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Abstract—In the Zero-touch network and service management
(ZSM) architecture devised by ETSI making predictions on the
observed data is among the functions provided by the Analytics
block of the control loop cycle. Prediction performance depends
on several parameters, such as the utilized computational re-
sources, the leveraged prediction techniques, the deployment
location of the prediction tools with respect to the data.

This paper proposes a Hybrid Forecast Framework (HFF)
running both at the network edge and in the cloud to provide
forecasting with the performance required by the control loop
cycle. Forecasting at the edge might shorten the control loop
cycle if resources shall be made available locally where data are
collected. However, in general, edge computational resources are
less abundant than the cloud ones, thus causing longer time to
perform the prediction. On the opposite, forecasting in the cloud
might require more time for the data to reach the utilized tools
but more computational resources could be exploited. The HFF
is based on utilizing traditional time series analysis prediction
algorithms to minimize the utilized resources and energy at the
edge while it exploits AI/ML tools to make predictions in the
cloud.

Results shows that for short lead time (i.e., the time, in the fu-
ture, at which the status of the considered parameter is predicted)
edge-based prediction exploiting time series analysis provide
better accuracy, requires less resources and time (thus energy)
than cloud-based prediction. However, if the lead time is long,
cloud-based prediction exploiting Artificial Intelligence/Machine
Learning (AI/ML) provides better accuracy. Thus, if the lead time
is long, it is preferable because the long lead time compensates
for the higher time for prediction due, mainly, to data transfer.

Index Terms—Forecasting, AI/ML, Time series analysis, Edge,
Cloud.

I. INTRODUCTION

The foreseen complexity in operating and managing 5G and
beyond networks has fostered the approach to closed-loop
automation of network and service management operations.
The Zero-touch Network and Service Management (ZSM),
proposed by ETSI [1], is among the emerging architectures [2]
(e.g., TM Forum’s Zero-touch Orchestration, Operations and
Management (ZOOM), MEF 3.0 Life-cycle Services Orches-
tration (LSO) combined with Linux Foundation Platform for
Network Data Analytics (PNDA), TM Forum Smart BPM
(Business Process Management)). The ZSM broad design
goal is to enable zero-touch automated network and service
management in a multi-vendor environment. The ZSM relies
on closed-loop management operation. To achieve a closed-
loop operation, a management framework needs to provide
means for the ordered invocation of the phases of the closed-
loop (e.g., the Observe, Orient, Decide, Act steps of the

OODA loop proposed by J.R. Boyd [3]). The management
functions contribute with their respective management service
capabilities to achieve the functionality of the different steps
of the closed loop. Specifically, Data Collection contributes
to Observe, Analytics contributes to Orient, Intelligence con-
tributes to Decide, and Orchestration and Control contribute
to the Act steps.

In general, the control loop duration impacts the Service
Level Agreement (SLA) between service providers and cus-
tomers because it impacts the reaction time of the system to
state changes. The control loop duration, in turn, is impacted
not only by the time required to perform the control loop
functions but also by the time required to transfer data between
the control loop functional elements. Thus, making fast and
accurate predictions might improve the provider capability of
fulfilling the SLAs but attention shall be also paid to the
communication between the functional elements.

ETSI provides only the architectural view of the ZSM
but it does not provide possible implementations and the
related performance evaluations. This paper focuses on the
predictive analytics function of the ZSM Analytics block.
Forecasting/predictive analytics has been already proposed, for
example, for scaling 5G core network resources by anticipating
traffic load changes [4]. The approach proposed in [4] is based
on two Artificial Intelligence/Machine Learning (AI/ML) tech-
niques: Recursive Neural Networks (RNN), more specifically
Long Short-Term Memory (LSTM), and Deep Neural Net-
work (DNN). The results show that forecast-based scalability
mechanism outperforms the threshold-based solutions in terms
of latency to react to traffic change. However, in [4] all the
control loop functions are co-located, thus propagation delay
of data between control loop functional elements is not taken
into account.

In more distributed scenarios where Virtual Network Func-
tion (VNF) and Software Defined Network (SDN) technolo-
gies are exploited, the placement of the predictive analytics
services, whether at the edge or in the cloud, might impact the
control loop cycle time. In general, exploiting edge resources
offers delay-sensitive and cost-efficient services, because the
edge is closer to the end users. Conversely, the cloud is
far from the end users, thus an additional communication
delay [5] is to be considered. Although the edge brings
several advantages over the cloud, the computation and storage
resources of edge servers are limited and less powerful when
compared to the cloud servers.
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For what concerns the prediction/forecast techniques and,
more specifically, for time series data, either traditional time
series analysis or ML-based methods can be exploited. Tra-
ditional time series analysis methods such as Error, Trend,
Seasonality forecast (ETS), Auto Regressive Integrated Mov-
ing Average (ARIMA), and Exponential Smoothing are three
popular and powerful time series predictors [6]. Traditional
methods might also outperform several other ML-based meth-
ods, including Long Short-Term Memory (LSTM) and Recur-
rent Neural Networks (RNNs), depending on the considered
dataset and the forecast lead time (i.e., the time, in the future,
at which the status of the considered quantity is predicted) [7].
Traditional prediction techniques are fast to train and in
forecasting (i.e., testing), but neither very accurate nor flexible
to adapt to complex data.

On the other end, ML-based methods, such as LSTM, can
forecast accurately but they require long training. In addition,
ML-based methods require a large amount of data, which is a
computationally expensive. Thus, it is not always feasible to
use such required powerful computing tools.

To reduce such complexity and also concerns related to
data privacy while transmitting over the net, edge analytics
can be exploited depending on the prediction accuracy and
the availability of the data. Note that severe resource scarcity
issues may exist if ML-based methods are supported at the
edge, especially when a large number of data are to be
processed. Thus, applying traditional prediction methods at
the edge, while applying ML-based methods in the cloud, can
provide a trade off between the achievable performance and
the available resources.

This paper proposes a Hybrid Forecasting Framework (HFF)
running at the network edge and in the cloud. HFF considers
two different traditional time series analysis prediction ap-
proaches such as Double Exponential Smoothing (DES) and
Triple Exponential Smoothing (TES) running at the edge and
one ML-based approach such as Long Short-Term Memory
(LSTM) running in the cloud. These methods are utilized
to forecast the number of VNFs/Virtual Machines (VMs)
necessary to support an automotive application as a function
of the road traffic while maintaining an agreed Service Level
Agreement (SLA), such as the elaboration time in Advanced
Driving Assistance (ADA) services. Although the considered
time series is the number of cars passing through a specific
road the considered framework is general and can be applied
to any time-varying request (e.g., VNFs for packet inspection,
lightpath dynamic demands).

Results show that traditional time series analysis methods
based on exponential smoothing outperform ML methods,
such as LSTM, in terms of accuracy (measured as root mean
square error) for short lead time forecasts (i.e., the time, in
the future, at which the status of the considered quantity is
predicted). Moreover they require less resources and time,
thus energy. However, if the lead time is long, cloud-based
prediction exploiting AI/ML provides better accuracy. Thus,
if the lead time is long, cloud-based prediction is preferable
because the long lead time compensates for the higher time

for prediction due, mainly, to data transfer.

II. HYBRID FORECAST FRAMEWORK ARCHITECTURE AND
IMPLEMENTATION

Figure 1 reports the control loop described in [1]. The
overall control loop time, depends not only on the time taken
to perform the control loop functions (i.e., observe, orient,
decide, and act) by the respective management functions
(i.e., data collection, analytics, intelligence, orchestration and
control) but also on the time taken by the communication
among the functional elements.
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Figure 1. Mapping between ZSM architecture building blocks and closed
loop functions as in [1]

This paper focuses only on the part of the control loop
between the data collection from the managed resources and
the analytics block, as depicted in Fig. 2, even though a
comparable contribution to the overall control cycle time can
be expected to be provided by the remaining part of the control
loop.

As depicted in Fig. 2 the proposed Hybrid Forecast Frame-
work (HFF) features data analytics function deployment both
at the edge and in the core. Edge data analytics is based on
traditional time series analysis prediction approaches such as
Double Exponential Smoothing (DES) and Triple Exponential
Smoothing (TES). Core data analytics is based on ML-based
approach such as Long Short-Term Memory (LSTM). Orches-
tration between them is a function of the required control cycle
time, the available resources, the lead time, which is defined
as period for which forecasts are needed (i.e., the future time
for which the data need to be predicted).

III. CONSIDERED FORECASTING METHODS

Exponential smoothing and ML-based methods are consid-
ered for implementing edge analytics and cloud analytics, re-
spectively. Exponential smoothing is a time series forecasting
method for uni-variate data where the prediction is a weighted
linear sum of recent past observations or lags [8]. In this
paper two exponential smoothing techniques are considered:
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Figure 2. Scope of the paper within the ZSM and edge and core analytics

Double Exponential Smoothing (DES) and Triple Exponential
Smoothing (TES).

A. Double Exponential Smoothing (DES)

DES uses a level smoothing Lt with a level factor α ∈
[0, 1] and trend smoothing Tt with a trend factor β ∈ [0, 1]
as described in Eqs. (2) and (3) to compute the k-step ahead
(namely lead time) forecast yt+k through Eq. (1).

ŷt+k = Lt + k · Tt (1)
Lt = α · yt + (1− α) · (Lt−1 + Tt−1) (2)
Tt = β · (Lt − Lt−1) + (1− β) · Tt−1 (3)

The level smoothing Lt is obtained based on the previous
experienced time interval value of level smoothing Lt−1 and
trend smoothing Tt−1. Note that in Eq. (2), the current value of
time series (i.e., yt) is used to estimate Lt. Similarly the trend
smoothing Tt is obtained from previous values of the level
smoothing Lt−1 and trend smoothing Tt−1. However, instead
of the current value of the time series the current values of the
level smoothing Lt is utilized. The main drawback of DES is
the inability to account for seasonality of demands when the
data show both trend and seasonality.

B. Triple Exponential Smoothing (TES)

As shown in Eqs. (5)-(7), TES exploits three different
forecasting factors such as level Lt, trend Tt, and seasonality
St. Eq.(4) forecasts the value of the observed quantity at time
t + k, ŷt+k, given all the data points up to time t and the
seasonality constant s (i.e., the number of observations per
season). TES can be performed in two ways, namely additive
and multiplicative methods, depending on the seasonality
effect. The additive method is considered when the seasonality
effect is constant. Whereas, the multiplicative method is used
when the size of seasonality effect is proportional to the
mean [9]. Note that the following equations are defined based
on the additive method.

ŷt+k = Lt + k · Tt + St+k−s (4)
Lt = α · (yt − St−s) + (1− α) · (Lt−1 + Tt−1) (5)
Tt = β · (Lt − Lt−1) + (1− β) · Tt−1 (6)
St = γ · (yt − Tt) + (1− γ) · St−s, (7)

where s is the length of the seasonal cycle, α ∈ [0, 1], β ∈
[0, 1], and γ ∈ [0, 1].

The optimum values for the above three parameters can be
determined by calculating the error term et = yt - ŷt, where
yt as the current data point at time t, and ŷt as the predicted
value of the considered method. The minimum value from the
Sum-of-Squared-Errors (SSE) term can be exploited in order
to estimate these parameters [9].

C. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a special form of
Recurrent Neural Network (RNN) that can learn long-term
dependencies based on the information remembered in pre-
vious steps of the learning process. LSTM consists of a set
of recurrent blocks (i.e., memory blocks) where each block
contains one or more memory cells and multiplicative units
such as input, output and forget gate.

LSTM is one of the most successful model for forecasting
long-term time series. The LSTM can be characterized by
different hyper-parameters, specifically the number of hidden
layers, the number of neurons, and the batch size. Details of
LSTM parameters and their impact on prediction accuracy can
be found in [10]. However, the process of finding optimal
hyper-parameters which minimize the forecasting error could
be time and resource consuming.

In the approach considered in this paper, the LSTM input
vector corresponds to the n previous data points and the output
vector corresponds to k-steps ahead with respect to the current
time t of the considered time series. In this work, a stacked
LSTM model is exploited with a single-step (i.e., k = 1) and
a multi-step (i.e., k > 1) forecasting.

In LSTM single-step forecasting (LSTM-SSF), a single data
point is predicted based on n previous data points considered
for forecasting (i.e., the size of the monitoring window):

P (t) = model(O(t− 1), O(t− 2), ..., O(t− n)), (8)

where P is the prediction of the single data point at time t
and O is the observed value in the n previous data points.

In LSTM multi-step forecasting (LSTM-MSF), LSTM pre-
dicts k number of data points by considering n previous
observed data points.

P (t+ k − 1, t+ k − 2, ..., t) = model(O(t− 1), O(t− 2),

... , O(t− n)), (9)

where k > 1.
In this work, the LSTM-MSF is exploited in two ways: one

approach is forecasting k data points at a time from n data
points as described in Eq. (9); the second approach is realizing
a multi-step forecast by using a recursive single-step forecast,
where the forecast data value is used as an input to the model
by replacing t−n data point as defined in Eq. (10). The latter
case is referred to as LSTM-MSF-recursive.
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P (t) = model(O(t− 1), O(t− 2), ..., O(t− n))
P (t+ 1) = model(P (t), O(t− 1), ..., O(t− n+ 1))

...

P (t+ k − 1) = model(P (t+ k − 2), P (t+ k − 3),

... , O(t− n+ k − 1)) (10)

Note that DES-recursive and TES-recursive are also con-
sidered in this paper and implemented in the same way, by
updating the level smoothing Lt and the trend smoothing Tt
with the predicted data points while calculating ŷt+k in Eqs.
(1) and (4).

IV. PERFORMANCE EVALUATION

The considered forecast techniques are applied to predict the
number of virtual machines (VMs) needed by an automotive
application (e.g., Advanced Driving Assistance (ADA)) with-
out impacting its response time as function of the variable
number of cars that are passing through a street. Despite
the specificity of the considered application the considered
framework is general and can be applied to any time-varying
request (e.g., VNFs for packet inspection, lightpath dynamic
demands). A VNF/VM is assumed to support the service
required by a fixed number of cars.

The considered dataset is obtained from [11], where the
number of vehicles of a specific street (Corso Belgio) in the
city of Torino, Italy is reported every sixty seconds. In the
paper a data set of forty-eight hours (two days) is considered.

The considered performance parameter is the prediction
accuracy represented by the Root Mean Square Error (RMSE)
of the predicted values versus the time series real values. The
performance is measured as function of the lead time. The lead
time is defined as period for which forecasts are needed (i.e.,
the future time for which the data need to be predicted). The
lead time can be a function of the time required to (de)allocate
the necessary resources and it depends upon a number of
factors, such as type of service and utilised virtualization
mechanism. The window size (n) is defined as the length of n
previous observed data points considered to predict k number
of data points (i.e., k ≥ 1 ).

In DES and TES, the hyper-parameter values such as α, β
and γ are selected to minimize the RMSE, as summarized
in Table I. The seasonality of the TES method is set to
twenty-four hours. LSTM is implemented by using Google’s
TensorFlow library, accessed through the Keras high-level
front-end. Table I reports the set of parameters that are used to
evaluate the considered forecasting methods. The experiments
are carried out on a workstation equipped with 8 cores Intel(R)
i7-6820HQ 2.70GHz CPU with 16GB RAM, and running on
Ubuntu 16.04 LTS 64-bit operating system.

A. Impact of the dataset split ratio

Figure 3 shows the RMSE as function of LSTM-MSF and
LSTM-MSF-recursive forecast methods with different dataset
split ratios. The window size is set to 10 samples and the lead

Table I
EVALUATION PARAMETERS

Parameter Forecasting Method Value
Level factor (α) DES, TES 0.9, 0.9
Trend factor (β) DES, TES 0, 0.01

Seasonality factor (γ) TES 0.9
Number of hidden layers LSTM 2
Neurons in hidden layer LSTM 100

Epochs LSTM 100
Window size (n) LSTM 10, 15, 20, 25

Batch size LSTM 5
Dataset split (Train:Test) LSTM (70:30)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

LSTM-MSF LSTM-MST-recursive

R
M

S
E

50:50

60:40

70:30

80:20

Figure 3. Impact of training and testing split ratio on the RMSE.

time is set to 5 minutes. For example, if the training versus
testing (i.e., forecasting) proportion is set to x : y, it means that
x% of the collected data are used for training while y% of the
collected data are used for forecasting performance evaluation.
Here, different training:testing ratios are considered to observe
how accurate, in terms of RMSE, is the prediction. As shown
in Fig. 3, the prediction accuracy increases with an increase in
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Figure 4. Impact of lead time on the RMSE with 70:30 split ratio.
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training data size, however, at 70 : 30 split ratio, the considered
dataset provides minimum RMSE values. Hence, 70 : 30 split
ratio is an inflection point for the considered data set. The best
split ratio mainly depends on (i) the total number of samples
in the considered dataset; (ii) the model used for training.

B. Impact of the lead time

Figure 4 shows the RMSE as a function of the lead time
k with the six considered forecasting methods. The window
size is set to 10 samples and the split ratio is set to 70 : 30.
For the considered dataset, when the lead time is set to 1
minute, the DES and TES methods outperform LSTM-MSF.
However, when the lead time is long (i.e., 15 minutes), LSTM-
MSF performs well compared to time series methods. In
addition, LSTM-MSF-recursive method achieves the minimum
RMSE value compared to LSTM-MSF method. Moreover,
no significant change is observed in case of DES-recursive
and TES-recursive with DES and TES, due to the optimal
selection of the α, β, and γ parameter values. Thus, for the
considered data set, if the lead time is short, methods based
on exponential smoothing running at the edge can provide the
best RMSE with a small contribution to the control loop cycle
time. Indeed, if the required VMs are to be deployed at the
edge (to guarantee low latency to the service), edge analytics
is capable of providing a quick reply. Indeed, the prediction
time for DES is 1.006 µs and for TES is about 19 µs. For
LSTM, it is about 3 ms.

C. Impact of the window size

Figure 5 shows the RMSE as a function of the window
size n with LSTM-MST and LSTM-MST-recursive forecasting
methods. The split ratio is set to 70 : 30. Figure 5 depicts
the RMSE values for three different lengths of lead time: 5
minutes (top), 10 minutes (middle), and 15 minutes (bottom).
If the lead time is set to 5 minutes, the RMSE values of
LSTM-MST-recursive and LSTM-MST are similar for all
the considered window sizes. However, LSTM-MST-recursive
outperforms LSTM-MST as the lead time increases. Moreover,
LSTM-MST-recursive provides an almost stable RMSE value
independent of window sizes.

V. CONCLUSIONS

This paper proposed a Hybrid Forecasting Framework
(HFF) to implement the Analytics block of zero touch network
and service management architecture proposed by ETSI. The
HFF is based on implementing analytics/forecasting at the
network edge and in the network core. Edge analytics is
based on double and triple exponential smoothing while cloud
analytics is based on a Recursive Neural Networks (RNN)
method, more specifically Long Short-Term Memory (LSTM).

Performance evaluation results showed that edge analytics
is capable of achieving a better forecast accuracy, measured
in terms of root-mean-square error, than cloud analytics if
the forecast value is in the near future (i.e., short lead time).
Conversely, cloud analytics achieves better performance if the
forecast value is in the far future (i.e., long lead time).
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Figure 5. Impact of lead time and window size on the RMSE with different
forecasting methods.

Thus, edge analytics is preferable when the lead time is
short because it provides a better accuracy, at least with the
considered data set, and it allows for a short control loop
cycle time by performing local forecast (i.e., short time for
data transfer). Moreover, because it requires less resources
and short prediction time is also energy efficient. If, instead,
the lead time is long, core analytics is preferable because the
longer prediction time, due mainly to the time to transfer the
data, is compensated by a better accuracy. Moreover, because
the lead time is long, a larger control loop cycle time is
admissible.
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