefore, some kind of compensation

is essential which reverses this random process. For linear scenarios, several techniques are

proposed which require finding the principal polarization states and compensating the delay

between two polarization modes [145, 146]. However, there is no straightforward method for

compensating the polarization effects in the presence of nonlinearity [102]. Thus, we use the

ideal linear all-order PMD compensation method here. It should be mentioned that we expect

such a linear PMD compensation method to work reasonably well for the CS because, in the

absence of soliton component, the large dispersion would push the system to near linear regime

after propagating over an initial distance over the fibre.

5.2.1 Linear all-order PMD compensation

In linear case, the effect of PMD in the fibre is modelled as a concatenation of randomly

oriented birefringent segments, which can be represented by frequency dependent Jones

matrices as [145]

A(ω) =

K∏
k=1

Ak(ω), (5.3)

1Note that it is possible to redefine NFT (in vector form) for the polarization multiplexed system using the
Manakov equation [37, 83, 84], but even in that case the random perturbation effect of PMD should to be studied
separately.
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where

Ak(ω) =

eiω∆β1klc 0

0 e−iω∆β1klc


 cos(θk) sin(θk)e

jφk

− sin(θk)e
−jφk cos(θk).

 (5.4)

Obviously, in the absence of nonlinearity (γ = 0 in (5.1)), multiplication of A−1(ω) in the

fields at the receiver would recover the signal as if no PMD exists [145]. This is called all-order

PMD compensation and requires channel state information or, in other words, the matrix A(ω)

at every frequency. However, when the nonlinearity is not negligible, part of the energy would

remain in the other orthogonal polarization state since the linear PMD compensation, even the

all-order method, would not be totally effective.

As stated earlier, to the best of our knowledge, a PMD compensation method for coherent

nonlinear fibre channel is not available yet. Thus, we use all-order linear PMD compensation

method for the NFT-based system in Figure 3.1. A dual polarization coherent optical receiver

is needed as shown in Fig. 5.1. Then, PMD compensation is performed digitally, shown by the

polarization mode dispersion compensation (PMDC) block in Figure 5.1, as

ÛL(ω)

V̂L(ω)

 = A−1(ω)

UL(ω)

VL(ω)

 (5.5)

where UL(ω) and VL(ω) are the fields in frequency domain. It is assumed that the matrix

A(ω) is already available at the receiver by some estimation method, such as, estimation using

a training sequence. Any kind of imperfect or distorted estimation (e.g., due to ASE noise)

of channel matrix A(ω) leads to another channel matrix Ã(ω) = A(ω) + ∆A(ω), where

∆A(ω) is the estimation error. Therefore, and additional source of performance degradation

will be added to the system by imperfect channel estimation. In this chapter, we assume that

the channel estimation is error-free. Assuming that input optical signal is linearly polarized

in the x direction, the output of PMDC block qL(t) is chosen as IFFT[ÛL(ω)] (after proper

normalization according to (2.9)). The rest of the system is identical to conventional structure

in Figure 3.1. Our purpose is to study the effect of PMD after such compensation.
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Figure 5.1: Block Diagram of a NFT-based system with PMD compensation.

We use the relation DP = 2∆β1

√
8lc/3π to determine average value of ∆β1 [144]. For

demonstration purpose, the outputs of blocks in Figure 5.1 are shown in Figure 5.2, for a

simple simulation with PMD parameter DP = 0.4 ps/
√

km for a 16QAM modulated CS

signal over the length of L = 2000 km of fibre. In this chapter, T0 = 0.25 ns is chosen, and

signal bandwidth is 52 GHz.
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Figure 5.2: (a) Received signals in two polarization before PMDC. (b) Signals in two polarizations
after PMDC.

During the propagation of signal along the fibre, the birefringence causes the signal energy

to transfer to the other polarization state. Almost half of the signal energy would be coupled

into the non-original polarization state. Thus, before any PMD compensation, each of the

received two polarization components consist almost equal energies. Then, by applying the

linear all-order PMD compensation, most of the signal energy is recovered at the original

polarization state, and only a small portion of energy remains in the other polarization state as

a result of nonlinearity. However, the recovered CS is slightly distorted which may affect the

performance of the system. In the following subsections, the distortion caused by nonlinearity
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Figure 5.3: Continuous spectrum after PMDC in comparison to PMD-free case.

after the PMDC is investigated on different types of modulation formats.

5.2.2 Single-level modulation

Without nonlinearity the all-order linear PMD compensation perfectly reverses the effects

of PMD. However, when the nonlinearity is not negligible some effects of the PMD remain

uncompensated. Therefore, it can be assumed that the scaler channel mode, defined by NLSE,

is valid but is perturbed by the uncompensated effects of PMD as a consequence of nonlinearity.

As a result, we consider a modified NLSE given by

jqz(t, z) = qtt(t, z) + 2|q(t, z)|2q(t, z) + n(t, z) + h(t, z), (5.6)

where h(t, z) is the small perturbation term as a result of interactions of nonlinearity and PMD.

Our simulation results, which will be presented later in this section, show that the impact of

PMD depends on the link parameters and signal itself. Apart from the fibre specifications (such

as PMD parameter Dp), the perturbation term depends on the fibre length as well as signal

amplitude at symbol points |ρ0(λk)|Kk=1 (i.e., the sequence of amplitudes of input symbols),
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and thus we assume h(t, z) follows the model

h(t, z) = G(z, |ρ0(λk)|Kk=1)q(t, z) + e(t, z). (5.7)

Here, the real deterministic function G(z, |ρ0(λk)|Kk=1) represents the dependence

of perturbation to the fibre length and input symbols at λk
1 (input energy). Also,

signal-independent term e(t, z) shows the noise-like error after linear all-order PMD

compensation, due to the random nonlinearity and PMD, which has an effect similar to

the ASE noise. Such a model for PMD effects is based on our observations, and it will be

demonstrated later in this chapter that this model agrees with the simulation results.

First, the effect of first part of the perturbation term in (5.7) (i.e., G(z, |ρ0(λk)|Kk=1)q(t, z))

is investigated, and then the effect of error e(t, z) is added. In single level modulation

formats (i.e., all symbols have the same amplitude, such as QPSK), G(z, |ρ0(λk)|Kk=1) can

be represented by a function which only depends on the fibre length PE(z) for a fixed signal

energy E. It is expected that even in single-level modulation the effect of PMD would be more

significant for larger energies. Therefore, the perturbed NLSE (without ASE noise n(t, z) and

error e(t, z)) is expressed as

j
∂q(t, z)

∂z
=
∂2q(t, z)

∂z2
+ 2[|q(t, z)|2 +

1

2
PE(z)]q(t, z). (5.8)

In [147], it was demonstrated that for inhomogeneous media (e.g., propagation of

electromagnetic waves in an inhomogeneous plasma) the NLSE is also defined in the

same form as in (5.8). It was shown that for the real function PE(z) that the inverse

scattering method holds without major modifications. After some simple manipulation of

Zakharov-Shabat eigenvalue problem and the corresponding evolution problem, the evolution

of CS can be derived as [100, 147]

ρL(λk) = ρ0(λk)e
−4iλ2kz+ψP (z),

1In this chapter, λk ∈ R is the nonlinear frequency at symbol points and should not be mistaken with
eigenvalues λm ∈ C+

100



Chapter 5. Effect of polarization mode dispersion on the continuous spectrum

where

ψP (z) = −i
∫ z

0
PE(ζ)dζ.

Therefore, for the small perturbation term h(t, z), the effect of first part of the perturbation

term in (5.7) can be modelled as an additional phase shift of the CS. Consequently, when noise

n(t, z) and error e(t, z) are included, the channel model for the CS signal after linear dispersion

compensation according to (2.26) is expressed as

ρ̃L(λk) = ρ0(λk)e
ψP (z) + η′L(λk)

where η′L(λ) describes the combined effect of noise and error in the nonlinear spectral domain

which is signal dependent as discussed in chapter 3.

Thus, the effect of PMD on CS in single level modulation format can be described as an energy

and distance dependent phase shift and a contribution to the additive signal dependent noise in

CS. In order to validate this model, a simple simulation is performed here in noise-free case

(n(t, z) = 0). Channel parameters are the same as before (DP = 0.4 ps/
√

km and L = 2000).

The received symbols are demonstrated in Figure 5.4 for two different launch powers. It is

observed that the constellation diagram is rotated as a result of the phase shift ψP , and the

symbols are received with random errors caused by e(z, t). Moreover, it can be seen that

both the value of phase shift and noise cloud are larger for higher launch power. The direct

dependence of PE(z) to the signal power or energy is confirmed by such an observation.

In this chapter, we evaluate the performance degradation, as a results of ASE noise or PMD,

by error vector magnitude (EVM) which is defined as

EVM =

√
1
I

I∑
i=1
|Di

L −Di
0|2

|Dmax
0 |

(5.9)

for total number of simulation samples I . Here, Di
0 and Di

L respectively represent the ith

transmitted and received symbols. In (5.9), |Dmax
0 | is the maximum symbol amplitude in the

constellation. Table 5.1 shows the average EVM and average rotation angle of the constellation

diagram. It is observed that both quantities increase for larger values of power and fibre length.

Therefore, both effects of PMD on CS and their dependence to the power and fibre length are
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Figure 5.4: Detected symbols after PMDC and NFT operation for QPSK modulation at launch powers
(a) -9 dBm and (b) -6 dBm. Blue circle are the detected symbols, black pluses are the original symbols,
and red crosses are mean values of detected symbols.

confirmed for single level modulation.

Table 5.1: The average EVM and average rotation angle of the constellation ψP for QPSK modulation
format with launch powers -9 and -6 dBm for DP = 0.4 ps/

√
km.

L = 1000 [km] L = 2000 [km]
P [dBm] ψP [Rad] EVM [%] ψP [Rad] EVM [%]

-9 0.0306 3.18 0.0387 3.99
-6 0.0812 8.55 0.1026 10.77

5.2.3 Multi-level modulation

In the perturbation model presented for single level modulation, the term G(z, |ρ0(λk)|Kk=1)

was expressed by PE(z) because the symbol amplitude were identical. It was confirmed

by simulation that such model can describe effects of PMD on the CS at least in the range

of interest. However, in multi-level modulation (i.e., symbols have different amplitudes,

such as 16 QAM), such assumption is no longer valid, and consequently, the general

form G(z, |ρ0(λk)|Kk=1) should replace PE(z) in (5.8). Thus, the analysis in [147], is not

straightforward any more, and major modifications are required for application of inverse

scattering method. Since such problem is cumbersome and the purpose of this chapter is to

only provide an understanding of the effect of PMD, the simulation results are presented here
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for a 16QAM modulation format. Figure 5.5 shows the received symbols after 2000 km of

fibre length with PMD parameter DP = 0.4 ps/
√

km. It is observed that similar to the QPSK

format, the effect of PMD depends on the launch power. Also, it can be seen that the rotation

angle of the constellation diagram and noise cloud size depend on the symbol amplitude as

well as launch power.
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Figure 5.5: Detected symbols after PMDC and NFT operation for 16QAM modulation at launch
powers (a) -9 dBm and (b) -6 dBm. Blue circle are the detected symbols, black pluses are the original
symbols, and red crosses are mean values of detected symbols.

For more detailed investigation, average EVM and average rotation angles of constellation are

calculated for three different symbol amplitudes in 16QAM modulation format, shown by rj ,

where j = 1, 2, 3 determines the ring associated for each amplitude. The definition of EVM

for each ring is

EVMj =

√
1
Ij

Ij∑
i=1
|Dij

L −D
ij
0 |2

|Dmax
0 |

(5.10)

where Ij is the total number of the simulation samples for corresponding ring j. The results

presented in Table 5.2, indicate that both quantities directly depend on the symbol amplitude

as well as power and fibre length.

The observations in this section suggest that the effects of PMD in multi-level modulation

format are similar to the single level modulation format with the exception that phase shifts are

103



Chapter 5. Effect of polarization mode dispersion on the continuous spectrum

Table 5.2: The average EVM and average rotation angle ψP for 16QAM modulation format with
launch powers -9 and -6 dBm for DP = 0.4 ps/

√
km and L = 2000 km.

P [dBm] ψP [Rad] EVM [%]
r1 r2 r3 r1 r2 r3

-9 0.0424 0.0442 0.0466 1.55 3.41 4.8
-6 0.1004 0.1093 0.1178 3.61 8.5 12.45

dependent to the instantaneous CS signal amplitudes, and the channel model is given by

ρ̃L(λk) = ρ0(λk)e
ψP (z,ρ0(λk)) + η′(λk), (5.11)

which shows that the phase shift ψP (z, ρ0(λk)) is generally dependent to the fibre length and

symbol amplitude. However note that, unlike the single level modulation format, this model

for multi-level is not necessarily regarded as a solution of NLSE perturbed by PMD.

5.2.4 Detection in the presence of PMD

In previous subsections, it was demonstrated that, after the all-order linear PMD compensation,

the CS signal is affected by a constellation rotation as well as a noise-like error as a result

of PMD. The error part is combined with the ASE noise and will be investigated in the

next section. The constellation rotation however can be estimated for a communication link

before data transmission because it only depends on the constant PMD parameter associated

to the particular link and transmission system. Therefore, the decision boundaries can be

modified accordingly as schematically depicted in Figure 5.6 for QPSK modulation format.

Note than only the treatment of the effect of phase rotation is studied in this section. For

a single level modulation, the boundaries are rotated equal to the ψP estimated for the

specific link parameters as shown in Figure 5.6. For the multi-level modulation, such as

16QAM, the boundaries should be determined based on the dependence of rotation angle to

the symbol amplitude. Since the phase shift induced by PMD increase for higher symbol

amplitudes, the decision boundaries deviate more from straight lines as the symbol amplitudes

grow. Derivation of the modified decision boundaries for 16QAM modulation format requires

complex calculations, as also discussed in [148] for the phase noise generated by nonlinearity.

Therefore, either Maximum-Likelihood detection is applied at the receiver or pre-rotation of

the constellation points at the transmitter is considered given the average rotation of each
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constellation point is known.

Figure 5.6: Decision boundaries for QPSK modulation formats in presence of PMD and after linear
all-order compensation. (The figure are only for demonstration and are not based on actual data or
simulation.)

Although the decision boundaries can be modified or Maximum-Likelihood detection can be

employed at the receiver to compensate the effect of constellation rotation, a simpler way is

to pre-compensate such effect by rotating the constellation at the transmitter backward with

proper angles at each symbol amplitude. Since the rotation angle only depends on the specific

link parameters (e.g., fibre length and PMD parameter), such approach can be applied assuming

that the rotation angles are known at the transmitter for each symbol amplitude. Later, in the

section 5.3.2, the combined effects of ASE noise and PMD are studied with assumption that

required information is available and compensation is conducted at the transmitter.

5.3 Numerical analysis

In this section, the effect of PMD for different fibre lengths and PMD parameters are

investigated. Also, system performance is studied when the signal is affected by both ASE

noise and PMD.
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5.3.1 Effect of PMD for different fiber lengths and PMD parameters

It was demonstrated in previous section that larger power leads to increased effect of PMD due

to higher nonlinearity. Likewise, it is expected that PMD effects on the CS channel are more

severe for longer fibre length or larger PMD parameter. We investigate this by simulation.

The 16QAM modulation format and -6dBm launch power is chosen. Fibre length and PMD

parameter are changed, and the resulted average rotation angle of the constellation diagram and

EVM (average on all amplitudes) are measured. The results are demonstrated in Fugures 5.7

and 5.8, where it is confirmed that the average value for both EVM and ψP increases for longer

fibre or larger DP . Note that for simulations in this chapter a CS signal containing K = 64

randomly modulated symbols is transmitted through the fibre 100 times. In other words, 6400

samples are used for each measurement.
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Figure 5.7: Average rotation angle for different fibre lengths and PMD parameters for 16QAM
modulation and -6dBm launch power.
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Figure 5.8: Average EVM for different fibre lengths and PMD parameters for 16QAM modulation and
-6dBm launch power.

It is observed that EVM and ψP follow similar trends. It can be seen that the figures can be

divided in two parts, for which PMD effect linearly increases with DP . We call the scenarios

with DP ≤ 0.2 ps/
√

km the low PMD and otherwise high PMD. This threshold can be related

to nonlinearity, which means that the effect of PMD is almost constant for low PMD case

where effect of nonlinearity is minimal, and it increases linearly with DP for high PMD

case. The other interesting observation is that the difference between the 1000-km link and

2000-km link is larger than the difference between the 2000-km and 3000-km links. This

effect can be explained by taking into account the effect of the chromatic dispersion. As the

fibre length grows, the signal in time domain is dispersed more, and its amplitude is reduced.

As a consequence, the impact of nonlinearity is smaller. In other words, it may be expected

that the influence of PMD does not increase after an asymptotically long fibre length, in case

of using the linear all-order PMD compensation.

5.3.2 Effect of PMD in the presence of ASE noise

The effect of PMD on the CS signal was studied in previous sections without including the ASE

noise. The rotation of the constellation diagram can be compensated by pre-compensating at

the transmitter because for a fixed link parameters the average rotation angle can be assumed

to be known or estimated in a NFT-based optical fibre communication system. In this section,

107



Chapter 5. Effect of polarization mode dispersion on the continuous spectrum

we assume that such information is available, and the rotation of constellation diagram is

compensated at the transmitter. We intend to study the combined effects of ASE noise and

PMD by measuring the average EVM by simulation. Obviously, for multi-level modulation

formats, the performance is degraded in case the average rotation angles are unknown and

pre-compensation is impossible. Again, DP = 0.4 ps/
√

km is considered as the PMD

parameter of optical fibre. Apart from sampling the CS for detection, equivalent to direct

signalling on CS in chapter 4, the performance with the linear filtering method introduced in

chapter 4 is also presented, which is expected to improve the performance. The results are

presented in Table 5.3.

Table 5.3: Average EVM after pre-compensation for different fibre lengths L [km] and launch power
Pin [dBm].

Sampling Filtering
Pin L PMD ASE ASE+PMD PMD ASE ASE+PMD

-9
1000 0.83 9.97 10.22 0.81 4.21 4.31
2000 0.95 17.3 17.54 0.92 6.09 6.14
3000 1.01 24.77 25.36 0.98 8.82 9.04

-6
1000 2.73 11.41 11.85 2.53 4.37 5.09
2000 3.14 20.96 21.97 2.93 6.46 7.19
3000 3.33 31.96 33.43 3.08 10.86 11.63

It can be seen that the average EVM values for only PMD are much smaller than the values

obtained for only ASE noise. However, PMD definitely affects the overall system performance

because the EVM values including both PMD and noise are always larger than noise-only case.

As expected, the average EVM increases for higher power or longer fibre. The linear filtering

method has marginal effect on the PMD alone but significantly improves the performance in

presence of ASE noise, with or without PMD. For the linear filtering method here, 18 samples

per symbol are calculated by NFT. We infer that, while the effect of noise is generally dominant,

the impact of PMD definitely should be taken into account particularly for long-haul optical

fibre links. It can be seen in Table. 5.3 that the average EVM for the ASE+PMD case is smaller

than the addition of average EVMs for cases when only one of the effects exists. This implies

that there is a correlation between the error originated from PMD and ASE. Note that the values

shown in Table 5.3 are obtained including the pre-compensation of constellation rotation. As

an example, without such compensation and any other modified detection according to the

PMD induced phase shift, average EVMs are equal to 23.02 and 9.86, respectively for direct
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sampling and linear filtering, for Pin = −6 dBm and L = 2000 km for ASE+PMD case.

This happens because the EVM in this case is calculated considering the original unrotated

constellation points.

5.4 Summary

In this chapter, the effect of PMD, as an inevitable phenomena in long-haul optical fibre

communication, on the CS channel was studied. Due to lack of effective PMD compensation

method for nonlinear fibre link, the ideal linear PMD compensation method was exploited. It

was demonstrated that, although the energy is returned to the original polarization using this

method, the CS signal is affected by the interaction of nonlinearity and PMD which is not

compensated by the all-order linear PMD compensation method. A perturbation model was

used for single and multi-level modulation formats to understand the impact of PMD after

the proposed compensation. A constellation rotation as well as noise-like error was observed

for the CS channel. The results were confirmed by simulation, and different scenarios were

examined in terms of average rotation angle and EVM. It was also shown that the effect of noise

is dominant even in presence of PMD, but, for long-haul systems, evaluation the PMD surely

should be considered since it degrades the performance and require extra signal processing.
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Achievable data rates for soliton communication

This chapter investigates the achievable data rates for nonlinear optical fibre channel with

soliton amplitude modulation. First, the capacity in bits per symbol is numerically calculated

using VNT and based on the signal dependent noise model for the imaginary part of eigenvalue

(i.e., soliton amplitude) calculated by NFT. Physical constraints such as limited bandwidth,

peak power, and temporal window, are also included in the analysis. By considering the

dominant factor of timing error (i.e., the Gordon-Haus effect) a guard interval is defined, which

allows us to calculate achievable rates in bits per second. At the end, a NFT-based system is

studied in which data are mapped on CS as well as eigenvalues.

Bounds for the nonlinear optical fibre channel with only a single eigenvalue, which is

equivalent to soliton communication, have been derived in [53, 57–60]. In these works,

however, information rates in bits per second were not presented. Also, some intrinsic

limitations, such as dependence of bandwidth on the amplitude, were ignored. In [54],

spectral efficiency of coherent soliton communication was estimated by optimizing ratio of

the pulse width to the bit slot. More recently, the performance of communication system

using only a single eigenvalue was studied in [71]. A multi-level modulation format was used

for modulating data on norming constant and optimization techniques were exploited which

resulted in 6 bits/symbol rate at 24 Gbps over 1000 km. However, the capacity and achievable

data rates for soliton amplitude communication is still unknown which is addressed in this

chapter.
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6.1 Soliton communication with amplitude modulation

For the DS, data can be mapped on the amplitude and phase of eigenvalues and norming

constants. Here, we assume that the data is mapped only on the imaginary part of the single

eigenvalue (i.e., soliton amplitude), which makes the system equivalent to the conventional

soliton communication discussed in section 1. However, we look at this type of optical fibre

communication from a NFT point of view. In other words, the estimation of capacity for soliton

communication with amplitude modulation, which is still an open problem, is an step forward

to find the capacity of nonlinear optical fibre through the NFT framework.

In order to estimate the achievable data rates, first, the noise variance predicted by perturbation

theory [131] is validated by simulation. The VNT is then applied to transform the channel

defined for soliton amplitudes into an AWGN channel. Capacity is estimated in bits per

symbol taking into account physical limitations, such as bandwidth and peak power constraints.

Finally, by considering the dominant factor of the timing error and determining an appropriate

guard time, data rates in bits per second are estimated.

6.1.1 Channel Model

If only one eigenvalue exists at z = 0 and ρ(λ, 0) = 0, the solution of the NLS equation has an

analytical form [100]

q(t, z) = 2ηe−2iζt+4i(ζ2−η2)z−i(argC1+π/2)sech(2ηt− 8ηζz − 2δ). (6.1)

where λ1 = ζ + iη is the only eigenvalue (η > 0). Also, we have e2δ = C1
2η where C1 is

the norming constant corresponding to the eigenvalue λ1. For single soliton communication,

we assume that discrete spectrum only consists one point (M = 1) for each transmission, and

the data symbol is mapped on the imaginary part of the eigenvalue A = ={λ1} > 0 (soliton

amplitude, or soliton energy). Assuming argC1 = −π/2, δ = 0 and ζ = 0 the initial single

soliton pulse is expressed as

q(t, 0) = 2A sech(2At). (6.2)
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The input signal q(t, 0) is launched into the fiber. After propagation along the fiber and addition

of ASE noise, the NFT is applied on the received noisy signal to recover the received value of

data symbol Ā which is the imaginary part of the eigenvalue calculated by NFT.

The conditional PDF pĀ|A(ā|a) is non-Gaussian with signal-dependent variance [131]. Some

works proposed distributions such as Chi-squared to describe the non-Gaussian noise [59,

60, 131]. However, as described in section 6.1.2, our analysis only requires the first and

second moments of the noise description regardless of the exact PDF. Based on the first order

perturbation theory [53, 57, 58], first two conditional moments of the received symbol Ā are

approximated as

µĀ(A) = E{Ā|A} ' A, (6.3)

σ2
Ā(A) = E{

(
Ā− E{Ā|A}

)2 |A} ' σ2
NA, (6.4)

where the accumulated noise power spectral density at the fibre length l = L is (see (2.11))

σ2
N =

1

2
σ2 L

2LD
=
αhν0KTγLDL

2T0
. (6.5)

We conduct numerical simulations here to confirm the theoretical relationship between the

moments given in (6.3)-(6.5). The split-step-Fourier method is used for simulating the

propagation of perfectly separated single solitons over L = 2000 km of fibre with 200-meter

steps and T0 = 0.1 ns. Noise variance on the imaginary part of eigenvalue after NFT is

shown in Figure 6.1 for different values of A. It can be seen that the relationship between the

moments of the noise is well predicted by the perturbation theory.

The eigenvalues are calculated using NFT here. Unlike conventional soliton communication, in

which direct detection is used, the NFT is a general tool that can be used to detect other degrees

of freedom, such as norming constant, if they are used for data modulation. However, the

soliton amplitude can be detected using other methods as well. The simplest way is sampling

the received soliton at its time centre, yet this requires precise evaluation of time centre. Due

to the timing jitter (Gordon-Haus effect [49]) additional signal processing is needed, and also

filtering the noise out of signal’s bandwidth is also essential. Nonetheless, soliton amplitudes

can be detected efficiently by calculating the energy of received pulse since the energy of
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Figure 6.1: Noise variance on the imaginary part of eigenvalue.

soliton pulse is equal to 4A using (6.2). Energy detection results are almost the same as NFT,

and simulated noise variance fits the perturbation theory perfectly similar to the NFT results

in Figure 6.1. The histogram of detected soliton amplitudes are shown in Figure 6.2 using

either NFT or energy detection. The signal-dependency of noise can be clearly observed in

Figure 6.2, but the non-Gaussianity is not obvious, probably because of the moderate fibre

length or soliton amplitude. However, the Kolmogorov-Smirnov test with significance level

5% is applied for the observed data (shown as histogram in 6.2), and the test decision is 1 for

all the input amplitudes. The test decision 1 corresponds to the state that the test rejects the

null hypothesis that the observed data comes from a Gaussian distribution. In other words, the

distribution of the observed data is not Gaussian.

6.1.2 Capacity

In soliton communication, apart from an average energy constraint, a peak amplitude constraint

should also be considered because the signal bandwidth is directly related to the soliton

amplitude (see (6.1)). Moreover, in practical scenarios, peak power is also a constraint due

to device limitations. On the other hand, there is a minimum amplitude constraint because

the temporal width is inversely related to the soliton amplitude, and it tends to infinity when

A→ 0.
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Figure 6.2: Histogram of received soliton amplitudes for transmitted amplitude A = 1, 2, 3, 4 from left
to right, respectively.

The capacity problem for soliton communication with modulation on the soliton amplitude is

defined as

C , sup I(A; Ā)
pA(a):E{A}≤EA/4, supp{A}=[Amin,Amax]

, (6.6)

where I(A; Ā), Amin, and Amax are respectively the mutual information, minimum amplitude,

and maximum amplitude. We also define the signal-to-noise ratio as ρ = EA/σ
2
N where EA is

the average input energy. Note that the energy of soliton pulse, as in (6.1), is equal to 4A.

Following section 3.4, we use VNT [132] to make the capacity analysis more tractable. Recall

that, the VNT T (·) should be applied on the random variable Ā, with mean A and variance that

can be written as a function of its mean as σ2
Ā

(A). The normalized random variable Y = T (Ā)

has then the statistics of σ2
Y ' 1 and µY ' T (A) for sufficiently large values of A. Also, the

PDF of Y tends to Gaussian as demonstrated for a family of non-Gaussian PDFs in [134] and

for the continuous spectrum of nonlinear optical fibre in section 3.4. Based on (6.4), the VNT
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is calculated as

T (u) =

∫
1√
σ2
Nu

du =
2

σN

√
u, (6.7)

which is similar to the Square-root transform previously used for the Poisson channel in [132,

135, 136].

The block diagram of channel using VNT is demonstrated in Figure 6.3, in which data is

mapped on the variable X = T (A). Consequently, the input soliton amplitude is A =

T−1(X) = σ2
NX

2/4. After propagation of the corresponding soliton pulse according to NLSE

and recovering Ā using NFT, the VNT is applied to obtain the noisy version of the transmitted

signal X as Y = X + Γ, where Γ ∼ N (0, 1), meaning that the equivalent channel between X

and Y is an AWGN channel. In lemma 1 in section 3.4, it was proved that I(X;Y ) = I(A; Ā)

for the system in Figure 6.3. Therefore, the optimization problem for the capacity in (6.6) can

be expressed as

C = sup I(X;Y )
pX(x):E{X2}≤ρ, supp{X}=[Xmin,Xmax]

. (6.8)

where, Xmin = T (Amin), and Xmax = T (Amax).

T−1(·) pĀ|A(ā|a) T (·)X A Ā Y

Figure 6.3: Block diagram of the system using VNT.

The problem (6.8) can be solved using the algorithm presented in [138] for the AWGN channel

with peak and average power constraint, where it was proved that the capacity-achieving

distribution is discrete with a finite number of mass points. The obtained capacity for different

values of Xmax and Xmin = 0 is shown in Figure 6.4. As expected, higher capacities are

achieved for larger Xmax. It should be noted that for a fixed ∆X = Xmax−Xmin the capacity

saturates to a fixed value at high average power, but the power in which the saturation occurs

differs for different values of Xmin. The best lower bound recently derived in [59, Fig. 5] is

also included in Figure 6.4. About 4 dB gain in signal-to-noise ratio is observed for almost

all values of capacity compared to the Half-Gaussian distribution considered in [59]. Also, the

capacity achieving input distribution is shown in Figures 6.5 and 6.6 for Xmax = 20, which

tends to uniform distribution for large values of ρ.
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Figure 6.5: Capacity achieving distributions for fixed Xmax = 20.

The average power can not be larger than the peak power determined by the peak amplitude

constraint. Therefore, for sufficiently large average power constraint, where the capacity is

limited by peak power instead of average power, we have

C ≤ CPP = sup I(X;Y )
pX(x): supp{X}=[Xmin,Xmax]

. (6.9)
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Figure 6.6: Capacity achieving distributions for fixed Xmax = 20.

As it is observed in Figure 6.5, the capacity-achieving input distribution tends to uniform

distribution for large values of ρ relative to ∆X , and thus the capacity CPP can be estimated

by the information rate for a uniformly distributed input [138].

CA = log
∆X√
2πe

. (6.10)

The solution of problem (6.8) for large values of ρ, where average power constraint is inactive

(CPP which is equivalent to C at saturation point in Figure 6.4), is shown in Figure 6.7 as well

as CA for different values of ∆X . It can be seen that, while being a lower bound, CA tends to

CPP for large values of ∆X .

6.1.3 Achievable Rates

The statistical model in (6.3)-(6.5) is derived based on the assumption that there is no soliton

interactions due to timing error. Therefore, the temporal window should be defined based on the

shift of the time center of soliton pulse due to noise, so that such interactions are avoided. The

temporal width of the original input pulse is equal to 3/A, calculated for the interval consisting

99.5% of the energy of soliton pulse (6.1). The temporal window required for input A is then

defined as

Tw(A) = 3/A+ 2Tg(A), (6.11)
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Figure 6.7: Capacity for large average power and different ∆X .

where 2Tg(A) is the required guard time. By properly defining Tg(A), it can be assumed that

neighboring soliton pulses will not interact with each other.

We define such guard time by taking into account the dominant factor of timing error (i.e.,

Gordon-Haus effect [49]). Centre of time for a soliton pulse is derived as Tc(A,L) =

1
2A ln |C1(λ1,L)|

2A [36]. The dominant factor of the noise on the logarithm of the amplitude

of norming constant ln |C1(λ1, L)| is modelled as a Gaussian process N (0, 4σ2L3A3/9L3
D),

obtained via perturbation theory [49, 57]. Therefore, for the centre of soliton pulse, we have

E{Tc(A,L)2} =
2αhν0KTγ

9LDT0
L3A. (6.12)

Assuming that the noise on the norming constant C1(λ1, L) is Gaussian [49, 53, 57], the guard

time Tg(A) is defined as Pr{Tc(A,L) > Tg} < ε for amplitude A, where the parameter ε

determines the probability that the soliton pulse moves beyond the defined guard time. Thus,

we have

Tg(A) ≥
√

4αhν0KTγ

9LDT0
L3A erfc−1(2ε). (6.13)
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Considering (6.13), the soliton width 3/A is smaller than or equal to 2Tq(A) for

A ≥ 3

√
81LDT0

16αhν0KTγL3 erfc−1(2ε)
, (6.14)

which indicates that 2Tg(A) ≥ 3/A for A ≥ 0.015 for long-haul fibre links L ≥ 1000 km.

Therefore, the soliton width is not the dominant factor in determining the temporal window,

and the guard time (i.e., the timing jitter) limits the achievable data rate.

Assuming that Amax is given based on the available bandwidth of the channel, we first need to

find the optimal Amin which maximizes the achievable data rate R. The choice of Amin along

with given Amax determine both the capacity in bits per symbol and the temporal window. We

define the achievable data rate as R = C/Tw, where Tw = E{Tw(A)} is the average temporal

window calculated using (6.11) and (6.13) based on the capacity achieving distribution in (6.6).

The maximum achievable data rates are obtained using Algorithm 1 considering enough large

average power constraint, for which the capacity is derived from (6.9).

Algorithm 1 Find the maximum achievable rate
1: R = 0;
2: for Amin = 0+ to Amax do
3: Find CPP for ∆X = T (Amax)− T (Amin);
4: Calculate Tw for the input distribution found in step 3;
5: if R < C/Tw then
6: R = C/Tw;
7: end if
8: end for

Figure 6.8 demonstrates the achievable rates as a function of fibre length for different available

channel bandwidth obtained using Algorithm 1. In Figure 6.8, bandwidth (BW) is defined

based on 99.5% of energy, which is equal to 1.214A for soliton pulse (6.1), and ε = 0.001

is assumed. It can be seen that, as expected, higher bandwidth results in larger achievable

data rates, and longer fibre length decreases the achievable data rates. For instance, 52.5 Gbps

is achieved for 4000 km and 100 GHz. Note that these values are based on CPP or, in other

words, operation at saturation points in Figure 6.4, which do not require infinitely large powers.

Achievable data rates without timing jitter is also shown in Figure 6.8. A huge gap is observed

for achievable rates with and without timing jitter particularly in long fibres. Two different
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Figure 6.8: Achievable data rates for soliton communication with and without considering timing error.

points are deduced from this observation. One is that achievable data rates can potentially

increase significantly if some efficient method is developed for suppressing the timing jitter.

On the other hand, Figure 6.8 shows that without including the timing jitter (as in some of

previous works) the estimated achievable data rates are far from practical implementation.

Note that the obtained data rates in this section are for the single soliton communication only.

Finding the achievable rates for multi-eigenvalue communication as well as other signalling

methods such as combined discrete and continuous spectrum modulation is left for future

investigation.

6.2 Feasibility of communication system utilizing discrete and

continuous spectra

In previous chapters, the CS channel was studied comprehensively, and in previous section the

capacity of single soliton communication was estimated. Thus, it seems natural to examine the

possibility of transmitting both CS and DS simultaneously. Here, we consider transmission of

a 32 bit pseudo-random data stream which is first demultiplexed into continuous (30 bits) and
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discrete (2 bits) spectral data streams. The continuous spectral data is modulated using pulse

amplitude modulation (PAM) scheme with 8 levels (8PAM) over a sequence of 10 Gaussian

pulses, and the discrete spectral data is modulated using OOK on two specific eigenvalues

(λ1 = 1j and λ2 = 2j). Eigenvalues are detected directly after the NFT block, while a

matched-filter is utilized for data recovery for the continuous spectrum. Examples of time

domain signal qL(t) are shown in Figures 6.9 and 6.10, respectively for CS signalling (i.e.,

no eigenvalue) and simultaneous signalling on CS and DS. The same random symbols for CS

are chosen for both figures. It is observed that the amplitude of time domain signal increases

due to the existence of solitons in Figure 6.10, and the signal power increases about 6 dBm

compared to Figure 6.9. While the signal amplitude decreases when solitons are absent, it may

periodically change during propagation because of the periodical behaviour of multi-soliton

part of the signal. For instance, the peak amplitude is larger at 2000 km compared to 1000 km

in Figure 6.10.

The detected symbols are observed in Figures 6.11 and 6.12. It can be seen that the eigenvalues

are detected without error even in the presence of continuous spectrum. Figure 6.12 shows the

8-PAM levels and the received symbols. The probability of error tends to be higher for greater

levels due to the signal-dependency of noise. Considering Gray coding, a bit error rate of

0.0027 was calculated. It is important to know that in this simulation the percentage of the
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Figure 6.9: Normalized amplitude of time domain signal without solitonic part at different
lengths. t is the normalized time.
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Figure 6.10: Normalized amplitude of time domain signal with eigenvalues λ1 = 1j and
λ2 = 2j at different lengths. t is the normalized time.

numbers of errors for the levels 1, 1.25, 1.5, and 1.75 are 12 %, 14 %, 41 %, and 33 %,

respectively, while no error has occurred for the first four levels. Notice that since there is just

one error threshold for the last level, its percentage of error is not higher than the previous one.

0 0.5 1 1.5 2 2.5 3

0

Figure 6.11: Detected eigenvalues at the receiver

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0
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Figure 6.12: Received symbols from continuous spectrum

The presented results are only a demonstration of feasibility of combined signalling on CS and

DS, and we do not intend to optimize the error rate or achieve high data rates. There are many

factors that change the performance of an NFT-based system with simultaneous signalling on

CS and DS. Similar to the single soliton in Section 6.1.1, the noise variance of the DS part
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depends on the selection of eigenvalues in the system presented in this section [58, 61]. The

signal dependency of noise in a multi-eigenvalue system is not derived yet, but it is known

that the noise on all eigenvalues increases if higher values of imaginary part is selected. For

instance, if {2j, 3j} are selected instead of {1j, 2j}, the detected eigenvalue will be more noisy.

The simulations here show that the CS is almost independent of the accompanied eigenvalues.

However, the correlation between CS and DS was not studied. In [149], it was shown the

CS and DS are uncorrelated when only purely imaginary eigenvalues are selected. On the

other hand, in [150], a significant crosstalk between CS and DS was reported for a selection of

eigenvalues with non-zero real parts. Therefore, a comprehensive study of crosstalk between

CS and DS is required in future works. In this section, the INFT was performed using the

same numerical method as before, explained in Section 2.3.3, including the eigenvalues. We

observe that larger number or higher values of eigenvalues would lead to large numerical

error. Such error occurs due to the exponential terms in the kernel of GLM equation (see

(2.32)) that happen to be very large in some cases, while the other part of the GLM equation,

associated with CS, usually has low values. Therefore, more efficient numerical method is

required for simultaneous signal on CS and DS. In conclusion, based on the results presented

in this chapter and previous chapters, it can be inferred that high data rates can potentially be

achieved via efficient signalling on both spectra. As a simple alternative application, a few

error-free eigenvalues can be transmitted as pilot sequence or error correction bits along with

the CS signal that carries the data.

6.3 Summary

Achievable data rates for soliton communication with amplitude modulation were presented

in this chapter. For evaluating the corresponding channel capacity, impaired with

signal-dependent noise, VNT was used as a tool to make the analysis tractable. Similar

problems also appear in other types of optical communication. Physical constraints such as

peak power and maximum bandwidth were also included. The channel capacity was evaluated

numerically, and also an asymptotic relation was given. It was demonstrated that high data

rates can be achieved by considering an appropriate guard time. Since soliton communication

exploits only a small portion of available degrees of freedom, it is expected that more advanced

modulation schemes such as multi-eigenvalue communication or simultaneous signalling
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on both CS and DS would result in even higher data rates. The first steps for the latter was

demonstrated by a simple simulation of data transmission using CS along with a couple of

purely imaginary eigenvalues.
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Conclusions and future works

In this thesis different aspects of NFT-based communication systems, as a promising approach

for data rate enhancement in long-haul fibre links, were studied. Most of the contributions

were focused on the continuous spectrum (CS) of the nonlinear optical fibre channel, and

the discrete spectrum was investigated briefly at the end. The results of this thesis confirm

huge potentials of nonlinear Fourier transform (NFT) for estimating the capacity of nonlinear

optical fibre links and developing efficient signal processing methods for long-haul optical fibre

communication. However, many questions remain unanswered which can be subject for future

research projects. The detailed summary and conclusions of this thesis are presented hereafter,

followed by potential future research directions.

7.1 Capacity of the CS channel

Using NFT, the communication channel for the nonlinear spectra (i.e., CS and DS) is effectively

linear. Signalling on the CS is an attractive approach since the CS basically consists of a

continuous complex waveform, and thus many known conventional communication techniques

can be applied on it. However, specific statistics of noise on the CS channel make it impossible

to simply use known methods. Therefore, as an initial step, the effective noise statistics on

the CS channel were studied. The analysis was first performed using the asymptotic solution

of NLSE for long fibre length. It was shown that the noise variance depends on the signal

amplitude, and this dependence may be approximated by a polynomial with an order larger

than 2. Also, it was predicted that the noise would generally be non-Gaussian on the CS

channel. Simulation results for non-asymptotic scenarios confirmed these main features. In

addition, it was observed that the noise on the real and imaginary parts of the the CS channel
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were also dependent to each other. In other words, the nonlinearity of the optical fibre channel

affects only the noise in nonlinear spectral domain, in such a way that the effective noise

becomes non-Gaussian and signal dependent. Therefore, new approaches are needed for

capacity analysis and signal processing.

The variance normalizing transform (VNT) can be used to transform a channel with signal

dependent noise to an approximately additive Gaussian channel with constant noise variance.

Such transformation using VNT does not change the channel capacity (proved in chapter 3),

and thus can be used for capacity estimation of CS channel. Moreover, the signal dependency

of noise with an order larger than 2 (approximately equal to 4 based on simulation), leads to

limited signalling space after applying the VNT. Therefore, the capacity of CS channel can

be derived by solving an optimization problem for mutual information with average and peak

power constraint. This was performed numerically, and capacities were derived for different

fibre lengths. For instance, about 6 bits/symbol is predicted for a fibre length of 2000 km when

about 50 GHz bandwidth is available and data is mapped only on the CS. It should be noted that

due to the signal dependency the capacity would be saturated for enough large powers. Finally,

a closed form equation (3.22) was derived, including the bandwidth broadening and temporal

dispersion, for the data rates in bits per second. It was shown that the data rate is directly

related to the bandwidth and logarithmically to the maximum amplitude constraint determined

by VNT, which itself depends on channel parameter such as fibre length. To summarize, noise

statistics were studied and a method for capacity estimation was presented for the CS in chapter

3 which can be used for different scenarios of practical interest. The parameters considered

in chapter 3 showed remarkable capacity for CS only. Therefore, high capacities for long

nonlinear fibre links may be expected if all degrees of freedom (CS and DS) are exploited

efficiently.

7.2 Signal processing techniques for the CS channel

Most of data transmission techniques using CS in the literature were based on conventional

methods, and specific noise characteristics and the effect of chromatic dispersion played no

role in development of such methods. In chapter 4, first, the effect of chromatic dispersion

on the received temporal width of the signal was studied, and it was shown that the symbol
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rate in nonlinear spectral domain or equivalently the bandwidth for a fixed number of data

symbols can be determined to minimize the received temporal width. Such optimization would

also lead to smaller noise variance in nonlinear spectral domain. Another simple method was

also proposed regardless of the mentioned optimization, which can result in 100 % improved

data rate by applying a simple pre-compensation. Since the temporal broadening as a result of

chromatic dispersion significantly impacts the data rate, when data is mapped on CS only, the

proposed methods can be hugely beneficial for future practical system designs.

Moreover, by considering the noise behaviour on the CS channel, different signalling

techniques were proposed compared to the method of direct signalling on CS and sampling

for detection. First, VNT was used for determining the sub-optimum 2-ring constellation

diagram. In addition, a linear filtering method was also suggested which eliminates the impact

of excessive noise added to the CS due to temporal broadening as a result of chromatic

dispersion and INFT operation. At last, the GLM-based signalling was suggested, in which

the data is mapped on the inverse Fourier transform of CS. Using GLM-based signalling,

the instantaneous signal dependency of noise is avoided and the probability distribution is

close to Gaussian. The latter two techniques are effective provided that enough samples of

the received signal are available (increased computational complexity). These methods were

compared regarding the BER and reach distance for different modulation formats. All methods

demonstrated improved performance compared to the basic method of direct signalling on CS.

For instance, using the linear filtering method a reach distance of 7000 km can be achieved at

a 10 Gbps rate. The results of chapter 4 imply that the channel capacity and achievable data

rates, when solely CS is used for data transmission, can be significantly improved by using an

appropriate signal processing technique and channel parameter optimization.

7.3 Effect of PMD on the CS channel

The impact of PMD on the NFT-based system with signalling on CS was studied in chapter 5.

Coupled nonlinear Shcroödinger equations were considered to model the PMD. It was observed

that two orthogonal polarization components would be mixed due to the random birefringence.

Since no effective PMD compensation method is available including the nonlinearity, the

all-order linear PMD compensation method was used. As a result, the received signal can
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be considered to be equal to the PMD-free case but slightly perturbed as a consequence of

the interaction of nonlinearity with PMD. Such perturbation depends on the fibre length, PMD

parameter, and signal itself. Next, the effect of such perturbation on the CS was investigated. A

phase shift of constellation diagram as well as a noise-like error was observed for the CS signal

in nonlinear spectral domain, both of which dependent to the signal energy, fibre length, PMD

parameter, and instantaneous CS signal amplitude. The effect of constellation rotation can

be mitigated by simple pre-compensation at the transmitter, Maximum-Likelihood detection,

or modification of decision boundaries at the receiver. Finally, the combined effect of PMD

and ASE noise considering the pre-compensation was studied which showed minimal impact

of PMD. In conclusion, in chapter 5, it was demonstrated that the effect of PMD must be

considered in system designs, but it can be small if some PMD compensation technique is

used.

7.4 Soliton Communication and simultaneous signalling on both

spectra

After a comprehensive analysis of the CS, a special case of signalling on the DS was studied

in chapter 6. It was assumed that the data is mapped only on the imaginary part of a

single eigenvalue (i.e., soliton amplitude or energy) which is equivalent to soliton amplitude

communication. First, the signal-dependent noise statistics were verified by simulation, and,

then, VNT was used to transform the channel with signal-dependent noise to an additive

Gaussian noise channel. Due to the dependence of soliton pulse bandwidth to its amplitude,

a peak amplitude constraint should also be considered for capacity evaluation. Channel

capacities were calculated for the first time, using numerical methods as in chapter 3, for

different available bandwidths, which showed 4 dB gain in SNR compared to the best available

lower bound. More importantly, the achievable data rates were calculated by defining a proper

temporal window for each pulse considering the induced timing jitter (i.e., Gordon-Haus

effect). It was observed that the achievable data rates dramatically decrease for longer fibres

because of the timing jitter, but higher available bandwidth results in larger achievable data

rate. Finally, as a basic demonstration, data was mapped simultaneously on CS and DS, and it

was observed that these spectra are almost independent and can carry the data successfully. It
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is finally concluded that using the efficient techniques proposed in this thesis and mapping the

data on both spectra can potentially lead to high data rates needed for current demands.

7.5 Future directions of the research

There is a huge range of topics and research directions in the field of optical fibre

communication using NFT. However, several open problems exist which can be immediately

looked into following this thesis. The capacity derived in this thesis and some other works

are based on the direct signalling on CS and sampling for detection. It is obvious that any

of the signal processing techniques proposed here, which reduce the error rate, can lead to

higher channel capacity and achievable data rates. Therefore, estimating the channel capacity

and achievable data rates using the methods proposed in this thesis can be a fruitful future

research subject. Moreover, the techniques proposed in this thesis (for capacity analysis

and signal processing) can potentially be applied to the polarization multiplexed system as

well as NFT-based systems using both spectra. This, however, requires efficient numerical

techniques for NFT and INFT operations to make it possible to perform extensive simulations.

Another important topic can be the development of NFT-based systems using CS and/or

DS for dispersion compensating fibre links. Such research project can be hugely beneficial

because most of the currently installed fibres are dispersion compensating fibres. The optical

fibre communication techniques proposed in this thesis and other works can immediately

be implemented practically because all can be performed digitally without any additional

requirement. However, different issues, which are not considered in the theoretical analysis,

may affect the system. For instance, higher order dispersion, nonlinearity, and polarization

effect, which are not included in NLSE, may reduce the system performance. Other

potentially degrading effects can be named as imperfect Raman amplification, noises added

during photo-detection, and device limitation. It should be noted that the recent observed

experimental results, such as in [149, 150], confirm that NFT can indeed be implemented

practically despite reduced performance compared to simulation results. Generally, since NFT

is a new topic, many works can be done in future, a few of which were mentioned here.
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