
Quantifying Design Productivity: An Effort Distribution Analysis

Makarand Joshi and Hideaki Kobayashi
Department of Electrical and Computer Engineering

University of South Carolina
Columbia, SC 29208

E-mail : makarand@ece.scarolina.edu

Abstract: This paper presents basic process
models for textual and graphical HDL-based
design. The models are used to measure effort
(time) required for various design activities,
with an aim to quantify design productivity.
Effort-distribution in man-minutes is used as a
parameter to evaluate design productivity.
Design quality, defined as a probability that the
design meets its specifications, is plotted for
various design activities. We also discuss the
resources that are essential to perform each
design activity. These experiments demonstrate
that "effort-distribution analysis" is useful for
real life HDL-based design projects.

Keywords: Design productivity, design
quality, design resources, effort-distribution,
graphical HDL, human interaction, ISO 9000,
textual HDL.

1. Introduction

 Hardware description languages (HDLs)
have enabled designers to represent complex
digital systems at an increasingly higher level of
abstraction. The bulk of the cost associated with
a design project lies in the design environment
comprising of computer resources such as
software tools, HDL compilers, workstations,
PCs, etc. and human resources [8]. Most cost
models represent human resources in terms of
person-months (PM) or man-hours (MH).

A unit activity model [2,3] has been used to
analyze the effort-distribution over various
design activities in two process models for top-
down HDL-based design. Each design activity in
a design process model provides an output in
response to an input from its previous activity
along with design effort and resources. The
resource input includes designer's experience
with the design language, tools and working
environment. In the models discussed here, a

synthesis activity at each level of abstraction is
followed by a verification activity to ensure
adherence to the design specifications. The
synthesis-verification cycle is an essential
measure to achieve an improved design quality.

Experiments were performed by two
designers using a benchmark for HDL-based
design, from a problem statement to working
netlists in an educational environment.

2. Design process models

An HDL-based design process typically
includes activities such as planning, system
design and logic design [9]. Each of these
activities contributes to the turn around time
(TAT) and plays a significant role in
determining the productivity of a design project.

2.1 HDL-based design process models

A typical textual HDL-based design process
model is shown in Figure 1. The system design
process extends from a problem statement to
working netlists and involves a series of design
activities [1].

A set of specifications (hereinafter referred
to as "spec") describing system features is
provided to the designer. A clear understanding
of the spec should be made prior to starting the
design. This activity is referred to as
conceptualization.

A system can be hierarchically decomposed
into subsystems considering the availability of
design resources, while adhering to timing
constraints. System partitioning provides a set of
concurrently executing subsystems, each of
which may be represented internally in an
hierarchical fashion.

Conceptual model validation ensures the
closeness of the partitioned system to the spec.
Any deviation from the spec leads to an

2

erroneous system model to start with, which in
turn adds to inaccuracy as the design process
continues.

HDL modeling refers to representing the
system behavior using a textual HDL. The
model should handle timing constraints and
manage data dependencies between subsystems
using delay specifications and synchronization
signals.

 System Partitioning

Conceptual Model Validation

 HDL Modeling

 HDL Simulation

Pre-synthesis Modification

Re-simulation

Logic Synthesis

Logic Simulation

Conceptualization

Testbench Generation

Figure 1. Textual HDL-based design process model.

Testbench generation produces a test suite
for simulation of operating conditions based on
the spec and constraints. The accuracy of the
system design bears a direct relationship with
the test coverage. The lost design quality
(deviation from the spec) can be recovered
through wide coverage of test cases. An
exhaustive testing is highly desirable, however,
it may be impractical due to the cost factor
associated with testing.

HDL simulation refers to verifying the
functionality of HDL description using
testbenches. Simulation results in the form of
waveforms or output tables are often used for
verification of system behavior.

Pre-synthesis modification converts
simulated constructs in an HDL description into
synthesizable constructs supported by a specific

library for logic synthesis. Non-synthesizable
constructs are eliminated from the HDL
description. The time required for pre-synthesis
modification largely depends on the designer's
experience.

Re-simulation ensures functionality of the
HDL description, which may have been altered
due to the removal of non-synthesizable
constructs.

Logic synthesis is an automatic activity for
generating a gate-level description in the form
of netlists from an HDL description.

Logic simulation, an optional activity after
the logic synthesis, verifies the functional and
timing correctness of generated netlists.

 System Partitioning

Conceptual Model Validation

 Graphical Modeling

Graphical Simulation

HDL Code Generation

Logic Synthesis

Logic Simulation

Conceptualization

Figure 2. Graphical HDL-based design process model.

A graphical HDL-based design process
model is shown in Figure 2. The three new
activities included in the graphical HDL-based
design process are described as follows :

Graphical modeling refers to representation
of system behavior with the aid of a graphical
utility. The graphical representation may be a
flow chart or a state diagram in the case of a
finite state machine.

Graphical simulation entails verification of
the functionality of the system, by traversing
through the graphical representation using a
front-end tool. The flow of control in the design
is illustrated during graphical simulation as test

3

inputs are applied interactively or via a test
batch file.

HDL code generation refers to automatic
generation of an HDL description and a
testbench after graphical modeling and
simulation are done.

In graphical HDL-based design, design entry
may partly be done using a textual HDL for
design components which may be better
represented using textual languages.

2.2 Design resources

Designer’s knowledge is an important
resource, essential in order to perform various
HDL-based design activities. System
partitioning requires the designer to have a
knowledge of system design in order to
decompose a problem statement into subsystems.
HDL modeling and simulation require the user
to have an HDL knowledge, design experience
and design tool skills. Tools may include an
HDL simulator and a logic synthesis tool. In
order to perform pre-synthesis modification, a
designer should know synthesizable constructs
for logic synthesis. A designer is required to
know finite state machine modeling and
flowcharting, in order to perform graphical
modeling.

These resources comprise the resource input
to the respective activities, as shown in the
activity unit model [2].

3. Case study

As a case study, design experiments were
performed by two designers using a benchmark.
Designers A and B involved in the case study
were engineering graduate students who had an
HDL-based design experience for approximately
two years. Designer A used the textual HDL-
based design process, while Designer B used the
graphical HDL-based design process. The effort
(in man-minutes) required to perform each
design activity was recorded and effort
distribution graphs for each design process were
plotted.

3.1. The benchmark

A programmable interrupt controller (PIC)
was used as a benchmark to experience various
activities shown in the design process models. A

PIC acts as an interface between peripheral
interrupting devices and a CPU. The PIC can
handle upto eight vectored priority interrupts for
the CPU. It accepts requests from the peripheral
devices and determines which of the interrupt
requests should be forwarded to the CPU. The
PIC is set up for operation through a series of
initialization command words (ICWs) timed
with write (WR) pulses. Followed by ICWs, a
sequence of byte long commands is provided to
the PIC for specifying interrupt masks and
modes of operation. These operational command
words (OCWs) may be received more than once
by the PIC, in order to reset or change the mode
of operation.

In response to an interrupt on one or more
interrupt lines, the PIC executes a typical
interrupt sequence and transfers program
control to a vectored memory location based on
the type of interrupt(s) received.

The benchmark included control logic,
datapaths and a memory interface, which are
typically found to be elements of real life design
projects.

3.2. Textual HDL-based design
 experiment

Figure 3 shows an effort distribution over the
various activities in textual HDL-based design
and a quality curve illustrating the accuracy of
the design at every activity in the design
process.

Figure 3. Design effort-distribution and quality curve
 for textual HDL-based design process.

4

Note that, HDL modeling contributes 28% of
the total design effort. The modeling time can be
reduced by utilizing a library of reusable generic
components [5]. Also, 18% of the total design
time is spent for testbench generation. An
intuitive solution is the use of automated
testbench generation (ATG) for HDL
simulation. The use of ATG implies excellent
repeatability and predictable time for simulation.
Pre-synthesis modification can be eliminated if
non-synthesizable constructs are avoided during
HDL modeling. This was demonstrated by
Designer A, who had a strong HDL design
experience.

3.3. Graphical HDL-based design
 experiment

Designer B performed the design of the
benchmark in a graphical HDL-based design
environment. Figure 4 shows an effort
distribution over the various activities in
graphical HDL-based design and a quality curve
illustrating the accuracy of the design at every
activity in the design process.

Figure 4. Design effort-distribution and quality curve
 for graphical HDL-based design process.

In graphical HDL-based design, 47% of the total
design time is used for graphical modeling. The
absence of testbench generation and pre-
synthesis modification results in an increased
percentage of the total design time being used
for modeling. Intuitively, if the design process

provides for modeling at a higher level of
abstraction, a major portion of the total design
time can be eliminated [8]. Graphical modeling
also, creates a design documentation in the form
of flow diagrams or state diagrams. This
considerably reduces the time for design
documentation. Note that HDL code generation,
an automated activity, requires no design effort.

3.4. Design quality curve

In Figures 3 and 4, design quality (or
accuracy) is plotted over the various activities
involved in HDL-based design. The quality of a
design is defined as the probability that the
design satisfies its specifications [4]. The
deviation from the spec results in a decline in
the accuracy or design quality. Hence, every
synthesis activity should be followed by a
verification activity to ensure a recovery in
terms of design quality, by maintaining
closeness to the spec.

Design activities may be classified into two
different types of activities, viz. interactive
activities and automated activities. Interactive
activities involve human interaction and
introduce errors. An interactive activity such as
modeling results in a decline in the design
quality, while simulation helps in improving
design quality. Consequently, HDL modeling
and HDL simulation have a negative and a
positive slope respectively, on the design quality
curve. We assume that logic synthesis, an
automated activity, does not affect design
quality.

An accuracy of 100% is assumed at the start
of a design process. It is a natural observation
that the quality of a design tends to deteriorate
during activities involving human interaction.
The decline in design quality bears a direct
relation with the amount of time required to
perform that activity. This is indicated on the
design quality curve with a negative slope
proportional to the time involved in that activity.
In Figures 3 and 4, the effort (time) required for
system partitioning is greater for textual HDL-
based design. As such, the decline in design
quality during system partitioning is more for
textual HDL-based design as compared to
graphical HDL-based design.

System partitioning is performed at a higher
level of abstraction in the design process. Hence,
a deviation from the design specification in this

5

activity reflects as a relatively larger amount of
decline in the design quality. This has been
represented by having a steeper slope for
activities involving human interaction at an
abstract level in the design process. Similarly,
the design quality recovery in conceptual model
validation can be assumed to be faster than in
logic simulation.

A state represented at an abstract level in the
graphical description (e.g. a state diagram)
corresponds to a section of the HDL description
generated. Since graphical modeling is done at
a higher level of abstraction as compared to
HDL modeling, an improper assignment in a
graphical description may affect the design
quality much more than an improper assignment
in an HDL description. Hence, the design
quality curve has a steeper slope for graphical
modeling as compared to HDL modeling.

HDL simulation requires a designer to
generate a testbench for testing all the possible
combinations based on the spec. It may require a
considerable amount of time for generating an
exhaustive testbench. This results in a decline in
the overall design productivity and calls for a
tradeoff between design quality and design
productivity. In contrast, graphical simulation
features an automated testbench generation
based on the graphical model and test batch file,
as the designer interactively simulates the
design. An exhaustive testing results in a higher
error recovery rate and better design quality.

4. Analysis of results

 The two process models for HDL-based
design exhibit a distinct difference in the effort
distribution patterns. Results recorded from
experiments indicate that activities involving
human interaction, for example, modeling and
simulation contribute 65% of the total design
time in both textual and graphical HDL-based
design. However, textual HDL-based design
required 758 minutes for modeling, testbench
generation and simulation and 145 minutes for
synthesis related activities, whereas, graphical
HDL-based design required 510 minutes for
modeling and simulation and 110 minutes for
synthesis related activities.
 A large system may require large amount of
testing and thus implies a requirement of some
structure to organize and keep track of test
cases. Such an organized collection of test cases

is called a test suite. A good test suite includes
test cases that maximize the likelihood of
revealing design errors. HDL simulation
requires generation of an HDL code as a
testbench for evaluating the functionality of the
HDL model for the system. A designer may have
difficulty in accepting that his design has errors.
Hence, it may be difficult for the designer
himself to generate successful (error revealing)
test patterns. In contrast, graphical simulation
involves interactive usage of graphical tools to
verify functionality and allows automatic
testbench generation (ATG). ATG exhibits high
repeatability and reliability in covering all
possible test cases. Thus, ATG can be useful to
obtain a good test suite and ensure better
recovery of the lost design accuracy in
modeling. Also, modeling in graphical HDL-
based design is at a much higher level of
abstraction. Hence, during simulation, a change
can be modeled easily, in contrast to rewriting a
section of the code in textual HDL-based design.

Pre-synthesis modification is not required in
graphical HDL-based design because, HDL code
generated for a graphical description includes
only synthesizable constructs. This eliminates
the "synthesis bottleneck".

Another difference between the two
approaches is in design documentation. In
textual HDL-based design, only an HDL
description is available as design
documentation. In contrast, graphical HDL-
based design produces various design documents
such as flowcharts, block diagrams and state
diagrams, in addition to the HDL description.
Quality management standards such as ISO
9000 require an extensive design documentation
in order to prove the consistency and reliability
of any given process [6]. If ISO 9000 is truly
going to be a license for companies to do
business, the design process needs to incorporate
means to adhere to these standards.

5. Conclusion

We have presented two basic process models
for HDL-based design. Textual HDL-based
design uses a textual language for modeling,
whereas graphical HDL-based design uses a
graphical user interface (GUI).

 It has been shown that design productivity
can be measured in terms of effort (time)
required to carry out all activities necessary to

6

complete the design. As modeling and
simulation are done at a higher level of
abstraction with the aid of automated tools, an
increased design productivity can be achieved.
The choice of an appropriate design process
model can result in significant “time-to-market
savings”.

Design quality is also an important factor
for consideration in the choice of a design
process. The deterioration in the design quality
bears a direct relationship with the amount of
human interaction and the time involved with
interactive design activities. Automating design
activities and allowing minimum human
interaction proposes an enhancement in design
productivity without compromising design
quality.

References

[1] P. Kisson, H. Ding and A. A. Jarraya,

"Structured Design Methodology for High-
Level Design", 31st ACM/IEEE Design
Automation Conference, 1994.

[2] He and H. Kobayashi, "Process
Management for Top-down HDL-Based
Design", APCHDL'94, Japan, Oct. 1994.

[3] M. Joshi, H. Kim and H. Kobayashi,
"Measuring HDL-Based Design
Productivity: An Experimental
Comparison", IEEE Int'l Verilog HDL
Conf., Santa Clara, CA, Mar. 1995.

[4] E. J. Aas, T. Steen, and K. Klingsheim,
"Quantifying Design Quality Through
Design Experiments", IEEE Design & Test
of Computers, pp. 22-37, Spring 1994.

[5] R. Goering, "HDLs get graphical tool",
Electronic Engineering Times, May 24,
1993.

[6] W. Parzybok Jr., "As I see it", Industry
Week, Jun. 6, 1994.

[7] M. Donlin, "ASIC complexity fuels drive to
HDL design", Computer Design, May 1991.

[8] R. Moritz, "Graphical Entry Is a Must for
HDLs", ASIC & EDA, Aug. 1993.

[9] P. Jalote , S. S. Muchnick, and P. Schnupp,
"An Integrated Approach to Software
Engineering", Springer-Verlag, 1991.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

