
Creating Hierarchy in HDL-Based High Density FGPA Design

Carol A. Fields
Xilinx Inc.— 2100 Logic Drive, San Jose CA USA 95124

Abstract
As the density and complexity of FPGA-based

designs has increased to 10,000 gates and beyond, the
use of high-level design languages (HDLs) is rapidly
supplanting schematic entry as the preferred design entry
format. However, to obtain the best results, the
hierarchical design techniques already familiar to
schematic users can be even more critical in an HDL-
based design. Furthermore, the choice of partition size
can be critical to meeting capacity and performance
goals, as demonstrated by the implementation of a
15,000 gate design.

Introduction

In today’s highly competitive market, system
designers are faced with the conflicting challenges of
greater system complexity and the need for short, efficient
design cycles. These complexity and time-to-market
pressures continue to reshape the art of designing
electronic systems, and have led to the emergence and
growing acceptance of top-down design methodologies
and logic synthesis tools. With top-down design, engineers
start work at a higher-level of abstraction than with
traditional, gate-level design techniques. The designer
manipulates logical or functional abstractions, and uses
logic synthesis tools to produce the gate-level
implementation. Over the past decade, top-down designs
has become increasingly popular for the design of gate
array and custom cell devices. As the density and
complexity of FPGA-based designs has increased to
10,000 gates and beyond, users are now employing the
same techniques and similar tools for FPGA design. The
use of logic synthesis for FPGA design will continue to
accelerate as ever-larger FPGA devices are introduced.

The use of high-level hardware design languages, such
as VHDL and Verilog-HDL, allows designers to create and
manage larger designs. As a result, there may be a
temptation to disregard the importance of the hierarchical
structure. Current design methodologies tend to target
ASIC devices. 10,000 to 20,000 gates ASIC devices can
often be compiled disregarding the hierarchical structure.

This temptation to disregard the importance of designing
the hierarchy should be avoided. Proper use of hierarchy in
high density FPGA designing is critical in achieving
desired device utilization.

The benefits of hierarchical design basically remain
unchanged regardless of the design entry method; the use
of hierarchical design techniques adds structure to the
design process, ease debugging, allows for ‘mixed-mode’
design (wherein different design entry methods can be used
for different portions of the design), provides a mechanism
for dividing the design task among members of the design
team, and facilitates the creation of libraries of reusable
functions that, in turn, ease evolutionary product
development.

Due to the basic functionality and interaction of FPGA
synthesis and implementation tools, the actual size of each
hierarchical module - in terms of the number of resulting
logic blocks used in the target FPGA architecture - can
have significant effect on the efficiency and performance
of the resulting circuit. With current tools, synthesizing a
design as one large, flattened module can result in designs
that are very difficult to route. The placement algorithms in
FPGA ‘place and route’ programs typically are based on a
cost function that attempts to minimized the total net length
of the resulting block interconnections. As a results,
interconnected logic blocks are placed as close together as
possible. With very large designs, this strategy can reach
the point of diminishing returns, in that the logic condenses
into one region of the FPGA device causing local routing
congestion. On the other hand, the use of a multiplicity of
very small modules can results in wasted logic capacity;
since each module is synthesized separately, logic
functions are not optimized across module boundaries.

Empirical evidence suggest that, give the current state-
of-the-art of FPGA synthesis and implementation tools,
partitioning a large design into modules in the 3,000 to
5,000 gate range, and employing floorplanning techniques
to govern the relative placement of those modules, results
in the most-effective combination of FPGA device
capacity and performance. In this manner, the logic is
spread more evenly throughout the device, but related logic
within a given module is still placed in an optimal topology
for meeting performance requirements.

The benefits of such an approach include the
following:
• Since each module is reasonably large, gate utilization

is not overly diminished by the inability to optimize
logic across module boundaries. Of course, careful
partitioning of the modules, keeping related logic
functions in a common module, further minimizes any
deleterious effects caused by not optimizing across
module boundaries. For example, if a design contains
several small 4-bit incrementors, resource sharing
would occur if these incrementors are in the same
VHDL ‘process’. If they are not in the same process and
they were implemented in gates they could be combined
by the optimizer further reducing the gate utilization.

• The design’s routability is improved by grouping the
modules and specify their floorplan according to the
design’s hierarchy and data flow. In this process, the
designer has effectively added structure to the design
and has passed this information onto the placement and
routing tools. Floorplanning these modules into regions
of the device evenly spreads-out the logic.

• Routing times are reduced; since modules are
constrained into regions of the device, the automatic
placement and routing tools has less area to evaluate.
The designer has done some of the work by specifying
the structure of the design to the placement and routing
tools.

• Logic can be added or changed easily, since changes to
one module can be made without effecting the
placement and routing of other modules by using the re-
entrant place and route programs.

• Making the design easier to debug. The design’s
modules are isolated into a region of the device. The
contents of the modules and the location are defined by
the designer.

A Design Example

The design methodology described in this paper was
applied to several difficult to route 5,000 - 20,000-gate
designs. The design example used to illustrate this
technique is a transceiver receiver circuit for a
telecommunication product that was targeted for an
XC4025 FPGA device (-5 speed grade, 299-pin PGA
package). This design was synthesized with the Synopsys
FPGA Compiler using three different design
methodologies. First, the design was compiled as one flat
module. Second, it was compiled using the design’s
original hierarchical structure. Third (and recommended),
it was compiled in 6 mid-size modules. The Xilinx
Floorplanner was used to define the location of the
modules. The Xilinx placement and routing tool was use to

implement the design into the XC4025pg299-5 device and
to evaluate the utilization and timing results.

This called TOP contained a lower level module called
CORE as shown in Figure 1. The “CORE” level of this
design consist of two large modules, R0 and X0, and two
smaller ones, UP0 and DD0. The two larger modules
consist of over 30 sub-hierarchical modules. The sizes of
these modules range from 4 to 591 configurable logic
blocks (CLBs). Note: The names of the modules have been
re-named in order to protect the confidentiality of the
design.

Figure 1 Original Hierarchy of Top Design

Compiling the Flatten Design

The design was initially compiled as one module using
the Synopsys FPGA Compiler’s “compile -ungroup_all”
command on the CORE level. This design was unroutable,
even though it only utilized 737 out of 1024 (71%) in the
1,024 CLBs available in the XC4025 FPGA. The logic of a
large design compiled as one flat module often
concentrates into one region of the device, creating a design
that is difficult or impossible to route, as illustrated in
Figure 2.

TOP

R0

X6019

DD0 UP0 X0

N1 N2 N13 M1 M7 M8 M9 M11• •

NN1 NN5• • MM1 MM2

• •• •

Figure 2 Ratsnets of Design Example Compiled Flat
Compiling Using the Existing Hierarchy

Next, the design was compiled using the design’s
existing hierarchy containing 5 levels of hierarchy and
over 30 lower level modules. The logic block utilization
increased from 737 CLBs to 1024 CLBS, a 29% increase
in gates.

PPR was run on the design with and without
floorplanning the X-BLOX RPMs. The design that was not
floorplanned had ~8,000 unrouted nets. Once again the
logic concentrated into one region of the device, causing
local routing congestion similar to the design shown in
Figure 2.

In order to route the design using the X-BLOX
DesignWare library, the RPMs were floorplanned in a
manner that away as to forced the logic to spread out in the
device. The placed and routed design is shown in Figure 3.
Overconstraining the design or poor floorplanning can
make the design unroutable.

This design methodology allows PPR to place the
unconstrained cells anywhere in the device, making critical
paths difficult to debug. Any design changes then would
require an entirely new placement and routing, and,
possibly, further floorplanning. If the design is difficult to
route, a design change may cause the design to be
unroutable.

An 8 Mhz internal clock speed was required for this
design. Using the existing design's hierarchy with X-
BLOX, the longest constrained clock-to-setup delay, 143.5
ns, exceeded the requirement of 125 ns. All constrained
pad-to-clock met the requirements as shown in Table 1.

Figure 3 Placement Cells (without Ratsnets) for Top
Design Compiled Using the Original Hierarchy with

the RPMs Floorplanned

Re-Grouping the Hierarchy

The recommended methodology for a large HDL design
is to re-group the design's hierarchy into mid-size modules.
The original design hierarchy consists of 4 major blocks at
the "CORE" level. The estimated CLB utilization was
determined using the Synopsys FPGA Compiler's
"report_fpga" command. The block "R0" has an estimate of
591 CLBs, "X0" has 342 CLBs, UP0 has 25 CLBs and
DD0 has 4 CLBs. Since the ideal module size is around 100
- 200 CLBs, this design was 're-grouped' to create a better
hierarchical structure for the placement and routing tools.

The design's original hierarchy is shown in Figure 1.
"R0" was separated into 4 modules and "X0" into 2
modules as shown in Figure 4.

The new grouping of the original modules was based on
the sizes of the modules and the modules' interconnections
with surrounding modules. An ideal grouping of modules
will reduce the gate count and reduce the numbers of nets
routed between the top level modules. The ideal module
size is between 150 - 250 CLBs. The modules are grouped
into new modules as shown in Figure 4.

Figure 4 New Design Hierarchy

The two smaller modules, UP0 and DD0, were not
combined with any other modules since these modules have
an equal amount of interconnects with all of the new
modules.

The Synopsys "group" command was used to define the
new hierarchy. For example the module RO was regrouped
into four smaller module R1 - R4 using the following
commands:

current_instance = R0
group {N7,N8, N9, N10, N11, N12, N13} -design_name R1
-cell_name R1
group {N2, N3, N4, N5} -design_name R2 -cell_name R2
group {N6} -design_name R3 -cell_name R3
group {N1} -design_name R4 -cell_name R4

Each group was then compiled individually using the
"compile -ungroup_all" command. A new script file was
created that defined the new hierarchical groups, compiled
the new groups, and created the XNF file for the CORE
level. The lowest level modules were compiled before
running this script and saved into a db file (e.g., N1.db). The
script for the top level module reads in the top level, reads
in the CORE level, assigns the I/Os, and writes out the
design to an XNF file, top.sxnf.

A capacity reduction of 9 CLBs (30 packed CLBs) was
achieved from compiling and flattening larger groups of
logic together. An additional reduction of 67 CLBs (115
packed CLBs) was achieved when the Synopsys
DesignWare modules were used in place of the small bit-
width RPMs. (The 46 RPMs where 4-6 bits wide).

Floorplanning the Modules into Regions

Next, the modules were constrained into regions of the
device as shown in Figure 5 using the Xilinx Floorplanner
as shown in Figure 6. Each region must be large enough to
fit the module and provides the placement and routing tools
room to route the module. The height of the regions must be

M6

M7

M8

M9

M10

M11

TOP

R1 R2

X6047

N6

R3

N1

R4 DD0 UP0 X1 X2

N2

N3

N4

N5

N7

N8

N9

N10

N11

N12

N13

M1

M2

M3

M4

M5

tall enough to accommodate the tallest structure in the
module. For example, an 8-bit adder would need the region
to be at least 5 CLBs tall. The locations of the regions were
selected based on data flow.

The two smaller modules UP0 and DD0 were not
constrained to allow the placement tools to determine the
best location.

Figure 5 Floorplanning Modules into Areas

Figure 6 Floorplanning Modules into Areas

A constraint file for the placement and routing tools
(PPR) was created specifying the regions which each
module is constrained by using the Xilinx Floorplanner.

This design was then placed and routed using the
constraints file and the timing specification passed from the
Synopsys FPGA Compiler.

X6046

X_1

UP0 & DD0
"Float"

X_2 R_4

R_1 R_3 R_2

ppr top placer_effort=4 router_effort=3 cstfile=top_des

The placement of the resulting design is shown in Figure
7. Constraining the CLBs into regions of the device assists
PPR in spreading the logic evenly throughout the device.

Figure 7 Placement and Routing of New Design
Hierarchy with Region Constraints

Debugging a Design

 It is common to connect internal signals to unused I/Os
in order to debug a design. If the I/O pins are constrained,
design changes are generally more difficult. The Xilinx
Design Editor’s (XDE) “Defineprobe” command can be
used to specify an unused IOB as a probe point. The
“Assignprobe” command is used to route an internal net to
a probe point.

Two probe points were defined for both the design with
the original hierarchical structure and the design with the
re-defined hierarchical structure. In the design with the
original hierarchy, the probe points were unroutable.
However, in the design with the re-defined hierarchy, the
probe points were easy to route, since this design contained
unused logic in the center of the device.

Design Methodology Comparison

The flattened design used the least amount of resources.
However, this design was packed so densely that it was
unroutable. In addition, a flat design tends to be difficult to
floorplan since the hierarchical structure is lost.

Using the existing design hierarchy required
floorplanned to assist PPR in routing the design. This
design utilized 100% of a XC4025. The longest
constrained clock-to-setup delay was 143.2 ns and the
longest constrained pad-to-clock delay was 100.1 ns. A
timespec of 100 ns was specified when the design was
placed and routed. However, the actual time requirement
was 125 ns. ‘Place and route’ execution time approached
16 hours. Any small changes would require that the design
be re-synthesized and re-compiled, resulting in another 16
hours to place and route.

Re-grouping the design’s hierarchy did not require that
individual cells be Floorplanned, but used the re-defined
hierarchy to distribute the logic in the device. The design
utilized 93% of a XC4025. The longest constrained clock-
to-setup delay was 113.5 ns and the longest constrained
pad-to-clock was 112.7 ns. This design did meet the system
time requirements. ‘Place and route execution time was
reduced to 8 hours. Isolating the modules into regions
reduces the run time, since less of the device has to be
considered. A small design changed made using this design
methodology only requires that the changed module be re-
synthesized and re-placed and routed, significantly
reducing the placement and routing time. Iterative design
changes are easier to make. Logic can be added to unused
portions of the device. For example, in Figure 7, additional
logic can be added to the center of the device.

Efficient HDL Coding

Efficient FPGA design starts at the HDL code, before the
design is placed and routed. No amount of re-design of the
hierarchy can compensate for a poorly written HDL code.
Like designs entered using schematic capture tools, highly
structured, synchronous designs will route easier and
perform better than unstructured, asynchronous designs.
Devices with limited routing resources require that the
designer consider the data flow of the designs during
coding. Utilization and system speed can also be improved
by using the system features of the FPGA architecture.
HDL tends to abstract the design process, causing
designers to lose sight of the implementation of the device.
Using the correct construct will create a better
implementation. A good understanding of the synthesis
tool’s capability will further improve the design’s
utilization and performance.

Summary

Synthesis tools provide HDL users with the capability
to reduce logic when modules are optimized together.
Flattening large designs often creates unroutable designs.
Retaining an existing design hierarchy with a multiplicity
of very small modules can result in wasted logic capacity
and can often leads to a design that does not fit in the target
device. Re-structuring the design’s hierarchy into mid-size
modules (i.e., 100 - 200 CLBs) not only reduces the area

utilization, but also allows the user to make small changes
to the design and to easily locate logic for debugging of
critical paths. This also reduces place and route execution
times.

This methodology was tested on six additional designs.
Half of the designs were implemented using the XC4013
devices and the other half using XC4025. All six designs
exhibited similar results. Each of these designs did not
route prior to regrouping the design’s hierarchy. In all cases
the system speed doubled, design changes were easier to
make and execution time was significantly reduced. In one
design their was significant utilization improvement to
allow the designer to add additional functionality to the
device. Additional studies where performed on XC4013
and XC4025 designs which did not require re-structuring of
the design’s hierarchy. These designs tend to have a
significant amount of structure and module boundaries
which were registered.

This methodology of proper use of hierarchy will lead
designers into creating easier-to-route structured design by
assisting designers in considering the data flow in the
device.

Reference

Xilinx - Xilinx Synopsys Interface Guide (1994)
Synopsys - VHDL Compiler Reference Manual
Synopsys - Solv-it
Xilinx - Floorplanner’s User Guide
Xilinx - High Density Application Note

Table 1. Comparison of Design Methodologies

Design Methodology
XC4025pg299-5

PPR V5.1.0

Packed
CLBs

RPMs
Flip-
flops

Clock
ToSetup

Rising Edge

Pad
ToSetup

PPR Run Time
(CPU Time)

Flat Design
(no X-BLOX)

619
60%

0 958
46%

n/a* n/a* n/a* n/a*

Original Design
Hierarchy; no Floorplanning

745
72%

50 958
46%

n/a* n/a* n/a* n/a*

Original Design
Hierarchy;
with Floorplanning

745
72%

50 958
46%

143.2 ns 100.1 ns Partition
Placement
Routing
Total

01:13:41
02:05:16
12:53:22
16:14:36

Re-Group
Design Hierarchy
with X-BLOX

715
69%

46 958
46%

106.7 ns 108.8 ns Partition
Placement
Routing
Total

01:05:42
01:34:49
08:07:08
10:49:37

Re-Group
Design Hierarchy
without X-BLOX

630
61%

0 958
46%

113.4 ns 107.6 ns Partition
Placement
Routing
Total

01:02:10
05:39:46
04:29:02
11:12:55

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

