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Abstract—Predicting the bandwidth utilization on network
links can be extremely useful for detecting congestion in order
to correct them before they occur. In this paper, we present a
solution to predict the bandwidth utilization between different
network links with a very high accuracy. A simulated network
is created to collect data related to the performance of the
network links on every interface. These data are processed and
expanded with feature engineering in order to create a training
set. We evaluate and compare three types of machine learning
algorithms, namely ARIMA (AutoRegressive Integrated Moving
Average), MLP (Multi Layer Perceptron) and LSTM (Long
Short-Term Memory), in order to predict the future bandwidth
consumption. The LSTM outperforms ARIMA and MLP with
very accurate predictions, rarely exceeding a 3% error (40% for
ARIMA and 20% for the MLP). We then show that the proposed
solution can be used in real time with a reaction managed by a
Software-Defined Networking (SDN) platform.

Index Terms—Congestion detection, LSTM, MLP, ARIMA,
Real-Time Bandwidth Prediction

I. INTRODUCTION

All companies that offer network services (ISPs, server
hosting services etc.) use mechanisms to monitor link uti-
lization. These mechanisms usually involve network interface
monitoring and collection of performance statistics (e.g. with
SNMP [1]), monitoring of flows (e.g. with NetFlow [2], sFlow
[3], etc.) or capturing packets and further analyzing them
with a specific tool [4]. Detection of high network utilization
is a problem that needs to be addressed efficiently since it
usually causes packet loss, increased latency due to buffering
of packets, and interference with TCP’s congestion-avoidance
algorithms. The result is a degradation of the Quality of
Service (QoS) of the network.

There are numerous ways to circumvent the problem like
allocating more bandwidth to accommodate for the increased
traffic, prioritizing important traffic through QoS, blocking
undesirable traffic, or load balancing the traffic across mul-
tiple paths [5]. However, all these solutions come after the
bandwidth problem has been detected. Predicting the future
bandwidth consumption would allow to proactively correct
this problem.

One of the most important metrics for network performance
evaluation is the network link utilization at any given time.
Link utilization is usually expressed as a percentage of the
total capacity of a network link. For example an 100 Mbps
Ethernet link that carries 20 Mbps of traffic exhibits 20%

utilization. The higher the percentage of usage, the lower
the quality of the link, resulting in packet loss and increased
latency.

Our solution predicts network utilization using machine
learning algorithms. A simulated network is created to collect
data from network and system resource statistics. They are
processed with feature engineering and merged to create a
dataset, which is fed to the machine learning algorithms.
Three models are tested: ARIMA, MLP and LSTM. Our goal
is to identify weak signals among the features of the dataset
to predict the bandwidth utilization.

The remainder of the paper is organized as follows. Section
2 discusses related work about congestion detection. Section
3 introduces the data generation process using a simulated
network. Section 4 describes the preprocessing stage, from
data collection to the creation of the dataset. Section 5
presents the machine learning models used to predict the
bandwidth utilization on network links and our experimental
results. Finally, section 6 discusses areas of future work and
concludes this paper.

II. RELATED WORK

Congestion detection is a useful tool to improve the per-
formance of any type of network. Many solutions have been
proposed at the network protocol level or at the application
level. The use of machine learning algorithms has gained
prominence over the last two decades in the literature.

Devare and Kumar [6] applied time series analysis to
congestion control using clustering and classification tech-
niques. They generated traffic patterns for a number of clients,
selected relevant data and preprocessed them to build a
database. Different machine learning classification algorithms
are trained with these data and used to predict the future traffic
intensity. Countermeasures are then applied to improve the
performance of the network.

Singhal and Yadav [7] used neural networks to detect
congestion in wireless sensor networks. The authors created
their own dataset using NS-2 [8] to generate a random traffic.
Three features are used as inputs for the machine learning
algorithm: the number of participants, the traffic rate, and
the buffer occupancy. This neural network has a 3-10-10-1
structure and predicts a level of congestion (low, medium, or
high).
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Madalgi and Kumar [9] explored a similar idea with two
congestion detection classifiers. Their dataset is also gener-
ated with NS-2 and machine learning algorithms are used
to predict the same three levels of congestion. The authors
compared the performance of a MLP and a decision tree (M5
model tree). They show that the decision tree is trained faster
(0.53 second against 8.25 seconds) and outperforms the MLP
in terms of accuracy, true positive rate, and false positive rate.

The same authors [10] proposed another work using Sup-
port Vector Machines (SVMs). They specifically used Lib-
SVM and Sequential Minimal Optimization (SMO), with
Radial Basis Function (RBF) as kernel. Different parameters
were tweaked to find the best values to improve the classifica-
tion accuracy. The best model is trained in 18.81 seconds and
achieves slightly lower results than the previous M5 decision
tree.

Zhang et al. [11] worked on a specific type of network
congestion: low-rate denial of service attacks. This type of
attacks exploits the TCP congestion-control mechanism to
deplete the resources of the target. The authors used the
Power Spectral Density (PSD) entropy function to reduce the
number of calculations: a flow is classified as normal below a
certain threshold, and as an attack above a second threshold.
A SVM classifies uncertain connections between these two
thresholds, using 8 features. The experimental results show
that this solution can detect 99.19% of the low-rate denial of
service attacks in the dataset.

III. DATA GENERATION USING A SIMULATED NETWORK

A testbed network was created in order to collect data for
the machine learning algorithms. Regular TCP and UDP traf-
fic was generated which occasionally caused heavily loaded
links in order to simulate real-world scenarios. The network
topology is illustrated in Fig. 1.

Fig. 1. Topography of the Simulated Network.

Virtualbox was used to simulate the network with each end
host and router being a separate virtual machine. Network
links were configured with a maximum capacity of 100 Mbps

and with 2 ms of latency. This bandwidth capacity does not
represent state-of-the-art data center switches, but is a good
representation of our problem. Finally, a separate VM called
Orchestrator was created to orchestrate the simulation phase
on the network.

iPerf3 was used to simulate traffic in the network [12].
iPerf3 is primarily used for bandwidth measurements of
network links by generating TCP and UDP flows with certain
parameters. Using iPerf3 as a traffic generator has its limi-
tations as it cannot always generate realistic network traffic.
For example, it mainly generates packets with fixed inter-
departure times and cannot create bursty traffic. It is, however,
easily scriptable and allowed us to quickly generate training
data for our models. Moreover, we have randomized some
of the flow parameters to introduce some diversity into the
network traffic. The random flow parameters are summarized
in Table I.

TABLE I
RANDOMIZED FLOW PARAMETERS

Parameter Values Distribution
Protocol TCP, UDP Uniform

Bitrate Average: 2 Mbps
Std: 500Kbps Normal

Flow Duration [30,500] seconds Uniform
Packet Length [200,1472] bytes Uniform

Flow Inter-arrival Time [20,2000] seconds Uniform
Source/Destination couple IP of the end hosts Uniform

iPerf3 Server Port [5001,5500] Uniform

The bitrate, flow duration, and flow inter-arrival time in-
tervals were chosen to ensure that maximum capacity would
be reached on certain or all links, even for a short period
of time. In other words, we had to make sure that we had
data ranging from zero traffic to maximum capacity while
keeping simulation times relatively short. Although real-world
network traffic is primarily TCP and not UDP, we decided not
to favor one over the other.

During the simulation phase, a script running on the
Orchestrator was in charge of starting the data collection
mechanism on each one of the routers. It started every
[20, 2000] seconds an iPerf3 server on a destination machine
and an iPerf3 client on a source machine, thus creating a new
data flow with certain characteristics. The results presented
later in this paper come from a three-day simulation, where
all the interfaces of each one of the routers were monitored.
The data were collected in the form of text files with a
predetermined frequency (every 3 seconds). The simulation
generated around 85 000 samples per interface for a total of
2 million samples (12 GB) for all the 22 monitored interfaces.

IV. PREPROCESSING STAGE

A. Data Collection
Machine learning algorithms for supervised learning re-

quire labelled data as input. The prediction quality is directly
related to the relevance of these data. Two tools were used in
order to obtain a maximum of information on the bandwidth
of the network links: Netmate and Dstat.



Netmate (Network Measuring and Accounting Meter) [13]
is a network measurement tool that can collect a number
of network statistics, such as packet volumes and sizes,
packet inter-arrival times, and flow duration. There are 46
features collected by Netmate for every active flow at the
time of the capture: protocol (TCP, UDP), total forward
and backward packets, total forward and backward volume,
duration, distribution metrics (packet length, inter arrival time,
active time, idle time). A separate instance of Netmate was
run for every interface on a router. This tool was configured
to export its output as a .csv file every 3 seconds for every
interface. Every .csv file was timestamped with the seconds
since epoch format.

Dstat [14] is a versatile Linux tool for generating system
resource statistics from numerous system components like
CPU, RAM, input/output devices, networks connections and
interfaces, and others. This tool is highly configurable and can
output the collected data into a .csv file for further processing.
Dstat collected 29 features with our configuration.

B. Feature Engineering

Data from Netmate and Dstat require a preprocessing phase
in order to create datasets in a format suitable for machine
learning algorithms. Given the fact that Netmate generates its
statistics for every active flow, a feature engineering procedure
is necessary to create new features that would describe the
status of the link collectively. Mathematical functions like
min(), max(), mean(), sum() and count() were applied
to the Netmate data to obtain 86 new features. For instance,
the total number of packets can be calculated with the sum
of the number of packets for each of the active flows:
total pkt vol = sum(pkt volume of each flow). These
86 features are then concatenated with the 29 features coming
from Dstat using the timestamp value to synchronize the
output of the two tools. After this feature engineering step,
116 features are collected from every interface of each router
in our network every 3 seconds.

The feature engineering process is illustrated in Fig. 2.

Fig. 2. Feature Engineering Workflow.

C. Creation of a Dataset
A dataset for supervised learning needs to be labeled for the

training process. The two most important features to predict
the link usage are the download bitrate and upload bitrate
provided by Dstat. A new feature called max bitrate is
created by choosing the maximum of the two values and
dividing it by the nominal maximum capacity of the link
(100 Mbps). In other words, the new column gives the link
usage ratio, either in the uplink or the downlink direction.
The max bitrate column is then duplicated to create the
future bitrate column, which is shifted forward by an offset
value. Machine learning algorithms are trained to predict this
future bitrate feature, namely the future max bitrate of
the link.

The offset value along with the frequency of the data
collection give the time depth of the future predictions.
Different values were tested between 1 and 40. The quality of
the prediction decreases significantly for an offset greater than
20. The value of 5 constitutes an optimal comprise between
time and accuracy, without being too resource-intensive or
time consuming. A frequency of 3 seconds with an offset
of 5 means that our model will predict the future bitrate
value 15 seconds in the future. 15 seconds is enough time for
a reaction mechanism to correct future congestion. Finally,
the dataset is normalized between 0 and 1 using a min-max
scaler. This normalization step is important for the training
process, since the difference in the features scales can cause
problems during the training.

V. EXPERIMENTS

A. Machine learning algorithms
Three types of machine learning algorithms are tested

and evaluated in this paper: the Autoregressive Integrated
Moving Average (ARIMA), the Multilayer Perceptron (MLP)
and the Long Short-Term Memory network (LSTM). These
algorithms are trained in a supervised way and try to pre-
dict the future bandwidth utilization based on 1 feature for
ARIMA (future bitrate), and 115 features for the two
neural networks. The dataset was randomly divided into k
subsets of equal size. The first subset was used for validation
and the models were trained on k-1 subsets (k-fold cross-
validation). This technique gives a more accurate estimate
of the models’ performance by reducing bias and sample
variability between training and test data [15]. The models
are trained on several links to be able to generalize their
predictions to any link in the network.

ARIMA is a widely used approach for analyzing and
forecasting time series data. If necessary, time series are made
stationary by differencing or applying nonlinear transforma-
tions. A stationary time series has the property that the mean,
variance, and autocorrelation are constant over time. This type
of data is easier to predict since its statistical properties will be
the same in the future. The ARIMA model is fitted on a single
feature: the future bandwidth utilization future bitrate.

MLPs are a classical feedforward neural network ar-
chitecture. They are comprised of one or more layers of



nodes, which are fully connected. During the training phase,
the output values are compared with the correct results to
compute the value of the error function. This error is then
fed back through the network to adjust the weights of each
connection and improve its results. After a certain number
of training cycles (called epochs), the MLP converges to a
solution which minimizes the value of the error function. For
this work, a 116-256-128-64-1 topology is used, with ReLU
as the activation function. MLPs are fast to train and suitable
for regression prediction problems, particularly with tabular
datasets. Hyperparameters were tuned manually, with a batch
size of 128 during 10 epochs, using the Adam optimizer.

LSTMs are a special kind of recurrent neural networks,
capable of learning long-term dependencies [16]. They are
designed to recognize patterns in sequence of data, with an
additional temporal dimension. This feature is particularly
relevant to our problem, which requires learning new network
behaviors while remembering past events. Hyperparameters
were tuned manually, for a batch size of 128 during 10
epochs, using the Adam optimizer. The final architecture
consists of 300 LSTM units and 116 ReLu units.

These three models were chosen to assess the complexity
of the problem being modelled. ARIMA is able to model pe-
riodic phenomena such as seasonal sales with good accuracy.
If it proves to be effective, this will mean that the prediction
of network link usage can be summarized in one feature.
MLP and LSTM are two models that use all 115 features
for their predictions. The difference is that LSTMs keep a
memory of past events, which can be useful for predicting
future bandwidth utilization. This type of neural network is
typically used in time series problems. But an MLP processes
data faster, which is an advantage for real-time use. This
architecture will therefore be preferred to the LSTM if the
results are similar.

B. Model Validation and Results

After the dataframe creation phase, one dataset is created
for each of the 22 monitored interfaces. Models are validated
using k-fold cross-validation: they are trained on k-1 datasets
and validated on the remaining one. By shuffling the different
folds, we can thus obtain all the permutations of the k-
1 datasets and obtain k evaluation scores for each model.
This technique also ensures that the model is validated on an
interface never seen before, which is a realistic use case.

Due to memory limitations and the fact that some interfaces
were reciprocal (in the sense that they are directly connected
to each other and the upstream traffic of one is the down-
stream traffic of the other), we cherry picked 8 interfaces for
the evaluation. Four metrics commonly used in time series
forecasting were chosen to evaluate the performance of the
models: bias (systematic deviation from the actual values),
Mean Absolute Error (MAE), Mean Squared Error (MSE)
and Root Mean Squared Error (RMSE). Table II shows the
averaged values of these metrics for each model. Fig. 3 and
4 show the predictions of the LSTM model, while Fig. 5 and
6 show the predictions of the MLP model.

TABLE II
AVERAGED k-FOLD CROSS-VALIDATION SCORES

Model Avg. Bias Avg. MAE Avg. MSE Avg. RMSE
ARIMA 0.161129 0.162010 0.071085 0.266617

MLP 0.001604 0.022826 0.002965 0.051939
LSTM -0.002142 0.004272 0.001444 0.012233
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Fig. 3. LSTM predictions vs. actual values for one interface.
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Fig. 4. LSTM difference between predicted and actual values for one
interface.
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Fig. 5. MLP predictions vs. actual values for one interface.
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Fig. 6. MLP difference between predicted and actual values for one interface.

It is immediately apparent from the results that ARIMA’s
predictions have a high bias and a poor accuracy compared
to the other models. The errors produced by ARIMA are too
significant for this model to be used in a real context. These
poor results can be attributed to the fact that the model is
fitted on a single feature. The other features could contribute
greatly to the quality of the algorithm’s prediction.

LSTM models perform better than MLPs. For all interfaces
the difference between the actual value and the predicted one
rarely exceeded 3%, which means that the future bandwidth
consumption is predicted with an error of +/- 300 Kbps on
100 Mbps links. On the other hand, the difference for the
MLP sometimes exceeded 20%, which might cause signif-
icant underestimation or overestimation of the future link
capacity. The ability of LSTM models to recall past variations
in bandwidth usage may explain the high quality of their
predictions.

In addition, the results for some interfaces were signifi-
cantly better than for others. The results were worse when
the interface had higher variance of the traffic carried during
the simulation phase. In other words, the predictions were
much closer to the real values for interfaces that were less
utilized during simulation than for interfaces that had seen
the whole spectrum from 0 to 100 Mbps.

C. Real-Time Prediction

After having trained and evaluated the LSTM model,
experiments with real-time bandwidth usage prediction were
conducted. The objective was to integrate the real-time predic-
tion mechanism with a Software-Defined Networking (SDN)
platform in order to be able to detect future bottlenecks and
react proactively to avoid them. SDN is a centrally managed
network architecture, where a controller maintains a global
view of the network and is able to dynamically reconfigure
network devices to meet certain needs.

In this case, the SDN controller was running in the Or-
chestrator virtual machine and was also in charge of receiving
collected data from the routers and using the trained LSTM
model to predict future bandwidth consumption on their

interfaces. Open vSwitch (OVS) [17] was installed on the
router virtual machines. Open vSwitch is a virtual network
switch, which uses the OpenFlow protocol to connect to the
controller and receive reconfiguration commands. Rsync was
used in order to provide the controller with the necessary
data for the prediction. It transferred to the controller the data
collected by the router every 3 seconds. The controller then
feeds them to the LSTM model and obtain a future value of
the bandwidth usage ratio.

In this test, we only monitored one router (namely router2)
whose interfaces were bridged to the OVS switch so that the
controller could have a view of the traffic passed through
them. For the prediction data, as well as the OpenFlow
signaling messages, we opted for an out-of-band approach.
In other words, the switch-controller communication and the
prediction data used a different dedicated channel and not the
bridged interfaces used for application data.

Fig. 7. Leveraging SDN for Proactive Management of the Network.

A separate instance of the prediction mechanism was run-
ning for each one of router2’s interfaces. With this setup, the
controller received prediction data every 3 seconds and was
able to predict each interface’s bandwidth 15 seconds ahead.
As a prevention measure we experimented with two solutions.
A radical one was to block traffic if the bandwidth prediction
exceeded a certain threshold. For example, if the prediction
for an interface exceeded 0.8 (80% of the link’s capacity),
the controller instructed the switch to drop new incoming
packets from this interface to avoid link overload. A more
sophisticated approach was load-balancing the traffic upon
reaching a certain threshold. For instance, if the outgoing
bandwidth reached 50% of the capacity of a certain link, the
controller installed flow rules on the switch that spread traffic
across other available links.

VI. CONCLUSIONS AND FUTURE WORK

Three machine learning algorithms (ARIMA, MLP, and
LSTM) were tested to predict bandwith usage ratios 15 sec-
onds ahead. LSTM models have shown their ability to predict
network link usage with high accuracy (errors below 3%).



These models can be deployed in real time and synchronized
with a SDN platform to prevent congestion before it occurs.
This type of architecture allows the use of load balancing
mechanisms to avoid packet loss by maximizing network
throughput.

It is possible that we could get similar results (or even
improve them) by removing some features, especially those
collected by Dstat that do not pertain to network traffic.
To that end, we intend to explore dimensionality reduction
methods or simply try smaller feature sets and evaluate
their performance. Less features would mean less resources
required for prediction, as well as less bandwidth needed to
upload the prediction data to the controller.

We also intend to investigate predictability of other parame-
ters that might indicate congestion or other network problems.
An example would be prediction of future RAM and CPU
usage on the router. Resource depletion of network equipment
would mean lost packets and high latency which in turn would
cause congestion and degradation of the network performance
in general.

Finally, we also plan to migrate to a different testbed
network possibly with real hardware in order to re-evaluate
the performance and make sure that our solution was not
somehow topology dependent. For the same reasons, we also
plan to use real applications to generate traffic like FTP,
HTTP, and RTP or a real traffic generator.
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