
Use of Embedded Scheduling to
Compile VHDL for Effective Parallel

Simulation

John Willis
System Technology & Architecture Div.

IBM Corporation
Rochester, MN USA

jwillis@acm.org

Zhiyuan Li
Dept. of CS, University of Minnesota

200 Union Street SE, #4-192
Minneapolis, MN 55455 USA

li@cs.umn.edu

Abstract

This paper describes VHDL compilation techniques,
embodied in the Auriga compiler [3,14], which facilitate
parallel or distributed simulation by embedding evalua-
tion scheduling in the emitted code. Unlike earlier but
related cycle-driven techniques which map VHDL into
simpler temporal semantics, the techniques described here
preserve VHDL’s full temporal semantics. Experimental
results indicate effective simulation acceleration using as
many as 16 processors. Ongoing work involves evaluation
with much larger models and machine configurations.

1: Introduction

Compiler researchers view the automated translation
(compilation) of mainstream computer languages as an
essential long term objective for effective execution on
parallel, message-based computers. VHDL’s intrinsic par-
allelism and static process graph make VHDL an excellent
intermediate challenge for parallel compiler researchers.
This work describes a successful step toward these chal-
lenges.

Many contemporary research efforts addressing paral-
lel VHDL simulation focus on run-time algorithms for
logically correct and ideally decoupled parallel execution

[1, 2, 16]. In contrast, the emphasis of this work is on com-
pile-time efforts which target a simplified, asynchronous,
conservative run-time environment. Relative to earlier
papers by some of the same authors, this paper provides
greater detail on the preparations for embedded schedul-
ing, embedded scheduling itself and two sets of perfor-
mance measurements from a prototype of the final Auriga
compiler [3, 14].

This paper begins by describing the intrinsic problem
being addressed in the context of an earlier approach to
optimized simulation: cycle-driven simulation. We discuss
the translation of VHDL source code into an intermediate
form consisting of communicating sequential processes
followed by clustering of processes to reduce the number
of independently scheduled threads. Rather than commu-
tating the resulting set of threads with a generic thread
scheduler, we use an adaptation of Bryant/Chandy/Misra’s
conservative discrete event simulation algorithm where
the scheduler is an integral “glue” for the compiled
threads. Mapping and scheduling algorithms take into
account communication and computational resource utili-
zation patterns to arrive at an assignment of threads to pro-
cessors (map) and a static evaluation order (schedule).
Following a presentation of experimental results we dis-
cuss efforts to adopt the technology for production use and
future extensions.

This work was supported in part by Carnegie Mellon University, the IBM Corporation (including Grant Number 340-659),
by the Army Research Office (Contract DAAL03-89-C-0038 with the University of Minnesota Army High Performance
Computing Research Center) and by the Graduate College of the University of Minnesota. The work is continuing at FTL
Systems and the University of Minnesota.

Tsang-Puu Lin
Dept. of CS, University of Minnesota

200 Union Street, #4-192
Minneapolis, MN 55455 USA

2: Background

Analysis and elaboration of VHDL models conceptu-
ally yields multiple instruction “threads”. Each thread cor-
responds to the behavior of an elaborated process,
concurrent statement or perhaps an implicit process (e.g.
derived from a signal of resolved type). Execution of each
thread is enabled at the beginning of execution and
resumes at the expiration of a time interval or when one or
more signals to which the thread is sensitive become
active. The simulation kernel commutates each processor
among a set of active threads.

Figure 1: Data Structure used by Generic Scheduler

Most VHDL simulator implementations use a generic
simulation kernel driven by some form of a “time-wheel”
[5, 8], such as the one shown in Figure 1. Corresponding
to each time step with a pending waveform element or
scheduled thread resumption (T), there is a list of pending
waveform elements which need to update signals and a list
of threads which need to be scheduled for execution. The
generic simulation scheduler provides model-independent
functionality needed to schedule waveform elements,
schedule thread resumptions, update signals and execute
threads. The data structure “customizes” the generic simu-
lation kernel for the execution (simulation) of a specific
model.

While generic simulation kernels are common among
contemporary uniprocessor VHDL simulators, this generic
approach implies several significant run-time computa-
tional costs, beyond actual thread execution, including:

• waveform element scheduling,

• thread scheduling,

• signal updating, and

• hardware processor scheduling.

Cycle-driven or levelized-compiled-code (LCC) [6, 7]
abstracts timing information from the run-time model and
statically orders thread evaluation. These simplifications
enable gate-level simulation mapped directly into several
machine instructions per gate-level evaluation, often
resulting in an order of magnitude acceleration in simula-

T n (update explicit signals) -> W1 -> W2 -> W3
T n (update implicit signals) -> W5

n (resume threads) -> T5 -> T7 -> T9T

T n+1 (update explicit signals) -> W9 -> W7
T n+1 (update implicit signals) -> W2

n+1 (resume threads) -> T5 -> T4T

tion performance. Unfortunately this simulation perfor-
mance comes at a cost:

• applicability is limited to synchronous designs,

• timing information is lost and related errors masked,

• can slow simulations with low probability of thread
activity at a given instant in simulation time, and

• correspondence between VHDL source code and exe-
cutable is reduced, complicating source code debug.

Use of a generic simulation kernel on each processor
within a parallel simulation has another, somewhat hidden
performance deficit. Waveform elements and thread evalu-
ations are typically queued in an effectively random order,
resulting in the commutation of processors among thread
executions in effectively random order. Unfortunately, in
the context of a parallel simulation, the results of execut-
ing some threads are critical to enable computations on
other processors (perhaps executing out-of-phase or at a
distinct time step) while other evaluations are non-critical.
Generic kernels cannot exploit knowledge of the critical
path without incurring yet more run-time overhead.

Several research groups have combined cycle-driven
and event-driven simulation [3, 9] in an effort to locally
harness the advantages of both. This paper addresses some
of the techniques needed to extend hybrid LCC/event sim-
ulation for optimized execution on parallel processors.

3: VHDL to CSP Translation

Early in the compilation process, VHDL source code
must be analyzed into an intermediate form, then elabo-
rated into a form resembling a communicating sequential
processes (CSP) paradigm [10]. The CSP model facilitates
execution using either conservative [11] (Bryant/Chandy/
Misra) or optimistic (Jefferson) [12] algorithms for paral-
lel discrete event simulation. This work uses a conserva-
tive, asynchronous algorithm.

Elaboration flattens the VHDL design hierarchy by
“rewriting” component instances (with bound entity and
architecture) and concurrent statements in terms of their
process equivalents. This rewriting is largely defined by
the IEEE VHDL 1076-93 language definition [13].

Processes elaborate into instruction threads and
optional thread-local data. The instruction threads are
sequential (with embedded control flow constructs such as
if, case, and loops). Most subprogram calls are inlined (to
facilitate optimization and improve performance). Only
select recursive calls and calls to subprograms with for-
eign bodies actually generate synchronous subprogram

call and return. Instruction threads include wait state-
ments, which suspend execution of the instruction thread
pending activity on message channels or expiration of a
time interval. Thread-local data can be divided into tran-
sient data and data which persists across one or more wait
statements. Transient data can be allocated on a stack
shared by all threads whereas persistent data can be trans-
formed into a message communication channel driven and
received (solely) by a single thread. Wait statements
embedded in subprograms require special handling [14].

Signals elaborate into one or more communication
channels along which messages may flow. Messages rep-
resent signal activity (signal assignments) and thus events
(signal assignments resulting in a change of signal value).
Signals of composite type may be either driven on an ele-
ment-by-element basis by distinct processes or resolved. If
each element is driven by a distinct driver, the signal can
be decomposed into multiple message channels. Resolved
signals can be translated into implicit processes interposed
between drivers and receivers. The resulting message
channels are unidirectional with a unique driver and one or
more receivers (message channels with no receivers can be
optimized out of the run-time system in the absence of
source code debugging or logging considerations).

4: Thread Clustering

When executing a sequence of threads during simula-
tion, the cost of commutating a processor among multiple
threads capable of resuming is not zero. One means of
eliminating this computational cost is to collapse two or
more threads into a single thread. In literature describing
parallel, discrete event simulation, thread collapsing is
often described as collecting multiple “physical processes”
into a single “logical process”.

Among those threads which are suitable for thread
clustering, analysis identifies sets of activation regions
which resume execution based on the same criteria and
dependencies between activation regions such that execu-
tion of one activation region within the thread (condition-
ally) enables another thread.

Activation regions with common resumption condi-
tions can be collapsed into a single thread with a common
prologue followed by either a concatenation of the threads
(uniprocessor node) or do-across parallel execution for
shared-memory multiprocessors. In this way, the cost of
thread switching is paid once for the set of activation
regions rather than once for each activation region.

In a like manner, activation regions with dependen-
cies can be collapsed into a single thread such that the

machine instructions from one activation region follow
those from a dominating activation region (region on
which another activation region depends). Since there can
be several dominating activation regions, instructions
from one thread may be replicated. A simple example is
the collapsing of an OR gate into multiple threads.

In the following discussion, the properties of a set of
collapsed threads closely resemble those of un-collapsed
threads (except for shared state); thus the discussion will
not distinguish between collapsed and un-collapsed
threads.

5: Mapping to Processors

Following optimizing transformations on the interme-
diate CSP representation [3], the mapping phase of compi-
lation determines which processor or shared memory
multiprocessor (node) will be used to execute each activa-
tion region.

The mapping algorithm results from experimental tri-
als using a variety of alternatives. We refer to it as the Bot-
tleneck Reduction Heuristic (BRH). BRH uses dataflow
analysis already generated by earlier optimizing transfor-
mations [3] to estimate both the average computational
workload required to execute all activation regions and
inter-processor queuing implied by a tentative mapping of
activation regions to nodes. A second metric, the flow rate,
helps to determine a priori the optimal number of proces-
sors for execution of a particular model. Iteration serves to
establish the final mapping (and number of processors
actually used). For further details of the BRH algorithm,
see [4].

6: Scheduling Each Processor

Once the set of activation regions mapped to each
processor or shared memory multiprocessor is determined
(see Section 5 above), the scheduling phase determines the
static order in which code for activation regions will be
laid out in memory.

Generally, activation regions are scheduled so as to
minimize the average number of activation regions
between generation and use of a message (manifestation of
signal activity). The criticality of a message for enabling
evaluation on other nodes also guides the static scheduling
algorithm.

7: Embedded VHDL Scheduling

Embedded scheduling prefaces each activation region
(described in Section 5.0 above) by a prologue and follows

each activation region by an epilogue. A prologue, activa-
tion region and epilogue are referred to as an embedded
dispatcher, as shown in Figure 2. These dispatchers imple-
ment an asynchronous, conservative evaluation paradigm.

When execution reaches the prologue, the associated
activation region may be skipped entirely, execute once, or
execute many times before proceeding to the epilogue.
The ability to introduce this control flow complexity prior
to the activation region is a key difference between tradi-
tional levelized compiled code and this work. In localized
cases where levelized code compilation would be feasible,
no machine instructions are emitted at all for the prologue.

As the localized VHDL being compiled and the need
for observability require more complex timing, the pro-
logue can grow in complexity (and increased run-time).
Sensitivity lists with aggregates that don’t match one to
one with the signal / message pathways complicate pro-
logues. The ability to probe the internal state of a process
at a fixed instant in time can complicate the prologue (and/
or epilogue).

Figure 2: Composition of an embedded dispatcher

When execution reaches the epilogue, waveform ele-
ments assigned by the thread may be scheduled, “null
messages” may be generated denoting the assignment of a
value to a message channel for an extended period of time
or messages may be generated indicating that activity took
place even though the value remains unchanged.

The epilogue can choose for execution to fall-through
to the next dispatcher or can make use of context to choose
a more optimal transfer of control. For example, as a result
of projected waveform elements assigned during evalua-
tion of this dispatcher, the epilogue can often determine
that other dispatchers are more or less likely to be able to
step forward in time (via an evaluation), branching accord-
ingly.

Prologue

Activation Region of
Instruction Thread

Epilogue

D
is

p
at

ch
e

r

The set of dispatchers mapped to a given processor
are generally mapped contiguously in instruction memory
with an unconditional branch after the last dispatcher’s
prologue returning control flow to the first dispatcher (see
Figure 3). Ancillary dispatchers may be inserted in the
sequence of dispatchers to support inter-processor com-
munication, logging or shared variables. Details will be
presented by the Auriga team in an upcoming publication
on distributed simulation of VHDL shared variables.

Figure 3: Arrangement of dispatchers on processor

8: Experimental Results

To evaluate the performance of these techniques, we
have undertaken numerous experiments on a Thinking
Machines CM-5, other message-based parallel machines,
networks populated by Encore and Sequent shared mem-
ory multiprocessors and a simulated testbed running with
multiple processes on a uniprocessor SPARC

Although work on actual parallel machines has pro-
vided very satisfying feedback as to the feasibility and per-
formance available, none of the available machines and
programming environments provided the instrumentation
accuracy and parameter variability of our testbed. The
testbed, written by Tsang-Puu Lin, uses the same unipro-
cessor as each CM-5 processing element (SPARC-based);
communication is emulated in the test-bed by parameter-
ized code. Parameters within the testbed include:

• Number of processors (2 to 512),

• Communication latency (50, 100, & 200 clock cycles),
and,

• Message sizes were fixed at 20 bytes (CMMD brief
message) with an inter-message latency of 5 cycles and
10 cycles to enqueue or dequeue.

The following figures report speedup results for the
two relatively small models described in Table 1. The
adder model was written at the University of Pittsburgh by
Steven Levitan (with an added test-bench) and the queue-

Dispatcher

Dispatcher

Dispatcher

T=0

IPC

level model was written at the University of Virginia by R.
Rao. Models approaching 100K dispatchers have been
effectively accelerated on the prototype using 64 proces-
sors. Further, audited performance data should be avail-
able during the conference presentation.

Table 1: Characterization of Models Used

Figures 4 and 5 report the execution time as a function
of the logarithmic number of processors and communica-
tion time. The CM-5 communication latency is between
50 and 100 cycles. Distributed systems, even with opti-
mized device drivers and switches often have communica-
tion latencies of at least 400 cycles. TCP/IP over Ethernet
has communication latencies much higher, often tens of
thousands of cycles. Such high latency platforms do not
appear to be viable for generalized, effective simulation
acceleration.

Table 2: Speedups for CM-5 like testbed parameters

Figure 4: Speedup for adder example

For CM-5 like-machines, we measured the approxi-
mate speedups reported in Table 2. The models were com-
piled through to the CSP intermediate form using Auriga,
then translated for execution on the test-bed by prototype
code. At the time this data was gathered, optimization

Model
Identifier

Number of
Dispatchers Cycles

Adder 44 No
Multiprocessor 39 Yes

Model
Descriptor

Number of
Processors

Speedup
Observed

Adder 4 3 times
Multiprocessor 8 5 times

1 2 4 8 16

10

20

30

Time

of
Proc.

50
cycles

200 cycles

100
cycles

strategies such as thread clustering (described above),
input desensitization [3], temporal analysis [3], waveform
analysis [3] and subtype enumeration [3] were not incor-
porated in the measurement. Use of these optimizations
and much larger models effectively uses more processors
and increases the speedup observed.

Figure 5: Speedup for multiprocessor example

9: Conclusions

From these and other runs on actual parallel and dis-
tributed hardware, have been lead to several conclusions:

• Speedups of 5 to 7 times are feasible for small models
and relatively modest size parallel processors.

• Low communications latency resulting from tuned
operating system kernels, direct device driver paths
and accelerated interconnects are mandatory for accel-
erated simulation.

• Compile-time analysis, optimization and native code
generation can dramatically improve uniprocessor and
parallel processor performance relative to perform
from generic simulation kernels running on uniproces-
sor.

10: Future Work

When compiling a language such as VHDL, there is
an enormous gap between getting excellent uniprocessor
performance and/or parallel processor acceleration using a
prototype compiler/run-time system and having a produc-
tion-ready tool. This paper describes the former and not
the latter effort. Research prototypes need not address:

• Full language coverage (digital, analog)

1 2 4 8 16

5

10

15

Time

of
Proc.

50
cycles

200 cycles

cycles

20

25

100

• Analysis, elaboration and run-time error handling

• Reasonable optimization of diverse modeling styles

• Robust handling of hardware failures

• Portability among diverse hardware platforms

• Source level debugging and waveform display

• Support for related standards (Vital, OMF...)

Substantial effort, measured in tens of person-years,
separates a successful prototype from a successful parallel
product. This difference helps to explain the large number
of parallel VHDL research projects / publications and the
absence of any optimizing VHDL compilers targeting par-
allel or distributed, general-purpose processors.

Efforts to transform Auriga’s technology into a pro-
duction-quality compiler began at IBM (MinSim [15]) and
are continuing at FTL Systems. This effort is progressing
toward publishable measurements of multi-million process
designs simulated with hundreds of processors.

Given that most of Auriga’s complexity is related to
optimization and code generation from a CSP-based inter-
mediate (in a global, persistent memory database) rather
than VHDL, there is potentially a great deal of leverage
analyzing other hardware description languages (e.g. ana-
log VHDL and Verilog) and even programming languages
(e.g. C++) into Auriga’s CSP intermediate. In this way, we
hope to address the broader challenge of automatically
translating mainstream programming languages for effec-
tive execution on parallel, message-based computers.

11: Acknowledgments

The authors appreciate the many useful comments which
shaped this work. Daniel Siewiorek (CMU) guided devel-
opment of the Auriga compiler at Carnegie Mellon Uni-
versity. Dalibor Vrsalovic advocated a “work-pile”
scheduling algorithm, predecessor to the one described
here. Don Austin (AHPCRC) supported experimental
aspects of this work on the CM-5 massively parallel pro-
cessor. Thanks to the Steve Levitan at the University of
Pittsburgh and R. Rao of Virginia Tech for the VHDL
models referenced in this paper. Thanks to Jeff Snyder
(IBM) and two anonymous reviewers for their many sug-
gestions resulting in improvements to this paper.

12: References:

[1] T. McBrayer, V. Krishnaswamy, S. Mohanty, L. Moore, X.
Liu, J. Carter, D. Charley, P.A. Wilsey, Da.A. Hensgen, H.W.
Carter, P. Chawla, J. Colier, S. Bilik, VAST: Time Warp Simu-
lation of VHDL on SMP Workstations, VHDL International

User’s Forum, Conference Management Services, Novem-
ber, 1994, pages 4.17-4.32.

[2] Hansen Dai and Bill Paulsen, Multithreading VHDL Simula-
tion, VHDL International User’s Forum, Conference Man-
agement Services, November, 1994, pages 4.33-4.38.

[3] John C. Willis and Daniel P. Siewiorek, Optimizing VHDL
Compilation for Parallel Simulation, IEEE Design & Test of
Computers, September, 1992.

[4] T.P. Lin, Z. Li and J. Willis, Mapping Discrete Simulation
Tasks on Message Passing Parallel Processors, University of
Minnesota, AHPCRC Preprint 94-022.

[5] Manuel A. d’Abreu, Gate-Level Simulation, IEEE Design &
Test, December, 1985.

[6] Gregory F. Pfister, The Yorktown Simulation Engine, In 19th
Design Automation Conference, pages 51-54, 1982.

[7] Lang-Terng Wang, Nathan E. Hoover, and John J. Zasio.
SSIM: A Software Levelized Compiled-Code Simulator. In
24th ACM/IEEE Design Automation Conference, 1987.

[8] M. Abramovici, Y.H. Levendel and P.R. Menon, A Logic Sim-
ulation Machine, In 19th Design Automation Conference,
pages 65-73, 1982.

[9] Zhicheng Wang and Peter M. Mauer. LECSIM: A Levelized
Event Driven Compiled Logic Simulator. In 27th ACM/IEEE
Design Automation Conference, pages 491-496, June 1990.

[10] C.A.R. Hoare, Communicating Sequential Processes, Com-
munications of the ACM, Volume 21, Number 8, pages 666-
677, August 1978.

[11] K.M. Chandy and J. Misra, Asynchronous Distributed Simu-
lation Via a Sequence of Parallel Computations, Communi-
cations of the ACM, April 1981.

[12] David R. Jefferson, Virtual Time, ACM Transactions on Pro-
gramming Languages and Systems, 7(3): pages 404-425,
July 1985.

[13] IEEE Standard VHDL Language Reference Manual, ANSI/
IEEE Std. 1076-1993.

[14] John C. Willis, Optimizing VHDL Compilation for Parallel
Simulation, PhD Dissertation, Computer and Electrical Engi-
neering Department, Carnegie-Mellon University, October
1991.

[15] John Willis, Rob Newshutz, Lance Thompson, Jeff Graves,
Tom Dillinger, Jeff Snyder, Nimish Radia, Joe Skovira,
David Blaauw, Sidhartha Mohanty, Zhiyuan Li, Sandra
Samelson and Matt Lin, MinSim: Optimized VHDL Simula-
tion Using Networked & Parallel Computers, VHDL Interna-
tional User’s Forum, Conference Management Services,
October, 1993.

[16] Larry Soule and Anoop Gupta, An Evaluation of the
Chandy/Misra/Bryant Algorithm for Digital Logic Simula-
tion, 6th Annual Workshop on Parallel and Distributed Simu-
lation, January, 1992.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

