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Abstract—Energy efficiency (EE) is becoming one of the impor-
tant criteria in wireless transmission design. This paper discusses
the recently proposed energy-efficient transmit beamforming de-
signs for multicell multiuser multiple-input single-output (MISO)
systems, including maximizing overall network EE, sum weighted
EE and fairness EE. Generally, the EE optimization problems
are NP-hard nonconvex programs for which finding the globally
optimal solutions is challenging. For low-complexity suboptimal
approaches, there is a class of solutions conventionally developed
based on parametric transformations. However, those have been
revealed problematic in terms of computational complexity and
convergence. To overcome these issues, novel algorithms have
been recently developed based on the state-of-the-art successive
convex approximation (SCA) framework. Here we sum up the
basic concepts of the algorithms and provide numerical results
which illustrate the solution quality compared to the existing
methods.

I. INTRODUCTION

Fifth generation (5G) wireless networks visions foresee the

challenges of traffic demand set by the upcoming explosive

growth of wireless devices and applications [1]. To increase

the achievable rates, the total energy consumption inevitably

increases due to the high power feeding for the multiple-

antenna transmissions and involved circuit components in

wireless transceivers. Thus energy efficiency (EE) has become

an important criteria in cellular communications, also due to

the concerns on greenhouse gas emission [2], [3].

Energy efficiency is generally defined as the ratio of the total

throughput over the total power consumption of the network. It

is notable that increasing the network throughput by increasing

the transmit power does not always improve the achievable EE,

because the power consumption also increases. Thus, finding

the optimal energy-efficient operating point is essential and

has become the focus in a large portion of recent works [2],

[3], which investigate energy-efficient transmission strategies

regarding to three main criteria, i.e., network EE (NEE), sum

weighted EE (SWEE) and max-min fairness EE (maxminEE)

[4]. While the first metric optimizes the EE gain of the entire

network, the two other ones aim at satisfying the specific EE

requirements on individual parties involved. In general, the

EE maximization (EEmax) problem for each metric belongs

to the class of NP-hard problems, namely fractional program

for which finding a globally optimal solution is challenging.

Thus, suboptimal approaches that achieve a stationary solution

(i.e., a solution that satisfies the Karush-Kuhn-Tucker (KKT)

conditions) have been proposed. Due to the fractional structure

of the EE objective, fractional programming (FP) approaches,

which are based on parametric transformation, have been

typically customized for the problems [4]–[6]. However such

methods result in two-layer iterative solutions [6] which often

have a high computational complexity (as also discussed in

Section IV-A). Moreover, analyzing the convergence of those

methods is challenging and has not been addressed [7].

To overcome the issues related to the FP based solutions,

novel algorithms have been recently developed to efficiently

solve the maxEE problems. Those are based on the state-of-

the-art local optimization toolbox, namely successive convex

approximation (SCA) algorithm. The proposed framework is

a one-loop iterative procedure which finds out locally optimal

solutions after a relatively small number of iterations, thus

significantly reducing the complexity compared to existing FP

approaches. Furthermore, the convergence of the SCA-based

methods is provably guaranteed. In this paper, we make the

summation of the basic concept of SCA based algorithms

solving the problems of maximizing the NEE, SWEE and

maxminEE. More specifically, we provide a key transforma-

tion that turns the maximization problems into representations

that successfully leverage the principle of the SCA. Numerical

comparison to existing methods is also provided to demon-

strate the effectiveness of the proposed SCA framework.

II. SYSTEM MODEL

A. Channel and Signal Model

We focus on a downlink transmission of multi-cell multi-

user multiple-input single-output (MISO) system consisting

of B base stations (BS), each of which is equipped with M

antennas. Let B be the index set of BSs, i.e., B = {1, . . . , B}.

Assume that each BS b ∈ B communicates to Kb single-

antenna users and interferes to received signals at users of

neighboring cells. For notational convenience we denote user

k in cell b as (b, k). Let sb,k be the data for user (b, k) which

is assumed to have unit energy, i.e., E[|sb,k|2] = 1. We also

assume that linear precoding is adopted where transmit signal

to user (b, k) is a multiplication of the data sb,k and transmit

beamformer wb,k. Accordingly, the received signal at user

(b, k) is written as
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Fig. 1. Power consumption model for a BS

yb;b,k = hb;b,kwb,ksb,k +

Kb∑

i=1,i6=k

hb;b,kwb,isb,i

+
B∑

j∈B,j 6=b

Kj∑

i=1

hj;b,kwj,isj,i + zb,k

(1)

where hj;b,k ∈ C
1×M is the (row) flat fading channel vector

from BS j to user (b, k), and zb,k denotes the additive white

Gaussian noise with the density zb,k ∼ CN (0, σ2). In (1), the

second and third terms represent the intra- and inter-cell inter-

ference. Let us denote by Ib,k(w) ,
∑Kb

i=1,i6=k |hb;b,kwb,i|2+∑B

j∈B,j 6=b

∑Kj

i=1 |hj;b,kwj,isj,i|2 the power of interference re-

ceived at user (b, k). Suppose that single-user detection scheme

is used at all users, the received SINR at user (b, k) is

expressed as

Γb,k(w) =
|hb;b,kwb,k|2

Ib,k(w) + σ2
b,k

(2)

Then the data rate of user (b, k) is given by rb,k(wb,k) =
log(1 + Γb,k(w)) and total data rate transmitting by BS b is

Rb =
∑B

b=1 rb,k(w).

B. Power Consumption Model

In addition to the radiated power, energy consumption of

all network components needs to be taken into consideration

when evaluating the EE gain. In general the power consumed

by BS b is illustrated as in Fig. 1 and given by

Ptotal,b(w) = PPA,b(w) +MPdyn + Psta, ∀b ∈ B (3)

In particular, PPA,b(w) represents the dissipated power on

the power amplifiers of the antenna chains at BS b. Note

that PPA,b(w) can adopt either linear model [8] or nonlinear

model [9] which are in general the convex function of transmit

beamforming w. On the other hand, Pdyn accounts for the

dynamic power radiation of all circuit blocks in each active

radio frequency chain, and Psta is the static power for power

supply, site cooling and the baseband signal processing circuits

(e.g., coding/decoding, channel estimation, synchronization,

backhaul transmission, etc.). For simplicity we assume that

Pdyn and Psta are fixed. However, more detailed power con-

sumption could be also applied, e.g., the power consumption

for coding/decoding and backhaul can increase with the trans-

mission rate [10].

III. NETWORK-CENTRIC ENERGY EFFICIENT METRICS

Energy-efficient measures including the NEE, SWEE and

maxminEE are discussed as follows. In general EE is defined

as the ratio of achievable data rate and the total power

consumption, i.e.,

EE =
F (Rb(w))

G(Ptotal,b(w))
(4)

where F (Rb(w)) and G(Ptotal,b(w)) are the sum functions of

data rate and power consumption, respectively. Depending on

network features and design objective, the EE maximization

problem is investigated under three following major criteria

Network Energy Efficiency: NEE metric is to consider the

EE gain of entire network [4], [10] which follows directly the

general definition of EE as (4), i.e.,

NEE ,

∑B
b=1 Rb(w)

∑B

b=1 Ptotal,b(w)
(5)

Remark that in scenarios, where cellular BSs with different

features and specifications co-exist, e.g., heterogeneous net-

work, NEE might lack relevance, since neither EE requirement

for each cell nor the fairness among all parties of the network

can be guaranteed.

Sum Weighted Energy Efficiency: SWEE metric is given by

[6], [10]

SWEE ,

B∑

b=1

ωb

Rb(w)

Ptotal,b(w)
(6)

where ωb is a parameter representing the different priority

for cell b. The SWEE is essential in cases in which each

cell has specific demand on EE. We can see that sum of

multiple fraction functions in (6) is more general than the

single-fraction one in (5).

Fairness Energy Efficiency: Maximizing the NEE and

SWEE metrics might result in unfairness resource allocation

where some links will experience low EE. If EE is critical

for each cell, e.g., in cellular networks where BSs are not

connected to fixed electricity grid, fairness EE among all

parties is preferable. Towards a fairness strategy, the minimum

EE among all BSs, i.e.,

minEE , min
b∈B

Rb(w)

Ptotal,b(w)
(7)

is the objective to be maximized [11].

In general, optimization problem regarding to maximizing

the EE objectives (5), (6), (7) belong to the class of frac-

tional programs. In the next section, we will briefly review

conventional approaches to solve the EEmax problems, and

then provide the newly developed framework which improves

efficiently solution quality.

IV. SOLUTIONS FOR ENERGY-EFFICIENT TRANSMISSIONS

A. Conventional Approaches

To the best of our knowledge, most of existing solutions for

the EEmax problems are based on customizing parameterized

approaches for fractional program [4]–[6]. However, it turns



out that the resulting algorithms are in fact a two-layer iterative

procedure. More specifically, the outer loop is to determine a

feasible parameter, i.e., η = F (Rb(ŵ))
G(Ptotal,b(ŵ) where ŵ is a solution

in the feasible set, thereby the inner loop solves the resulting

parameterized problem maxw{F (Rb(w))−ηG(Ptotal,b(w)) so

as to derive a newly feasible ŵ corresponding to η. Moreover,

this subproblem is obviously nonconvex due to the coupling

of variable w in the SINR expression (2), and thus requires

to be solved by other suboptimal optimization methods [6].

Therefore, a high number of iterations is often needed for the

convergence. Furthermore, the convergence analysis of such

approaches is challenging in general.

We provide below an alternative framework based on the

principle of the SCA. It has been developed recently to

overcome the shortcomings of the earlier solutions. Specifi-

cally, the proposed framework is fast-converging and provably

converged. For the ease of exposition, we first present the SCA

principle in essence before presenting its applications to the

EEmax problems.

B. SCA Principle

The central idea of the SCA is to iteratively approximate the

nonconvex constraints of an optimization problem by proper

convex ones [12]. In particular, let us consider a general

optimization program given by

min f(x) s.t {g(x) ≤ 0, x ∈ S}

where f(x) and g(x) are convex and nonconvex functions

in feasible set S w.r.t variable x, respectively. According to

SCA algorithm, we need to replace g(x) by a convex function

ĝ(x, y(n)) at iteration n where feasible point y(n) ∈ S is

chosen such that

(a) g(x) ≤ ĝ(x, y(n))
(b) g(xn) = ĝ(x(n), y(n))
(c) ∇xg(x

(n)) = ∇xĝ(x
(n), y(n))

While properties (a) and (b) guarantee the monotonic conver-

gence behavior of the SCA algorithm, combining (b) and (c)

shows that the limit point obtained by the iterative procedure

satisfying the KKT optimality conditions [12]. It should be

kept in mind that to apply the SCA method, we need to

properly find convex bounds of the nonconvex constraints

which hold properties (a)–(c).

C. Newly Developed Algorithms

We now provide the proposed SCA framework for the

energy-efficient transmit beamforming designs. Let us consider

the general EE maximization problem

max (4) s.t {w ∈ S(w)} (8)

where S(w) is convex feasible set of w which accounts for

constraints on transmit power, e.g., per-BS power, per-antenna

power constraints, and per-user qualify of service. Recall that

(8) is noncovex due to the fractional objective and the SINR

functions in Rb(w). In addition, we easily check that these

nonconvex parts are not the SCA applicable formulation, since

they lack of convex bounds that satisfying conditions (a)–(c).

Thus, the nonconvex problem (8) needs to be translated into a

more tractable representation, which lends itself to a direct

application of the SCA. To this end, we use the epigraph

transformation [13] by introducing new slack variables, i.e.,

η ≥
z2

t
(9a)

t ≥ G(Ptotal,b(w)) (9b)

z2 ≤ F (log(1 + gb,k)) (9c)

|hb,kwb,k|
2

gb,k
≥ Ib,k(w) + σ2

b,k (9d)

where η, z, t and gb,k represent for the EE, sum data rate, total

power consumption and per-user SINR, respectively. Note that

gb,k relaxes Rb(w) to concave function log(1 + gb,k). The

problem of maximizing EE can be equivalently rewritten as

max
w∈S(w),η,z,t,{gb,k}

{η | (9a) − (9d)} (10)

where we can easily verify that all constraints are convex,

except (9a) and (9d) holding the nonconvexity. Nevertheless,

(9a) and (9d) admit the same structure, i.e., quadratic-over-

affine function which is convex w.r.t. the involved variables.

Thus, their upper bounds are easily derived by their first order

approximations, i.e.,

z2

t
≥

2z(n)

t(n)
z −

(z(n))2

(t(n))2
t (11)

|hb,kwb,k|2

gb,k
≥

2ℜ(h
(n)
b;b,kwb,k)

q
(n)
b,k

−
|hb;b,kw

n
b,k|

2qbk

(qnb,k)
2

(12)

respectively, where h
(n)
b;b,k = (w

(n)
b,k )

H
h
H
b;b,khb;b,k and (·)(n)

represents feasible point at iteration n. More importantly,

right-sides of (11) and (12) satisfy conditions (a)–(c). In the

light of the SCA principle, we can replace (9a) and (9d) by

(11) and (12), respectively to arrive at the approximate convex

program of (10), thereby obtaining a local optimality of (10).

In the following, we discuss the application of the above

technique to specific EEmax problems, i.e., NEE, SWEE and

maxminEE maximization.

Network Energy Efficiency: NEE maximization problem

(maxNEE) is given by

max (5) s.t {w ∈ S(w)} (13)

Since (5) is similar to (4) where F (Rb(w)) =
∑B

b=1 Rb(w)
and G(Ptotal,b(w)) =

∑
b∈B Ptotal,b(w), we can use exactly the

approach presented above to arrive at the solution. Details of

the transformation, alternative transformations, and its conver-

gence analysis can be found from [7], [10].

Sum Weighted Energy Efficiency: SWEE maximization

(maxSWEE) problem is given by

max (6) s.t {w ∈ S(w)} (14)

As (6) can be viewed as generalized representation of

single-fraction program (8), i.e.,
∑

b∈B
ωbFb(Rb(w))
Gb(Ptotal,b(w)) where

Fb(Rb(w)) = Rb(w) and Gb(Ptotal,b(w)) = Ptotal,b(w), we

can readily derive SCA framework solving (14) followed



similar transformation as (9). More specifically, we introduce

new slack variables for each single-fraction, i.e., for b ∈ B,

ηb ≥
z2b
tb
; tb ≥ Ptotal,b(w); z2b ≤

∑Kb

k=1 log(1 + gb,k) (15)

and (14) is rewritten as

max
w∈S(w),{ηb},{zb},{tb},{gb,k}

∑B
b=1ωbηb s.t {(9d), (15)} (16)

In fact, (16) admits a similar structure to (10), but has larger

problem size. In the same manner, the SCA based algorithm

solving (16) can be followed the one solving (10). More details

of the proposed method solving (16) can be found in [10] and

an alternative formulation in [14].

Max-Min Fairness Energy Efficiency: The problem of

maxminEE is given by

max (7) s.t {w ∈ S(w)} (17)

Note that (7) can be relaxed to a similar problem as (14) by

adding a slack variable, i.e.,

max
w∈S(w)

η s.t {
Rb(w)

Ptotal,b(w)
≥ η} (18)

where η now represents for the minimum EE among all BSs.

Thus we can utilize the transformation for
Rb(w)

Ptotal,b(w) as in (15)

to arrive at SCA applicable formulation. We refer to [11]

for complete convergence analysis and related discussion of

method solving (17).

D. Distributed Implementation

We remark that the algorithms mentioned above are de-

signed in the centralized fashion under assumption that each

BS perfectly knows all channel state information in the net-

work, as well as all computation is done centrally. However,

this may be not practical appealing since they come at expense

of building central nodes collecting associated information

to serve the computation. From the practical implementation

perspective, distributed solutions are more attractive. Note that

the FP approaches are not suitable for decentralized imple-

mentation, since updating the parameterized value requires a

centralized calculation with all per-BS EEs. In contrast, the

SCA based algorithm can be easily extended for a decen-

tralized mechanism. In fact, distributed algorithm based on

combination of the SCA and alternating direction method of

multiplier methods (ADMM) have been proposed in [14],

[15] and closed-form implementations based on the KKT

optimality conditions in [10]

V. NUMERICAL RESULT

We now demonstrate the effectiveness of the proposed

SCA based algorithms. The simulation parameters are listed

in Table I and specific ones are given in the caption of

the corresponding figures. For comparisons, we additionally

provide the performances of FP methods [6].

Fig. 2 compares the convergence speed of the algorithms

based on SCA framework and those of FP. In particular,

snapshot of the gap between the objective value at the nth

Table I
SIMULATION PARAMETERS

PARAMETERS VALUE

Path loss and shadowing 38 log10 (d [m]) + 34.5+N (0, 8)
Inter-BS distance D = 1 km

Dynamic power consumption Pdyn 30 dBm
Static power consumption Pdyn 33 dBm

Power amplifier efficiency ǫ 0.35
Number of BSs B 3

Number of users per cell Kb 2
Number of Tx antennas N 4

Signal bandwidth W 10 kHz
Power spectral density of noise -174 dBm/Hz
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Fig. 2. Convergence rate with transmit power budget 40 dBm

iteration and the one at convergence, i.e., |obj-obj∗| for one

channelization is illustrated. As can be seen, the SCA based

methods monotonically converge after ten iterations. On the

other hand, the other ones require hundreds to thousands of

iterations to converge if each subproblem is solved with high

accuracy. This implies that the proposed SCA framework sig-

nificantly reduces the complexity. In addition, FP framework

does not always guarantee the monotonic convergence.

In Fig. 3 we show the achievable EEs versus the power

budget by different energy efficiency criteria in terms of the

NEE, sum EE and min EE. Users of BS 2 are set to have worse

channel conditions to their serving BS than those of BS 1, but

better than those of BS 3. As can be seen, maxNEE obtains

better NEE performance due to the optimization mechanism

regarding to NEE objective. For maxSWEE scheme, assigning

different weighted priorities, e.g., ω1 and ω2, can change

significantly the achieved performances. Note that ω1 implies

higher priority to BS 1 whose users have good channel

condition to the serving BS, while ω2 gives high-demand EE

to BS 3 which has worse channels to its users. Thus, it is easily

understood that using weighted vector ω1 results in higher

achieved NEE and sum EE compared to using ω2 as in Figs.

3(a) and 3(b). However, assigning ω2 improves remarkably the

achieved min EE than using ω1 (see Fig. 3(c)). For maxminEE

scheme, it outperforms the other two schemes in terms of min

EE as shown in Fig. 3(c), since the min EE is objective to be

maximized.

In addition, maxminEE is able to guarantee the fairness

among all parties as shown in Fig. 4, which plots the fairness
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Fig. 3. Averaged EE versus transmit power budget. For maxSWEE, we use two sets of priority parameters, i.e., ω1 = [0.7, 0.5, 0.3] and ω2 = [0.3, 0.5, 0.7].
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Fig. 4. Fairness versus power budget

metric [16, Eq. (1)] achieved by different EE strategies. On

the other hand, we can see that maxSWEE scheme can adjust

the EE fairness among involved parties by setting priority in

the network. On the contrary, the fairness cannot be improved

by the maxNEE strategy as it depends on the entire network

configuration than the individual elements.

VI. CONCLUSION

We have provided a summary and performance comparison

of low-complexity algorithms for the problems of EE opti-

mization in multicell multiuser MISO downlink, under three

energy efficiency metrics. The proposed algorithms are based

on the principle of the SCA methods in which the nonconvex

problems corresponding to fractional program are handled

efficiently. This has been shown by the numerical results where

SCA based algorithms outperform the existing FP ones in

terms of convergence speed. This paper can be viewed as a

guideline for the application of the SCA in solving the energy-

efficient beamforming designs in particular, and the nonconvex

problems in wireless communications in general.
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