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Abstract

This paper presents a VHDL specification methodology
aimed to extend structured design methodologies to the
behavioral level. The goal is to develop VHDL
modeling strategies in order to master the design and
analysis of large and complex systems. Structured
design methodologies are combined with AMICAL, a
VHDL based behavioral synthesis tool, in order to
allow hierarchical design and component re-use.

1. Introduction

Due to the increasing complexity of designs within the
last decades, designers had resort to higher level
specifications. Moreover in order to cope with time-to-
market constraints, various tools (both for simulation
and synthesis) have been developed, and thereby
promoting high level specification for VLSI [Cour94].

The efficiency of such tools is increased on application
of structured design methodologies. Besides, structured
design methodology allows to handle very complex
design with hierarchical approach. Hierarchical design
proceeds by partitioning a system into modules
[WesE93]. During the design of the uppermost system,
the implementation details of these modules are
hidden. Proper partitioning allows independence
between the design of the different parts. The
decomposition is generally guided by structuring rules
aimed to hide local design decisions, such that only
the interface of each module is visible.

Structured design methodology for VLSI consists of 3
main steps in the design-flow:

-Partitioning of a whole system into sub-systems,
-Synthesis of each resulting sub-system, and
-Abstraction of each synthesized sub-system to be
used as component during the synthesis of systems
higher in the hierarchy.

Structured design methodologies for VLSI have been
developed at different abstraction levels: physical or
circuit [TRLG81], logic and register transfer [GirC93]
levels and some work has been achieved for the
behavioral domain [KiDJ94]. Such methodologies
allow to handle complex designs with a hierachical
approach. Figure 1 illustrates the structured design
methodology applied at the behavioral level.

Hierarchical decomposition or partitioning splits the

system specification into simpler sub-systems. These
units are to be defined according to the corresponding
degree of re-utilization, and those that may share the
same operators may be regrouped.
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Figure 1: Design-flow

When the hierarchical decomposition is done with
respect to the regularity of the system design, the
whole synthesis is simplified. Regularity implies that
sub-systems or specific designs will be re-used more
than once and therefore the total amount of designs
needed will be reduced [WesE93]. As a result,
regularity allows an improvement in productivity, in
general.

Section 2 shall detail the models involved within
component re-use at the architectural level for the
behavioral components, the target architectural model
and the VHDL system specification. Section 3 outlines
the tasks achieved during behavioral synthesis and
more particularly those executed by AMICAL, a
VHDL based behavioral synthesis tool. Within section
4, a design example will illustrate how combining
AMICAL with VHDL based design methodologies
allows hierarchy and component re-use.

2. Models for Structured Design
Methodology

The main models used for structured design
methodology are those of the component and the



system. A component model is a sub-system that will
be re-used. A system is a full design made of an
assembling of already designed components. These two
concepts will be detailed in the case of a structured
design methodology acting at the behavioral level, on
a VHDL description.

2.1. Behavioral components

A behavioral component is an entity able to execute a
set of operations invoked in the behavioral description.
It also acts as a black box linking the behavioral and
register transfer levels. The operation(s) executed by
the behavioral component may be as simple as
predefined operations (+, -, *, ...) or as complex as
input/output operations with handshaking or memory
access with complex addressing functions. A
component may correspond to a design produced by
external tools and methods or to a sub-system resulting
from an early design session.

Complex operations can be invoked through procedure
and function calls in the behavioral description.
Allowing the use of procedures and functions within a
HDL (Hardware Description Language) is a kind of
extension of this HDL. This concept is similar to the
concept of system function library in programming
languages [Back78]. This way a language is composed
of two parts:
1)A fixed part which includes the predefined

constructs, and
2)An exchangeable part which includes a set of

procedures and functions that can be used within the
language. These need not to be part of the language
itself.

2.2. Modeling for re-use: the behavioral
components

In order to allow re-use, behavioral components have
to be abstracted. The concept of behavioral component
is a generalisation of functional unit concept, it allows
the use of existing macro-blocks in the behavioral
specification. A functional unit may execute standard
operations or new customized operations introduced by
the user.

    type RAM  is array (0 to 127) of integer;
    Signal M: RAM; 
    Procedure mread(A: in integer;B: out integer);
    Procedure mwrite(A,B : in integer);
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Figure 2: The three abstraction levels

Each functional unit can be specified at three different
abstraction levels: the conceptual view, the behavioral
view and the implementation view. Figure 2 shows
these three views for a memory cell that can achieve
the 2 operations: mread and mwrite.

From the conceptual point of view, the functional unit
is an object that can execute one or several operations
which may share some data (M). The implementation
shows an external view of a possible realization of the
functional unit; it thus includes the different
connections of the functional unit: inputs, outputs and
selection commands (selecting the procedure to
execute). At the behavioral level, the functional unit is
described through the operation that can be called from
the behavioral description. These may correspond to
standard operations or procedures and functions.

In order to use this kind of model for high level
synthesis, a fourth model will be necessary. It will be
called the high-level synthesis view. Its goal is to link
the behavioral and implementation views. It includes
the interface of the functional unit, its call-parameters
(corresponding to the operation parameters), the
operation set executed by the functional unit as well as
the parameter passing protocol for each operation. High
level synthesis algorithms impose that such protocols
make use of static clock cycles: each operation needs
to have a fixed predictable execution time. In order to
overcome this constraint and to enable the use of
complex functional units that may execute operations
with data-dependent execution time, the methodology
used consists in splitting the operation into a set of
atomic operations with fixed execution time. The
behavioral description will then be written according to
the atomic operations introduced.

2.3. Modular and flexible architectural model
for behavioral design for re-use

A system is viewed as an assembling of sub-systems



coordinated through a top controller. This is a modular
and flexible architecture model as shown in figure 3. It
is composed of a top controller, a set of functional
modules and a communication network. These last two
constitute the datapath. Functional units can be of any
degree of complexity and can themselves be the result
of a synthesis process, as we will see in section 4 in
the case of a fixed-point unit synthesized by AMICAL
and used as a functional unit to build a PID.

The network is built in order to allow the
communication between functional modules, and with
the external world.The top controller sequences the
operations executed by the functional units and the
communication network. Modular design can be
achieved as the functional modules can be designed
separately using different design methods. This model
is flexible, it allows several configurations of
functional modules and different communication
schemes.
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Figure 3: Target architecture

2.4. System level specification with VHDL

A behavioral description of the architecture model will
give only a view of the top control, e.g. the
coordination of the different sub-systems. In VHDL this
may be described as a process that may make use of
complex sub-systems through procedure and function
calls. In other words, the functional units are used as
black boxes. The only pieces of information required
about each functional unit are the list of procedures
executed by the functional unit and some informations
about parameter passing protocols.

Memory with complex addressing function and specific
embedded computation and control can be easily
described with this scheme. The addressing functions
may be realized by an independent functional unit or
may be integrated within the memory unit. In the same
way complex I/O units may be used. They are also
accessed through function and procedure calls. These
may execute complex protocol or data conversion.

The association between the operations of the
behavioral description (standard operators such as +
and -, and procedure and function calls) and the
functional units is made during the synthesis process, it
may be made through names. Operations may have
different execution schemes on different functional

units within the library. The number of functional units
selected (allocated or instanciated) will depend on the
parallelism allowed by the initial description. Of
course the synthesis process tries to share as much as
possible the use of the functional units.

3. AMICAL: High Level Synthesis for
Hierarchical Design

AMICAL is a high level synthesis system allowing
structured design methodology [KiDJ94]. It starts with
two kinds of information: a behavioral specification
given in VHDL and an external functional unit library
and allows architectural exploration and synthesis. This
corresponds to the second step of the methodology
introduced in section 1. The first step, system analysis
and partitioning, is performed manually.

The AMICAL design-flow is illustrated by figure 4. The
behavioral description is a VHDL process that may
make use of complex sub-systems through procedure
and function calls; in this case the behavioral
description makes use of a complex function DCT.
However for each procedure or function used, the
library must include at least one functional unit able to
execute the corresponding operation. In this case, the
library includes a RAM able to execute the mread and
mwrite procedures, a DSP-unit able to execute the dct
and idct functions, and an ALU. During the different
steps involved in the high-level synthesis, the
functional units are used as black boxes, that may
execute a list of procedures. However to complete the
description at the register transfer level, the details of
the functional units, about its implementation view
(section 2.2) are required.
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Figure 4: AMICAL design-flow

The different steps involved in the synthesis process
are: macro-scheduling, allocation, micro-scheduling
and architecture generation. The macro-scheduler
produces a finite state machine presented as a
transition table from the initial behavioral description.
Each transition corresponds to the execution of a
control step under a given condition.

At this stage, each operation may take several clock
cycles to execute. A transition is also called macro-



cycle or macro-step. In fact a transition corresponds to
a simple data-flow graph that has to be further
synthesized using scheduling and allocation. The goal
of these steps is to refine each macro-cycle into a set
of basic control steps executing in one clock cycle
each. These basic control steps are also called micro-
cycles.

After scheduling, allocation starts with two kinds of
information, namely the scheduled description (a set of
data-flow graphs) and an external functional unit
library. During the following steps, both allocation and
binding are performed. The functional unit allocation
step associates a functional unit with each operation in
the state table. A second scheduling step (called
micro-scheduling) is then performed according to the
execution scheme for each operation. Each operation is
decomposed into a set of transfers, which are
scheduled into micro-cycles. Each micro-cycle
contains a set of parallel transfers that take one basic
clock cycle to execute.

The last synthesis step is a classic architecture
generation. The clock cycle level description is
mapped onto an architecture composed of a datapath
and a controller. The communication network, within
the datapath, may be composed of buses, multiplexers
and registers. The number of buses and multiplexers is
fixed according to the parallel transfers required by the
architecture.

4. A Design Example

In order to illustrate hierarchical design and component
re-use at the behavioral level we will use a design
example: a PID (Proportional Integral Derivative -or
Differential-).

4.1. The PID

A PID controller usually applies a control function to
an analog input and generates an analog output. This
kind of device is generally implemented as an analog
device. The use of a digital solution allows to have a
more flexible device.

The PID used in this paper forms part of a speed
control system detailed in [KiAJ91]. The speed control
system includes an ALU which performs elementary
and logic operations, and memories to store the state
variables and coefficients. The PID algorithm is given
by:
Irefk <= (Kp*Ek) + Ki*∫(Ek)dt + Kd*dEk/dt
where Kp, Ki, Kd are constants and Ek is the error
change.

However only the close approximation given as:
Irefk <= (Kp*Ek) + Ki*∑(Ek*deltaT) +
Kd*∆(Ek)/deltaT
will be developped in order to be synthesized at the
behavioral level by AMICAL, for digital

implementation.

4.2. System level analysis and partitioning

As introduced in section 1., the goal of the system
level analysis and partitioning step is to structure the
description in order to allow hierarchical description
and component re-use. The result of such a step is a
behavioral description and its corresponding functional
unit library.

The computation makes use of two complex fixed-
point operations (/ and *). At this step the designer has
to choose between using basic operators from the
library (+, -, shift) and building specific units to
perform these computations.

As the PID to be designed has no severe timing
constraint, the multiplication and division operators
will be implemented by sequential procedures using
basic operators from the library (+, -, shift). In order to
share the basic operators, we decided to gather all the
fixed-point operators (*, /, +, -) within a fixed-point
unit that will be synthesized by AMICAL and re-used
in order to build the PID.

For the execution of the complex operations by the
fixed-point unit, as functional unit, a 2-step protocol is
applied. Each operation is controlled through 2
procedure calls :
- Starting the operation (or computation by the
functional unit) through a first procedure call with the
corresponding parameters, and
- Recovering the computation results through outputs of
a second procedure call when their validity is
indicated.

During its computation, the functional unit will be
blind to any external command. These characteristics
have to be taken into account while defining the
components or functional units used for synthesis as
well as when writing the behavioral description of the
whole design. The 2-step protocol applied to the
multiplication operation may be summarized by the
figure 5.

mul_call

tmp wait_result

op1

op2

product
done

Multiplier

Figure 5: Component re-use
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Figure 6: Partitioning results for the PID

Such an operation decomposition into atomic
procedures allows component re-use and has been
applied to both multiplication and division operations,
for the design of the fixed-point unit. The design-flow
of the PID is shown in figure 6.

4.3. Specifications

The behavioral description of the PID is given in figure
7. The global organization of this VHDL description is
made of an entity/architecture pair. Unlike most
existing synthesized architectures, the architecture
accepted by AMICAL is made of a main process and a
set of non-synthesizable statements. These elements
may correspond to instances of functional units and
other specific units. The main process accesses the
functional units through procedure calls. As explained
earlier the multiplication and division calls are split
into a 2-step protocol. Lines 12 to 16 describe the
sequence of statements used to execute a
multiplication.

The multiplication call is made using a first procedure
call ("mul_call") using as input parameters the
corresponding input values (Kp and Ek). When the
multiplication will be over, the result will be
memorized within the functional unit itself. A second
procedure ("wait_result") will be called to bring back
the product obtained, Irefk. In order to point out when
this value is ready, a validity signal called "done" is
used. This results in writing a "mul_call" followed by a
loop of "wait_result" until the result is ready.

-----------------------------------------------------------------------------
use work.types_and_functions.all;
entity pid is
port ( clock, Fsignin : in bit;

HostInterrupt, PositionChange : in bit;
Irefkout : out str32b);

end pid;
architecture behavioral of pid is

component fpu
port ( clock : in bit;

input1, input2 : in str32b;
sel : in bit;
com : in int3bits;

output : out str32b;
outdone : out bit);

end component;

signal sig_in1, sig_in2, sig_out : str32b;
signal sig_sel, sig_done : bit;
signal sig_com : int3bits;

begin

Inst_FU : fpu
port map (clock, reset, sig_in1, sig_in2,

sig_com, sig_out, sig_done);

main : process

variable Ik, Ek, Kp, Ki, Fref, N, Fk : str32b;
variable Ek_1, Dek, Irefk, Temp : str32b;
variable done : bit;
variable val_rom : ROM;

procedure mul_call (a, b : in str32b) is
begin

sig_in1 <= a; sig_in2 <= b;
sig_sel <= '1'; sig_com <= 2;
wait until rising_edge(clock);

end mul_call;

procedure rep_call (a : in str32b) is
begin

sig_in1 <= a; sig_sel <= '1'; sig_com <= 1;
wait until rising_edge(clock);

end rep_call;

procedure wait_result (x: out str32b; y: out bit) is
begin

x := sig_out; y := sig_done;
wait until rising_edge(clock);

end wait_result;

...

begin

[1] ...
[2] wait until (HostInterrupt = '0');
[3] while (HostInterrupt = '0') loop
[4] ...
[5] rep_call(N);
[6] wait_result(Fk, done);
[7] while (done /= '1') loop
[8] wait_result(Fk, done);
[9] end loop;
[10] if (Fsignin = '0') then Ek := Fref-Fk;
[11] else Ek := Fref+Fk; end if;
[12] mul_call(Kp, Ek);
[13] wait_result(Irefk, done);
[14] while (done /= '1') loop
[15] wait_result(Irefk, done);
[16] end loop;
[17] ...
[18] Irefkout <= Irefk + Temp;
[19] end loop;
[20] ...

end process main;

end behavioral;
-----------------------------------------------------------------------------

Figure 7: PID algorithm (VHDL description)

The fixed-point unit itself is described by a separate
VHDL entity that may be designed using AMICAL



itself or some other specific tools. Figure 8(a) shows
the behavioral description of the fixed-point unit. The
corresponding synthesis view, described in figure 8(b),
after abstraction for re-use, gives the protocol
exchange format between the top control and the
functional unit. Each operation is decomposed into a
set of scheduled cycles made of transfers to and from
the functional unit.

-----------------------------------------------------------------------------
use work.types_and_functions.all;

entity fixedpointunit is
port ( clock : in bit;

input1, input2 : in str32b; -- input values
sel : in bit; -- enable signal
com : in int3bits; -- operation asked
output : out str32b; -- output value
outdone : out bit); -- validation signal

end fixedpointunit;

architecture behavior of fixedpointunit is
begin

process
variable tmp : integer; -- result buffer
variable val1, val2 : integer; -- input value buffers
procedure mul_call(A,B: in integer) is begin

-- shift and add algorithm; tmp:= A * B;
end mul;
procedure rep_call(A: in integer)is begin

-- restoring division algorithm; tmp:= 1/A;
end rep;

begin
wait until sel='1';
case com is
when 1 => -- rep_call

outdone <= '0'; val1:= input1; rep(val1);
when 2 => -- mul_call

outdone <= '0'; val1:= input1; val2:= input2;
mul(input1,input2);

when 3 => -- "+"
Z = A + B;

when 4 => -- "-"
Z <= A - B;

when 5 => -- wait_result
Z <= tmp; outdone <= '1';

end case;
end process;

end behavior;
-----------------------------------------------------------------------------

(a) Behavioral description
(FU fpu

(AREA 30000)
(PARAMETER (DataIn A B) (DataOut Z done))
(CONNECTOR

(DataIn input1 (BIT 0 32) input2 (BIT 0 32))
(DataOut output (BIT 0 32) outdone (BIT 0 1))
(ControlIn sel (BIT 0 1))
(ControlIn com (BIT 0 3)))

(OpType + (commutative A B)
(Cycle 1 (Transfer A input1) (Transfer B input2)
(Transfer output Z) (active sel 1) (active com 3)))

(OpType -
(Cycle 1 (Transfer A input1) (Transfer B input2)
(Transfer output Z) (active sel 1) (active com 4)))

(OpType mul_call (commutative A B)
(Cycle 1 (Transfer A input1)
(Transfer B input2) (active sel 1) (active com 2)))

(OpType rep_call
(Cycle 1 (Transfer A input1)
(Transfer B input2) (active sel 1) (active com 1)))

(OpType wait_result
(Cycle 1 (Transfer output Z)
(Transfer outdone done) (active sel 1) (active com

5))))

(b) Synthesis view

Figure 8: Fixed-point unit

4.4. The design process

The architectural synthesis of both fixed-point unit and
PID are realized by AMICAL. The result of the
synthesis of the fixed-point unit will be used twice:
-1) It will be used to create the corresponding

behavioral component that will be used for the
synthesis of the PID (abstraction of functional unit).

-2) It will be used during the logic synthesis of the PID
as the required structural description of the
functional unit: fixed-point unit.

Figure 9: Layout of PID
The synthesis of the PID produced an architecture
where the controller is a 22-state and 33-transition
finite state machine. The datapath obtained after some
interactive architectural transformations is made up of
3 functional units and 3 buses. Within the PID
datapath, one of the components is an instance of the
fixed-point unit compiled previously.

The resulting RTL description has been fed to the
commercial logic synthesis and place and route tools.
The synthesis results obtained for the PID is composed
of around 50000 transistors. The full design stands on
10.5 mm square when mapped onto a 0.8 CMOS
technology. The figure 9 gives the layout of the final
chip.

5. Conclusions



This paper dealt with structuring design in order to
allow hierarchical design and synthesis using VHDL at
the behavioral level. The use of behavioral design to
build more complex design corresponds to the re-use of
existing components for the design and synthesis at the
behavioral level.

The scheme detailed above is powerful as it allows for
hierarchical design based on behavioral VHDL
descriptions. This structured method enables the use of
complex sub-systems as functional units in the library
during architectural synthesis.
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