
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 27, 2024

Policy Framework for the Next Generation Platform as a Service

Kentis, Angelos Mimidis; Ollora Zaballa, Eder; Soler, José

Published in:
Proceedings of 27th European Conference on Networks and Communications

Link to article, DOI:
10.1109/EuCNC.2018.8443260

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Kentis, A. M., Ollora Zaballa, E., & Soler, J. (2018). Policy Framework for the Next Generation Platform as a
Service. In Proceedings of 27th European Conference on Networks and Communications (pp. 125-9). IEEE.
https://doi.org/10.1109/EuCNC.2018.8443260

https://doi.org/10.1109/EuCNC.2018.8443260
https://orbit.dtu.dk/en/publications/cc230536-19ab-41ec-a3c5-8e647359fc8a
https://doi.org/10.1109/EuCNC.2018.8443260


978-1-5386-3873-6/17/$31.00 ©2017 IEEE 
 

Policy Framework for the Next Generation Platform 
as a Service 

Angelos Mimidis, Eder Ollora, José Soler 
DTU Fotonik 

Technical University of Denmark 
Kgs. Lyngby, Denmark 

{agmimi, eoza, joss}@fotonik.dtu.dk 
 
 

Abstract— The Platform-as-a-Service (PaaS) model, allows 
service providers to build and deploy their services following 
streamlined work-flows. However, platforms deployed through 
the PaaS model can be very diverse in terms of technologies and 
involved subsystems (e.g. infrastructure, orchestration). Thus, 
the means for deploying and managing a service can significantly 
vary depending on the deployed platform. To address this issue, 
this paper proposes a policy-based framework designed for the 
Next Generation Platform-as-a-Service (NGPaaS). This 
framework allows service providers to define platform-wide and 
technology-agnostic policies to NGPaaS, by means of abstraction 
of the underlying platforms and the use of generic interfaces. The 
paper also presents a specific use case for the proposed 
framework, which targets network-oriented policies. 
 

Keywords— SDN, NFV, Policies, Policy Enforcement 

I.  INTRODUCTION  
Recent paradigms like Software Defined Networking 

(SDN) and Network Function Virtualization (NFV), have 
transformed the networking industry. These technologies 
allow for better automation in resource allocation and 
management, faster service provisioning and the like.  This 
has resulted in new and innovative network services (e.g. 
mobile edge computing virtual reality), that can profit from 
these advantages. However, SDN and NFV operate in 
different subsystems (networking for SDN and compute for 
NFV), thus the synergy between them is limited. To address 
this issue a number of orchestration platforms have been 
developed, mainly based on the ETSI-Management and 
Orchestration (MANO) architecture [1]. These platforms 
allow SDN and NFV to complement each other. However, the 
architecture of these platforms is complex; and developing 
custom solutions to fit specific use cases (e.g. an Internet of 
Things (IoT) centric platform) is a very difficult task. 
Recently, there has been interest in designing and developing 
frameworks that can automate the platform provisioning 
process by translating business-cases to specific platform 
configurations. This way, provisioning build-to-order 
platforms is faster and more efficient.  One such framework is 
the Next Generation Platform as a Service (NGPaaS) [2].  

Given the nature of NGPaaS and depending on the 
selected business-case, a service can be deployed in a very 
technology-diverse set of platforms. This implies that the 

means, by which the service is managed, will also vary. In 
addition, a service deployed through NGPaaS can span across 
multiple subsystems (compute, network, orchestration etc), 
which greatly increases management complexity. 

A verified approach for service management in platforms 
like NGPaaS is through policy enforcement. To that end, this 
paper proposes a mechanism which facilitates the definition, 
evaluation and enforcement of policies in every subsystem of 
NGPaaS. This mechanism will allow service providers which 
are tenants of NGPaaS, to define their requirements, to the 
different platform/service deployments in the form of policies. 
These policies will be generic in nature, thus abstracting the 
underlying technologies and subsystems. The policy 
mechanism will then push these generic policies into NGPaaS. 
As policies proliferate through NGPaaS they will be translated 
to subsystem and technology specific policies. For the 
remaining of the document this policy related mechanism will 
be termed as a policy framework, since it functions as a 
support system to NGPaaS. The paper is structured as follows; 
Section II outlines the necessary background and related 
scientific literature. Section III describes the architecture of 
the proposed policy framework; by first listing the 
requirements it needs to meet and then by mapping these 
requirements into specific characteristics. Section IV presents 
a specific use-case with focus on network policies, which aims 
to highlight the expected behavior of the policy framework. 
Finally, Section V provides a conclusion. 

II. BACKGROUND AND RELATED WORK 

A. Multi and single subsystem policy frameworks 
As described in Section I, most modern service platforms 

[3] [4] span across multiple subsystems. The Infrastructure 
Subsystem includes the (physical or virtual) computing, 
storage and networking resources. The Infrastructure Control 
Subsystem includes the technologies that offer control over the 
Infrastructure Subsystem (e.g. an SDN Controller).  The 
Orchestrator Subsystem coordinates the compute, storage and 
networking subsystems, allowing for joint control of the 
available infrastructure.  Finally, the Business Subsystem 
encompasses the Operations Support System (OSS) and 
Business Support System (BSS). These subsystems are 
illustrated in Fig. 1. 



Due to this multitude of subsystems in which policies can 
be applied to, a policy framework can be implemented in one 
of two ways. The first way is to implement isolated policy 
frameworks for each of the subsystems; the second is to 
implement a single framework that integrates all the individual 
subsystems. The latter offers a greater degree of control over 
the infrastructure, as it facilitates the definition and 
management of multi-subsystem policies. Additionally, it 
provides easier administration, since there is a single point of 
reference for the policy management of the whole platform. 
However, this introduces complexity in the framework’s 
design and an overhead in inter-subsystem communication.  

B. The Next Generation Platform as a Service 
The scope of NGPaaS [2] is to provide the means of 

translating business cases into specific platform deployments. 
As a result, service providers can focus on the services 
themselves and not in the means through which the services 
and platforms are deployed and managed. NGPaaS comprises 
a multi-layered architecture, with each layer including one or 
more subsystems. The Business as a Service (BaaS) layer 
comprises the business subsystem of NGPaaS and supports 
multi-PaaS operation and control functions. The Platform as a 
Service (PaaS) layer comprises the orchestrator and 
infrastructure management subsystems. The Infrastructure as 
a Service (IaaS) layer comprises the Infrastructure subsystem.  
Finally, the Dev-for-Operations layer, which is an evolution of 
the traditional DevOps model. However, for the scope of this 
work, it is not strictly relevant and it is therefore excluded. 
These layers are illustrated in Fig. 1, in parallel with the 
different subsystems. Thanks to this modular architecture, 
NGPaaS can facilitate the overall platform/service deployment 
and management and easily integrate new services and 
platforms allowing for quick time-to-market, when compared 
to the traditional service/platform deployment paradigm.  

 

 
Fig. 1. The different platform subsystems of a cloud platform (right) and how 
they associate with the different layers of NGPaaS (left) 

C. Policy Core Information Model (PCIM) 
To address the challenges related to managing platforms 

like NGPaaS, a new policy model is needed. The authors of 
[5] present an object-oriented information model in order to 
represent policy-related information in a low-level, vendor- 
and device-independent manner. The information model is 
divided into two hierarchies of object classes. (1) The 
structural classes, which represent policy information and 
control of policies. And (2), the association classes which 
indicate the relation between instances of structural classes. 

Although the initial application of the information model was 
expected to be for Quality of Service (QoS) related policies, 
the policy classes and associations are generic enough to 
accommodate policies related to a variety of topics (e.g. 
security, energy efficiency, etc). Therefore, network 
administrators, software developers or policy administrators 
could represent a big variety of policies using the same base 
design of policy objects.   

The PCIM was later extended in [6], which included new 
elements like the extensions for header filtering. Although 
there are several changes and extensions to the previous 
specification, the document provides interoperability with the 
original PCIM model implementation. 

D. Policy-based resource management for NFV 
The work in [7] and later in [8] addresses the procedures 

for resource management and workload distribution in NFV 
infrastructures. It tackles the constraints of compute and 
network capacity of NFV Points-of-Presence (PoP). That 
document also presents the conceptual difference between 
global and local policies. A global policy engine may enforce 
global policies while subsystem-specific policy engines may 
only enforce local policies. The authors also point out that the 
policy framework is hierarchical in nature, since the policy 
engine that belongs to a certain subsystem may be part of a 
broader subsystem. Another important concept addressed by 
that work is the need of a Publication/Subscription 
(PUB/SUB) bus so that the different entities in the MANO 
architecture can subscribe for policy updates. 

Moreover, the ongoing work in [9] defines an 
architectural framework for policy-based resource 
management (in terms of placement and scheduling). The 
framework is based on the architecture defined in the 
documents previously analyzed in the section. The policy 
engine would interface with the measurement entities so that 
periodical resource utilization statistics are retrieved and a 
better resource placement and scheduling are achieved. 

E. Policy frameworks for network resource management  
The authors in [10] propose a generic datacenter 

management framework that encompasses the policy-based 
management of the data, control and orchestration of 
functional entities. The authors state that the proposed 
framework focuses on two mains aspects: (1) a unified policy 
definition and enforcement methodology and (2) an increased 
extensibility using a loosely coupled model-driven 
architecture. The policy framework proposed is implemented 
following the model proposed in [5], [6]. Besides, a policy 
state machine is also described. The state machine supports 
the different states in which the policies could be, depending 
on the validation stage (conflict validation, variable resource 
allocation…). The policy framework architecture presented in 
this research paper depicts the inclusion of the OpenDaylight 
(ODL) SDN controller [11] to install network policies. The 
validation of the policy framework implementation shows that 
there is no considerable time difference between policy 
installations. The number of installable policies did not have a 
great impact on installation time. However, it is noted that 

NetworkCompute

OSS BSSBusiness

Infrastructure

Compute Mngr. SDNC

Orchestrator
Infrastructure Management

Storage Mngr.

Storage 

Dev-for-operations
BaaS

PaaS

IaaS



more complex policies are expected to take more time to 
install due to increased complexity in the validation steps. 

In [12] the researchers propose another policy 
management framework that addresses several challenges 
arisen from a highly decentralized and miscellaneous 
environment. This framework highlights several of the 
challenges of policy-based management in the context of 
future networks. One of the outlined challenges is the need for 
a transformation process of the operator’s high-level 
objectives to network-understandable policies. This is 
achieved by a Human-To-Network (H2N) interface. The work 
also addresses the need for concepts like Policy Continuum 
and Policy Translation. Policy Continuum ensures that 
policies written in relative and high-level terminology can be 
transformed into lower level policies with different 
corresponding features. Policy Translation lies in the detection 
and specification of high-level information into the targeted 
level information. Furthermore, a common information model 
would help on the comprehension of the transmitted policies.  
As the main outcome, the paper presents a policy framework 
to enable autonomic service and network management and 
address relevant policy-related challenges.  

Compared to the related work presented in this section, 
the novelty of this paper is two-fold. (1) It is designed with the 
NGPaaS in mind, making it timelier and future-proof proposal 
and (2) It encompasses the whole PaaS and is not limited to a 
specific subsystem.  

III. ARCHITECTURE OF THE FRAMEWORK 
This section of the paper presents the architecture of the 

proposed policy framework. As a first step, some requirements 
will be highlighted to better communicate the objectives that 
the framework attempts to fulfill. 

A. Requirements 
The first requirement (R1) is that the policy framework 

should operate across all the subsystems of the platform. 
Despite the associated implementation complexity, an 
architecture based on this premise will allow better overall 
control of the available infrastructure. Second (R2), the 
framework should allow policies to be defined in generic 
terms, not associated with specific technologies. Third (R3), 
the framework should be easily extensible with new 
subsystems and policies. Fourth (R4) policies should be 
defined in a human-friendly format. Finally (R5), all 
subsystems should use a common model to express the 
policies and their lifecycle. Doing so will facilitate the 
definition of multi-subsystem policies.  

B. How policies are modeled 
Within the proposed policy framework, policies are 

loosely modeled based on the PCIM [5][6]. Each policy is 
represented by a Policy Rule, which comprises a set of Policy 
Conditions and Policy Actions. A set of Policy Conditions can 
be defined in either a Conjunctive Normal Form (CNF) or a 
Disjunctive Normal Form (DNF). CNF-based Policy 
Conditions are expressed as an AND set of ORs (e.g. [A OR 
B] AND [C OR D]), while DNF-based Policy Conditions are 

expressed as an OR set of ANDs (e.g. [A AND B] OR [C 
AND D]). Each singleton Policy Condition comprises a pair of 
a Policy Variable and a Policy Value. If the Policy Variable 
matches the Policy Value, the Policy Condition evaluates to 
true, else to false. Following the same premise if the CNF or 
DNF-based Policy Conditions evaluate to true, then the 
associated Policy Rule is considered enforceable. In order for 
a Policy Rule to be enforced, the Policy Actions associated 
with it must be applied. Policy Actions also comprise a pair of 
a Policy Variable and a Policy Value. Policy actions can be 
declared either as ordered or not. Ordered Policy Actions 
MUST be applied in a specific order, whilst non-ordered 
Policy Actions can be applied without specific ordering. An 
action is considered applied when the Policy Variable meets 
the associated Policy Value. A Policy Rule is considered 
enforced when all the associated Policy Actions have been 
applied. To facilitate conflict resolution, Policy Rules can also 
be assigned priorities, so in case of two (or more) conflicting 
Policy Rules only the one with the highest priority will be 
applied. Finally, to allow for better management of the 
infrastructure, multiple Policy Rules can be aggregated into 
Policy Groups. These groups can then be managed as a single 
entity by the policy framework. Fig 2 illustrates the policy 
model.  

 

Policy
Value

Policy Group
1:N

1:N

1:N1:N 1:N

Policy Rule

Policy Action Policy Condition

1:N

Policy 
Variable

Policy
Value

Policy 
Variable

1:N

 
Fig. 2. The policy model utilzied by the policy framework 

C. Lifecycle of policies 
In order to be properly managed by the policy framework, 

policies exist within a specific lifecycle illustrated in Fig. 3. 
Upon arrival to the policy framework (1), all policies start in 
the New Policy state, meaning that the framework has not yet 
evaluated if their definitions match any of the policy 
definitions known by the policy framework. If they fail this 
formal validation (2), policies move to the Removed state and 
are purged from the policy framework. If they pass formal 
validation (3), then they move to the Formally Validated state. 
This state implies that the framework has a notion of how to 
enforce the policy, but has not yet evaluated if the policy 
conflicts with other existing policies. If the policy fails this 
conflict resolution (4), it is moved to the Pending state. This 
state is for policies that the administrator has expressed intent 
to enforce, but for one reason or another they cannot yet be 
enforced in the infrastructure. If the policy passes conflict 
validation (5), it is then moved to the Conflict Validated state. 
In this state, the framework has not evaluated if the 
infrastructure can accommodate the policy, in terms of 
available resources. If the policy fails this context validation 



(6), it moves to the Pending state, waiting for the proper 
circumstances to arise (7). If the policy passes context 
validation (8), it is moved to the Enforced state. At any point 
in time, the administrator can request a policy to be removed 
(9), which means that the policy will move to the Removed 
state and will be purged from the framework. Finally, the 
administration might request an enforced policy to be 
deactivated (10), at which point the policy will transition to 
the Pending state waiting to be activated again (11).  

 

 
Fig. 3. The lifecycle of policies within the proposed framework 

D. Architecture of the policy framework 
Building upon the multi-subsystem platform of NGPaaS 

and the aforementioned requirements from section III.A, this 
paper proposes the policy framework architecture of Fig. 4. 

  

BaaS  Blueprints
Blueprint Execution EngineBa

aS

Nova Policies
Policy Engine

Nova
Nt Intents

Policy Engine

ONOS
Nt Intents

Policy Engine

OpenDayLight

Virtual 
Switches

Hardware 
Switches

COTS 
Servers

VMs 
Containers

Specialized 
Hardware

Pa
aS

Ia
aS

 BaaS 
blueprint

Admin/ 
Tenant  Service  blueprints

Tech. specific 
policies

Tech. specific 
policies

Policy datastores
PaaS Policy Engine

XOS Orchestrator PaaS 2 Orchestrator

PaaS Policy Engine
Policy datastores

Docker Policies
Policy Engine

Docker 

 
Fig. 4. Architecture of the policy framework 

There, a centralized BaaS layer is responsible for the 
management and orchestration of the different PaaSes under 
its control. These PaaSes can belong to the same or different 
tenants of NGPaaS. The means through which the different 
PaaSes are instantiated is out of the scope of this paper, but is 
described in detail in [2]. The policy framework allows 
generically defined policies (i.e. not bound to specific 
subsystems or technologies) to proliferate from the BaaS 
layer, through the different PaaSes and to the underlying 
infrastructure. Each entity (BaaS, orchestrator, SDN 
Controller (SDNC), etc), has its own implementation of 
repositories in which to hold policies and policy definitions. In 
addition, each entity also holds a policy engine that is 
responsible for managing the lifecycle of its associated 
policies and for decomposing and propagating policies to 
lower subsystems (e.g. from the orchestrator to the SDNC). 

All policy requests must be first addressed to the BaaS 
layer, as this allows for a single point of management for 
NGPaaS and for policies that can span across multiple PaaSes. 
With regards to the BaaS layer, policies must be defined in the 
form of BaaS blueprints which must conform to one of the 
available BaaS blueprint templates provided by the BaaS 
layer. Upon receiving a BaaS blueprint the BaaS layer will 
decompose it (using the Blueprint execution engine) into one 
or more Service blueprints.  Each Service blueprint consists of 
policies that are specific to a single service and a single PaaS. 
Since the BaaS layer has a global view of the deployed PaaSes 
and their technologies, it will be able to translate the generic 
policies defined in the BaaS blueprint into PaaS specific 
policies (using the Blueprint execution engine). Before 
decomposing the BaaS policy into PaaS policies, the BaaS 
layer will also perform the high-level formal, conflict and 
context validation of the generic policy defined in the BaaS 
blueprint. Doing so will stop the proliferation of the policy to 
lower subsystems in case of a conflict or misconfiguration, 
removing unnecessary processing in the lower subsystems. 

The individual Service blueprints will then be sent to the 
corresponding PaaS orchestrators. In order to facilitate a 
universal messaging platform between the BaaS and the 
orchestrators, each orchestrator will need to be extended with 
an Application Programming Interface (API) translation layer. 
This layer will translate NGPaaS specific to orchestrator 
specific API calls. As with the BaaS layer, each orchestrator 
will also require the mechanisms to (1) store policies and 
policy definitions and (2) manage the lifecycle of its policies. 
The first mechanism can be implemented in the form of policy 
datastores. The specific technology with which the policy 
datastores are implemented will depend on the technologies 
offered by the corresponding orchestrator. The second 
mechanism can be implemented in the form of an orchestrator 
specific policy engine. The role of the policy engine will be 
twofold; (1) Decompose the Service blueprints into policies 
for the orchestrator and policies for the infrastructure 
management subsystem. (2) Manage the lifecycle of the 
orchestrator related policies. As with the BaaS layer, the 
orchestrator can also stop the proliferation of policies to the 
underlying subsystems, if it assesses that a specific policy is 
unenforceable (e.g. due to conflicts with other policies).  In 
any other case, the orchestrator will send the decomposed 
policies to their corresponding infrastructure management 
entities (e.g. the SDNC). Since the orchestrator has a global 
view of its platform, it is aware of the associated technologies 
that comprise the infrastructure management subsystem. This 
allows the orchestrator to translate policies for the 
infrastructure management subsystem from generic to 
technology-specific (through the PaaS policy engine).  

Upon receiving a policy from the orchestrator and 
verifying that it can be enforced (valid policy, no conflicts and 
sufficient resources), the infrastructure management entities 
(e.g. the compute manager) will translate the policy into 
specific actions and enforce them in the infrastructure. 

A policy, as defined by an NGPaaS tenant or 
administrator, can end up decomposed into multiple policies 

Formally 
Validated

PendingEnforcedRemoved

Conflict 
Validated3

2

New 
Policy

4

5

6 7
8

9

9

10

11

1



(e.g. for different platforms and/or subsystems). As a result, its 
lifecycle cannot be managed by a single state machine, but 
instead, it will be managed by a set of state machines spread 
across NGPaaS. If all state machines reach the enforced state, 
then the policy can be considered as enforced in the 
infrastructure. For example, if the orchestrator of a PaaS 
assesses that a policy does not conflict with any other policies 
under its control, it will pass the policy to the associated 
network and compute managers. However, until it receives an 
acknowledgment from both that the policy has been enforced, 
it should keep the policy state as pending.  

IV. USE CASE FOR NETWORK POLICIES 
To facilitate the understanding of the proposed policy 

framework, this section will provide a specific use case with a 
focus on network policy enforcement.  

An NGPaaS tenant, which is the owner of an already 
deployed PaaS (PaaS 1), wants to provide connectivity 
between two hosts (Host1 and Host2). PaaS1 comprises XOS 
[13] as the orchestrator and of ONOS [14] as the SDNC. As a 
starting point, the NGPaaS tenant will configure and send a 
BaaS blueprint with the desired configuration parameters to 
the BaaS layer. Since the NGPaaS tenant does not have 
knowledge of the underlying technologies that compose its 
platform, it will define the policy using generic terms. For 
example, the policy could be defined in CNF as: [(Host1 eq. 
Online) AND (Host2 eq. Online)] THEN 
[Connect(Host1,Host2)]. Once the BaaS blueprint is received 
at the Baas layer, the Blueprint Execution Pipeline will 
examine the blueprint and decompose it into a Service 
blueprint for PaaS 1. Since the orchestrator of PaaS 1 is XOS, 
the BaaS layer will compose the service blueprint using 
TOSCA [15] and pass it over the associated REST API of 
XOS.  Before sending the service blueprint to XOS, the BaaS 
layer will perform its own high-level formal, conflict and 
context validation of the policy. If the policy passes all checks 
it will move to the Pending state, waiting for the outcome of 
the XOS related policy. At this stage, XOS makes sure that the 
Service blueprint is also formal, conflict and context validated. 
Before the orchestrator policy is flagged as Enforced, XOS 
will decompose it into policies specific to the individual 
infrastructure management subsystems. Since the policy is 
only network related, it will be decomposed into a single 
network policy for the ONOS SDNC. This policy will then be 
sent to ONOS, so that it can be further validated and enforced 
into the infrastructure. Upon receiving the policy, and given 
that it passes the formal, and conflict validation, ONOS will 
decompose the network policy into network intents [16]. This 
will trigger a comparison (divergence analysis) between the 
actual and the intended network state (is there a path between 
Host1 and Host2?). If the intended network state can be 
served, ONOS will enforce the network intents, hence 
providing connectivity between Host1 and Host2. At this 
point, the policy state in ONOS will move to the Enforced 
state. Then, ONOS will inform XOS about this outcome, 
which will lead the policy in XOS to move from the Pending 
to the Enforced state. This process will also be performed 

between XOS and the BaaS layer. When the policies in all 
subsystems reach the enforced state, the BaaS layer will 
inform the tenant that its request has been fulfilled. In any 
other case, it will return an error message. 

V. CONCLUSION 
This paper introduced the concept of a policy framework 

for NGPaaS. The proposed framework can simplify the 
management of NGPaaS, by allowing the different actors 
(administrator, tenants) to express their requirements from 
their platform deployments using well-defined, platform-wide 
and technology-agnostic policies. It is the role of the policy 
framework to then decompose the generic policies into 
technology specific and subsystem specific policies and 
propagate them through the deployed platforms. In addition, 
the policy framework is also responsible for the lifecycle 
management of these policies. To provide a comprehensive 
example of the internals of the proposed policy framework, 
this paper also presented a use case focused on network 
policies in Section IV. 

ACKNOWLEDGMENT  
This work has been performed in the framework of the 

NGPaaS project, funded by the European Commission under 
the Horizon 2020 and 5G-PPP Phase2 programmes, under 
Grant Agreement No. 761 557 (http://ngpaas.eu). 

REFERENCES 
[1] J. Quittek, P. Bauskar, T. BenMeriem, A. Bennett, M. Besson, and A. 

Et, “Network Functions Virtualisation (NFV); Management and 
Orchestration,” Gs Nfv-Man 001 V1.1.1, vol. 1, pp. 1–184, 2014. 

[2] A. Mimidis et al., “The Next Generation Platform as a Service”, 2018 
25th International Conference on Telecommunications (ICT), Saint-
Malo. Accepted, to be published. 

[3] “CORD.” [Online]. Available: http://opencord.org/. 
[4] “Open Source MANO.” [Online]. Available: https://osm.etsi.org/. 
[5] B. Moore, E. Ellesson, and A. Westerinen, “Policy Core Information 

Model -- Version 1 Specification,”, RFC 3060,  2001. 
[6] B. Moore, “Policy Core Information Model (PCIM) Extensions”, RFC 

3460,  2003. 
[7] W. Steven, N. Figueira, R. Krishnan, and D. Lopez, “Policy Architecture 

and Framework for NFV Infrastructures,” Internet-Draft, 2015. 
[8] R. Szabo, S. Lee, and N. Figueira, Policy-Based Resource Management. 

Internet-Draft, 2016 
[9] N. Figueira, “NFVIaaS Architectural Framework for Policy Based 

Resource Placement and scheduling,”, Internet Draft, 2016. 
[10] C. Caba, A. Mimidis, and J. Soler, “Model-Driven Policy Framework 

for Data Centers (Short Paper),” 2016 5th IEEE Int. Conf. Cloud Netw., 
pp. 126–129, 2016. 

[11] “OpenDaylight.” [Online]. Available: https://www.opendaylight.org/. 
[12] A. Galani et al., “A policy based framework for governing Future 

networks,” 2012 IEEE Globecom Work. GC Wkshps 2012, pp. 802–806, 
2012. 

[13] “XOS.” [Online]. Available: 
https://wiki.opencord.org/display/CORD/XOS%3A+The+CORD+Contr
oller. 

[14] “ONOS.” [Online]. Available: http://onosproject.org/. 
[15] D. Palma, T. Spatzier “Topology and Orchestration Specification for 

Cloud Applications - PRIMER,”, 2013. 
[16] “ONOS intent framework.” [Online]. Available: 

https://wiki.onosproject.org/display/ONOS/Intent+Framework. 


