Locating Logic Design Errors via Test Generation
and Don’t-Care Propagation

Sy-Yen Kuo
Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan, R.O.C.

Abstract

This paper presents a new technique, the don’t-care
propagation method, for logic verification and design
error location in a circuit. Test patterns for single
stuck-line faults are used to compare the gate-level
implementation of a circuit with its functional-level
specification. In the presence of logic design errors,
such a test set will produce responses in the implemen-
tation that disagree with the responses in the specifi-
cation. In the verification phase of the design of logic
circuits using the top-down approach, it is necessary
not only to detect but also to locate the source of any
inconsistency that may exit between the specification
and the implementation. This technique can deter-
mine the region containing the error. It has very high
resolution and reduces the debugging time by the de-
signers. Extensive experimental results were obtained
to demonstrate the effectiveness of the new approach.

1 INTRODUCTION

In the design of integrated circuits, at all levels of
abstraction, verification tools compare the design at
different levels to make sure that in the synthesis pro-
cess the designers or optimization tools have not in-
troduced errors, particularly logic errors. Due to the
high complexity of VLSI design and the complexity of
synthesis tools, this has become increasingly impor-
tant [1]. Note that even if one has access to correct-
by-construction design methods, the issue of proving
that the software implementation is also correct re-
mains open [2]. Consequently, it is necessary to detec-
t, locate, and correct any inconsistency that may exist
between the specification and the implementation.

There are three approaches at this stage of the de-
sign process. The first approach is simulation [3]. In
this approach the functional-level circuit and the gate-
level circuit are both simulated with same input pat-
terns, and outputs are then compared to check for any

0-8186-2780-8/92 $3.00 © 1992 IEEE

inconsistency. Although elegant ideas on the detection
of various design errors were proposed in [3], the issue
of how to locate the errors was not addressed.

The second approach is Boolean comparison.
The functional-level specification is converted into
a Boolean expression and then compared with the
Boolean equation corresponding to the manually de-
signed gate-level circuit. In [4], the equivalence is test-
ed by proving the graph isomorphism of binary deci-
sion diagrams and in [5] by proving the tautology of
the exclusive-OR of the two functions. Again both do
not offer information on the location of an error.

Recently, Tumura [6] proposed the third approach
which partitions the specification, and extracts cor-
responding sub-functions from the gate-level circuit.
The combinational circuit is modeled as a black box
that has the same I/O and control signals as the
functional-level specification. By using hybrid sym-
bolic simulation, error can be located in a small region.
The disadvantages are extra control circuits, and non-
trivial partition and extraction for users. There are
also formal verification methods [7].

Our approach treats the functional-level specifica-
tion as a black box, and the gate-level implementa-
tion as an “existing product”. The test patterns for
single stuck-line faults are generated from the gate-
level implementation by the PODEM algorithm [8].
These test patterns are applied to both the specifica-
tion and the implementation to check if there is any
inconsistency on a primary output. If an inconsistency
is found, there is a design error in the gate-level imple-
mentation and we will further locate the site of error.
This method is deterministic and has high resolution.

2 ASSUMPTIONS

1. The functional specification need not be com-
pletely simulatable, i.e., some test patterns may not
exist.

.
1 51_ 1
:(0 1Ex | XX
- [[.
o __ e ::0 ¢
X HIpY X
H
H
0 io 0
Oix X x
’ .
s 0 ::u * 3
b3 H X
i
Incorrect gates :

. 0 []
S . _0 ¢
X X

¢ '
¢ ¢ _ ¢
X X

Correct gates

Figure 1: Don’t-care propagation for n-input OR gate and AND gate.

2. Only one design error exists in a circuit.

3. Five design errors: a gate replacement, an ex-
tra/missing inverter on a gate output, an extra gate,
a missing gate, and an extra wire [3], are considered.

4. The only gates used are AND, NAND, OR,
NOR, XOR, XNOR, NOT, and BUFFER.

5. Three symbols 0, 1, and X(don’t-care) are used.

6. The circuit is combinational.

7. Timing errors are not explicitly considered.

3 DON’T-CARE
ALGORITHM

PROPAGATION

3.1 Concept of Don’t-Care Propagation

The don’t-care propagation algorithm distinguishes
two gates by applying a test pattern containing don’t-
care(s) to both gates such that one gate has an X
output and the other has either a 0 or 1 output. This
means that these two gates are different since one can
propagate an X to its output but the other cannot.
For instance, if the incorrect gate is an n-input OR
(or AND) gate as shown in Figure 1, after applying
the input pattern 1, X, ..., X (or 0, X, ..., X), the
output is a 1 (or 0). However, by applying the same
input pattern to the corresponding ideal (functionally
correct) gate, we can detect the discrepancy by ob-
serving an X on the output.

However, an incorrect XOR or XNOR gate cannot
be detected by this method and will be handled by
another technique in the next section.

3.2 Details of the Don’t-care Propagation
Algorithm

In the following, we will describe each step of the
don’t care propagation algorithm in detail.
[A] Levelize the circuit under test from every primary
output to the primary inputs.

467

[B] Process the circuit under test from the primary
outputs to the primary inputs by applying PODEM
[8], and the following heuristic: “the best way to gen-
erate test patterns is to start from the primary output
to the primary inputs such that a gate of the circuit
under test has at least one X on its inputs and a stuck-
line fault on its output can be propagated to an pri-
mary output.”
[C] The wire assignments :
(a) During the forward implication in PODEM, we
have to assign appropriate values for the outputs of
other gates in order to propagate the desired value
on an input line of the target gate (a target gate is a
gate which has one or more input lines to be tested
for either a SA0 or SA1 fault) to an observable out-
put. During the backtracing process, determining the
target gate follows the method in [8]. For other gates,
we assign a value to an input which is easiest to set
and leave other inputs to have X’s if the gate is:
(al) AND gate: one input is a 0 and the others
are X's, if the output is a 0;
(a2) OR gate: one input is a 1 and the others
are X’s, if the output is a 1;
(a3) NAND gate: one input is a 0 and the others
are X’s, if the output is a 1;
(a4) NOR gate: one input is a 1 and the others
are X’s, if the output is a 0;
However, we cannot assign an X to an input of an
XOR or XNOR gate if the output is not an X. For all
other cases, we need to assign either 0’s or 1’s to all
the inputs of the gate and therefore, the input hardest
to set was chosen first as in PODEM.
(b) If the output of a gate with at least one primary
input has an X, assign values to non-fanout inputs if
the gate is:
(b1l) AND or NAND gate: assign the easiest to
control input a 1 and all others X’s.
(b2) OR or NOR gate: assign the easiest to con-
trol input a 0 and all others X’s.
(b3) XOR gate and XNOR gate: assign a 0 or

1 to the input line easiest to set and X’s to all other
inputs.

If backtracking is necessary, we will change X to 0 or
1 without considering whether X can be propagated
through the gate or not. This is because a don’t-care
by definition can be either a 0 or 1, and the only dis-
advantage by doing this is the decreasing probability
to propagate the don’t-care.

[D] If the gates (at the next lower level) connected
to a suspect gate are of the same type as the suspect
gate, then these gates are also suspect gates.

[E] After a test pattern has been generated, we apply
this test pattern to the circuit under test, and record
the corresponding value on each line. With the value
on each line and the gate type of each gate, we can col-
lect all the other stuck-line faults which are detected
by this test pattern by applying deductive fault sim-
ulation method. The set of stuck-line faults collected
by applying this test pattern is stored in either the
suspect_line set or the good line set so that they can
be used in union-intrsection procedure.

[F] The following is the detailed procedure to locate
the suspect gates.

e Step 1: Record the test pattern which propa-
gates an X to an output of the ideal circuit.

e Step 2: If there is only one X in the test pattern,
use Property 1 to locate the incorrect gate.

e Step 3: If there are more than one X in the
test pattern, let only one input, the target in-
put line, have an X and other active primary
inputs have a 0 or 1 without blocking “X” from
propagating to the primary output. An active
primary input is a primary input which must
be assigned a value of 0, 1, or X for the the test
pattern to be valid. However, ifan X is blocked to
the primary output, keep the “X” on the primary
input of the circuit under test. This is because the
current primary input has fanout branches which
are necessary for don’t-care propagation.

This process continues until a test pattern propagates
an X to the primary output of the ideal circuit.
[G] Assign a value on the primary output of the circuit
under test based on the following heuristic so that we
can propagate X to the primary output of the ideal
circuit as soon as possible.

(1) 1 for OR gate and NAND gate,

(2) 6 for AND gate and NOR gate.

468

4 UNION-INTERSECTION AND X-
OR/XNOR GATES

4.1 Diagnosis of Incorrect XOR/XNOR

Gates

We will analyze this problem based on the number
of inputs. Assume that the XOR/XNOR gate has odd
number of inputs.

o [A] If we have an XOR or a XNOR gate in the
incorrect circuit, apply the following four types
of input patterns in order to distinguish it from
other gates:

~ [A1] 00 --- 0 (All zeros);
— [A2] 11 --- 1 (All ones);

— [A3] Any input pattern other than the
above test patterns, that causes the output
of the XOR or XNOR gate to be 1;

— [A4] Any input pattern other than the
above test patterns, that causes the output
of the XOR or XNOR gate to be 0;

¢ [B] If an XOR or XNOR gate in the ideal cir-
cuit is replaced by an AND, OR, or NOR gate,
3-input patterns can offer information for the
union-intersection procedure.

e [C] If all detectable input and output lines of an
AND, NAND, OR, or NOR gate have both SA1l
and SAO in the suspect_line_set, the possible de-
sign error for each case is as following :

— [C1] AND: NAND or XNOR,;
— [C2] OR: NOR or XNOR;

— [C3] NAND: AND or XOR;
~ [C4] NOR: OR or XOR.

From [C], we can see that there is a pair of gates
on the right side of the colon in each case which can-
not be distinguished by the test patterns generated
from the gate on the left side. For instance, all the
test patterns of a 3-input NAND gate such as 111,
011, 101, and 110 cannot distinguish the NAND gate
from a 3-input XNOR gate. Similarly, we can locate
an incorrect XOR/XNOR gate with even number of
inputs.

4.2 TUnion-Intersection

The union-intersection procedure applies the nega-
tive tests in [9]. A negative test is also called an “if-
then” test. The general form of the test is A — B. The
conclusion B says that the primary output has a spe-
cific value. The premise A is a conjunction that looks
like OK(P,) A...A OK(Pn) A [I1...Iz]. Therefore,
the implication A — B means that a set of n paths
{P;...P,} of an incorrect circuit makes the primary
output lines on both the incorrect circuit and its ideal
circuits have the same logic value after applying the
same test pattern to the primary inputs {I;...Im} on
both circuits.

5 THE OVERALL SYSTEM

The whole system is divided into two major mod-
ules: the error detection module and the error location
module.

5.1 Error Detection

In step (1), if the primary output set po_set is not
empty, we take one primary output from the po.set,
and levelize all the predecessor gates of this prima-
ry output to the primary inputs. After levelizing the
gates, we include all the output lines of these gates and
gli-the primary inputs to these gates in test_line_set in
step (2). Both the xflag and the error_flag are ini-
tialized to 0. The error_flag=1 indicates that there is
an inconsistency at the outputs of both circuits and
therefore, a design error exists. The x_flag=1 indicates
that one output has an X and the other has a 0 or 1.
In steps (3) ~ (13), we will test SA0 and SA1 faults for
every line in the test_lineset by applying conditions
[C], [D], [G] in section 3.2, and the PODEM algorithm.

After finishing testing the subcircuit leading to the
current primary output, go to step (14) to check if any
fault remains in the suspect_line_set. If the error_flag
is set to 1, we go to step (16) since inconsistency be-
tween the functional level circuit and the logic gate cir-
cuit has been detected during steps (3) ~ (13). When
all detectable lines in the test_line_set have been test-
ed, delete the primary output from the po_set in step
(15). If poset is not empty, take the next primary
output in step (1); otherwise, execute step (16) to see
if the error_flag is set or not. If it is not set, we can
leave the system since no functional design error is de-
tected as shown in step (17). Otherwise, we have to
go to the error location module.

469

5.2 Error Location Module

In this module, the precise location of the incorrect
gate will be determined. First we check the x flag. If
it is set to 1, steps (2) ~ (9) will be executed as follow-
ing. First, in step(2), we have to store the test pattern
which propagated an X to the P. O. of the ideal circuit
in test_pattern_set which will be used later to locate
the design error. In step (3), we mark all active pri-
mary input lines of the incorrect circuit because we do
not need to consider other unused primary input lines.
Next, we will consider how a missing wire could be de-
tected. The missing wire error is that a wire should
connect to the logic circuit, while the designers inad-
vertently miss to do so. It means that the missing
wire is “invisible” in the incorrect circuit. Therefore,
we can only detect all the possible suspect gates but
not the exact position of the incorrect gate. A sus-
pect gate is found by checking if any line of the gate
has one of its stuck-line faults detected by the test
pattern which generates an X on the primary output
of the ideal circuit. Therefore, in step (4) all gates
which could have a missing wire are included in the
missing_wire_set.

In step (5), we apply conditions (b1), (b2), and (b3)
of section 3.2[C] to reduce the number of X’s on the
primary input lines. This process can speed up our
execution time since we only need to consider fewer
primary input lines with the value X. In steps (7) ~
(8), we assign only one primary input line of the test
pattern to X according to the conditions in section
3.2[F]. In step (9), we check the stuck-line faults of
each line detected by the test pattern. Whenever we
find an X on the primary output of the ideal circuit,
we store all the lines to suspect_gateset. We keep
processing steps (7) ~ (9) until the design error is
found. On the other hand, if nothing is wrong with
that gate, we must have a missing wire to any of the
gates listed in the missing_wire_set.

Otherwise, if x_flag = 0, we have to locate the de-
sign error as shown in steps (10) ~ (12). In step
(10), the error location process continues if not all
the lines in the suspect_line_set have been processed.
Select a line to process and check if its xflag is set or
not. In step (14), we include all the elements of the
exclusive_set in the suspect _gate set since they could
be gate replacement errors. After checking all the sus-
pect lines in the suspect_line_set, the verification of
the logic circuit is done.

5.3 Example Design Error

There are five typical types of design errors, only
one of them will be discussed. Gate replacement error
means that a gate in the ideal circuit is replaced by
a different one, on the same set of inputs, when the
incorrect circuit is constructed.

Example 1: To detect and locate a functional design
error such that a 2-input XNOR gate in the ideal cir-
cuit is replaced by a 2-input NOR gate in the incorrect
circuit as shown in Figure 2.

Solution: According to condition (2) in 3.2[G], we
assign line g of the incorrect circuit to be 0. Therefore,
either line e or line f should be 0 and the other one
should be X. We choose line ¢ = 0 and line f = X
since line e is easier to set to 0 than line f. To have
line e == 0, we assign line a = 1 and line b = X in the
incorrect circuit. Also, we assign line ¢ = X and line
d = 0 for line f = X according to the condition (b2)
in 3.2[C].

After test pattern #1 in Table 1 is obtained, we
apply it to both the incorrect and ideal circuits. As
shown in Table 1, we got an X on the primary output
of the ideal circuit. Although this means that the
gate replacement error has been detected, we need to
apply the condition in 3.2[F] to locate the incorrect
gate. From test pattern #3, we identify the incorrect
gate as gate B.

6 Experimental Results

The algorithms have been implemented in C on
Sun workstations under UNIX operating system. The
circuits used in the experiment are taken from the
set proposed at ISCAS’85 [10] as benchmarks for
ATPG(Automatic Test Pattern Generation). All de-
sign errors are inserted manually.

Tables 2 give the experimental results on one bench-
mark circuit C5315. We can see that the number of
suspect gates is usually very small and in many cases
is one which means that we can locate the error ex-
actly. The exception is that an extra/missing inverter
on a certain primary output causes a huge amount of
suspect gates. For example, the last row of Table 2
has 261 suspect gates. However, this is not a problem
for an extra/missing inverter error. This is because
we always check the primary output first.

7 CONCLUSIONS

A new technique, don’t-care propagation, is used
in conjunction with test pattern generation to gener-

470

ate a test set which is utilized in a new way to com-
pare a gate-level implementation of a circuit with a
functionaul-level specification in order to detect and
locate logic design errors. This approach is determin-
istic and has high resolution. A large class of common
design mistakes can be handled. The experimental
results indeed show that our approaches are very ef-
fective.

References

[1] A. Sangiovanni-Vincentelli “An Overview of
Synthesis Systems,” Proc. of Custom Integrated
Circuits Conference, May 1985.

[2] R. K. Cavin and J. Hilbert, “Design of Integrated

Circuits: Directions and Challenges,” Proc. of the

IEEE, Vol. 78, pp. 418-435, Feb. 1990.

M. S. Abadir, J. Ferguson T. E. Kirkland, “Logic
Design Verification via Test Generation,” IEEE
Trans. computer-aided design, Vol.7, no. 1, pp
138-148, Jan. 1988.

R. E. Bryant, “Graph-Based Algorithms for
Boolean Function Manipulation,” IEEE Trans.
Computer, Vol. ¢-35, no. 8, pp 677-691, Aug.
1986.

R. S. Weiand A. Sangiovanni-Vincentelli, “PRO-
TEUS: A Logic Verification System for Combina-
tional Logic Circuits,” Proc. Int. Test Conference,
Sept. 1986.

(3]

[4]

Kensaburo Alfredo Tamura “Locating Functional
Errors in Logic Circuits,” Proc. 26th ACM/IEEE

Design Automation Conference, pp 185-191,
1989.

M. S. Chandrasekhar, J. P. Privitera, and K.
W. Conradt, “Application of Term Rewriting
Techniques to Hardware Design Verification,”
Proc. 24th ACM/IEEE Design Automation Con-
ference, pp. 277-282, June 1987.

(7]

[8] P. Geol, “An implicit enumeration algorithm to
generate test for combinational circuits,” IEEE
Trans. on Computers, Vol. C-30, pp. 215-222,

March 1981 .

C. Paulson, “Classes of Diagnostic Tests,” Proc.
20th ACM/IEEE Design Automation Confer-
ence, pp. 316-322, June 1983.

(10] F. Brglez and H. Fujiwara, “A Neutral Netlist of

10 Combinational Benchmark Circuits and a Tar-
get translator in Fortran,” Proc. Int. Symposium

on Circuits and Systems, June 1985.

— 9
c
d f
Incorrect Circuit ideal Circuit
Figure 2: A gate replacement design error in Example 1.
Table 1: Test patterns for the circuit in Example 1.
Test Pattern 1 2 3 4 5 6 7 8 9
No.
a 1 1 1 0 0 1 0 0 0
P | b X 0 X 0 1 0 0 0 0
c X X 1 1 1 1 0 1 0
d 0 0 0 X X X 0 0 1
Inco- 0 0 0 1 0 0 0 1 1
rrect
P.O. Ideal X 0 X 1 0 0 0 1 1
gSA1 | gSA1 | gSA1 | aSAt | bSAO | aSAO0 | ¢cSA1 |cSAO0 | d SAC
Faults b SA1 d SA1 -
e SA1 e SA1 | e SAt t SAO SA0
Detected eSA0 | gsat | gsA1 | 1SAT |asSar |3sAl
f SA0 9SA1 |bSA1 | b SAf
g SAO e SA0 | e SAO
Table 2: Experimental results of the benchmark circuit C5315
Error Site ; # of Exe. Time
(Line No.) Error Type Algorithm/Type |5 ;spect Gates | (Seconds)
2204 AND to NOR X_inv 14 1.02
4655 NAND to XOR Ul_error 1 268.38
4749 Extra Wire X_prop 1 3.22
5162 Extra Gate X_prop 1 3.19
5166 AND to OR X_prop 1 1.45
5172 Missing Gate X_prop 1 1.59
792 Inverter X_miss 2 1.06
5315 Inverter Ul_etror 261 280.3

471

