Abstract:
In this paper we consider a video surveillance application, using a camera mounted on a drone flying over the area to be monitored and sending the video to a control cent...Show MoreMetadata
Abstract:
In this paper we consider a video surveillance application, using a camera mounted on a drone flying over the area to be monitored and sending the video to a control center (CC). In order to ensure connectivity between the drone and the CC some relays are deployed on the ground. The resulting network is composed of a static component (relays), and a moving component (the drone). All network devices are assumed to be equipped with IEEE 802.11s air interfaces. The goal of our work is to design and validate a routing protocol appropriate for this scenario. The IEEE 802.11s standard proposes Hybrid Wireless Mesh routing Protocol (HWMP) composed of a proactive tree-based routing and the reactive Radio Metric Ad-hoc On-Demand Distance Vector (RM-AODV) scheme to support mesh networks. To address the need for reliable connectivity, faster and resource-efficient path discovery, we envisage a mixed optimized scheme, called Optimized-Hybrid Wireless Mesh Protocol (O-HWMP), where both, RM-AODV and the proactive tree-based scheme, are used at the same time. In O-HWMP the output of the tree-based routing scheme provides input to the RM-AODV, in order to reduce flooding of control packets, and to minimize delays during path discovery. Through NS3-Evalvid simulations we demonstrate that, compared to RM-AODV scheme, our proposed protocol significantly improves network performance in terms of delays, packet success rate, overhead cost, and peak-signal-to-noise-ratio metric of the received video.
Date of Conference: 12-15 June 2017
Date Added to IEEE Xplore: 17 July 2017
ISBN Information: