
REIHE INFORMATIK
4/96

Hardware/Software Co-design
of Communication Protocols

S. Fischer, J. Wytrebowicz und S. Budkoswki
Universit�at Mannheim

Fakult�at f�ur Mathematik und Informatik
D-68131 Mannheim

Hardware/Software Co-design of
Communication Protocols

Stefan Fischer
University of Mannheim, Praktische Informatik IV

D-68131 Mannheim, GERMANY
Phone: +49 621 292 5053, Fax: +49 621 292 5745
Email: stefis@pi4.informatik.uni-mannheim.de

Jacek Wytrebowicz
Warsaw University of Technology

ul.Nowowiejska 15/19
PL-00{665 Warszawa, POLAND

Phone: (+48 2) 660.77.15, Fax: (+48 22) 25.16.35
Email: jwt@ii.pw.edu.pl

Stanislaw Budkowski
Institut National des T�el�ecommunications

9, rue Charles Fourier
F{91011 Evry Cedex, FRANCE

Phone: +33 1 60 76 47 20, Fax: +33 1 60 78 39 27
Email: stan@int-evry.fr

Abstract

An important aspect in providing high performance distributed systems such
as multimedia systems is the combined use of hardware and software in the end
systems. System design techniques should allow hardware/software co-design to in-
tegrate both means of implementation. In this paper, we show how the standardized
formal language Estelle can be used to facilitate co-design. The system will �rst
be designed in Estelle. At the point in time of �nal decision on which parts to
implement in software and which in hardware, the original speci�cation will be split
into several partial speci�cations. The software parts are translated into C code,
while the hardware parts are translated into VHDL code for further analysis and
development. We present a tool environment which supports the protocol developer

1

2

in the design and implementation process. A simple Video-on-Demand example
shows the usefulness of the tool environment.

1 Introduction

The use of both software and hardware in the realization of communication protocols
seems to be a key issue in high performance networking. Some parts of a communication
system are better implemented in hardware in order to achieve a higher speed (e.g. an
MPEG video decoder), while other parts are preferably realized in software, thereby
yielding a greater
exibility.

In the design process of such systems, formal methods play an important role. At the
beginning, requirements of a system may be formulated and veri�ed. Later, the abstract
speci�cation may be re�ned and then validated using formal test methods; simulations or
even the skeleton for implementations may be generated automatically.

If, in a design process, both hardware and software parts are integrated into one speci�-
cation and handled together, this is known as hardware/software co-design. The designer
usually will not want to distinguish between such parts in the beginning; sometimes, he
does not even know which parts to implement in hardware and which in software. The
�rst, abstract speci�cation may thus be written using only one formal method, allowing
the description of architectural building blocks of a system. This will, in the further de-
velopment, allow for co-simulation, because a precise formal semantics exists when only
one technique is used. However, when moving towards implementation, it may be use-
ful to use techniques which are better adapted for hardware resp. software. Hardware
description languages like VHDL [4] allow much better handling of the hardware parts,
while software may be directly implemented in programming language code like Pascal,
C or C++.

In this paper, we present a tool environment which supports the design process as de-
scribed above. The formal language we use for system speci�cation is Estelle [10]. Estelle
is based on the theory of extended �nite state machines. It is especially well-suited for
the description of communication protocols and distributed systems. Estelle's syntax is
a superset of Pascal which makes it very easy to understand such speci�cations; the Pas-
cal part is used to describe sequential data processing. In addition, deriving simulations
and e�cient implementations is easier under Estelle's operational semantics than in other
formal techniques.

The road from �rst design steps to implementation is as follows: a protocol designer
builds an Estelle speci�cation to re�ne his concepts, to validate his ideas and to analyze
properties of the protocol under design. The Estelle speci�cation is useful for test gener-
ation. A protocol implementor extracts from this speci�cation descriptions of distributed
elements of the system, and divides it into the parts to be implemented in hardware and
in software. (Due to the increasing demands of protocols' throughput, the hardware so-
lutions become more and more frequently investigated.) Subsequently, the implementor

Hardware/Software Co-Design of Communication Protocols 3

generates software and hardware descriptions of the computation and the communication
units. Finally, he adds the implementation details and incorporates the implementation
speci�cations of the designing units into the realization, through e.g., C compilers and
VHDL high-level synthesis tools.

In our integrated toolset, the overall speci�cation will be handled by the EDT environment
[2], supporting speci�cation and simulation in Estelle. To allow for separated handling of
hardware and software parts once simulation is �nished, the Estelle speci�cation may be
split up into several parts using the tool described in [13]. The software parts may then be
generated using EDT and its so-called implementation motor, while the hardware parts
may be translated into VHDL for further processing (e.g. automatic chip board layout),
using the Estelle-to-VHDL translator e2v described in [24].

Related Work. Several projects currently in progress are trying to integrate both hard-
ware and software into the same design process: COSMOS from TIMA/INPG [8], SpecSyn
from Irvine [6], CODES from Siemens [1], Thomas from CMU [21], Gupta and DeMicheli
from Stanford [7] and Ptolemy from Berkeley [3].

COSMOS is a hardware/software co-design environment based on the SOLAR interme-
diate format for system-level modeling and synthesis. SOLAR supports the system and
behavioral levels of speci�cation. COSMOS includes system-level synthesis tools for com-
munication synthesis and partitioning as well as AMICAL - the behavioral synthesis tool
for hardware. The current version of COSMOS proceeds from the SDL language and pro-
duces a heterogeneous architecture including hardware descriptions in VHDL and software
descriptions in C.

SpecSyn is a system design framework that helps a designer to obtain synthesizable
descriptions of implementation modules starting from an abstract system speci�cation
given in SpecCharts or VHDL languages. The main SpecSyn design tasks are: allocation
of structural objects (i.e., modules and buses), partitioning of the system speci�cation
(functional objects are mapped onto the structural objects), and binding the structural
objects to library and to generic components.

CODES is a design environment, which integrates a new modeling tool with several ex-
isting tools for system speci�cation, for hardware and for software implementation. The
modeling tool is based on the abstract algebraic Parallel Random Access Machines model
and on an extended Petri Nets model. The input for this tool can be a Statemate or an
SDL speci�cation. The existing tools integrated into this environment are: the C and
VHDL generators for StateChart and SDL, the Matrix design and simulation tool, and
the SIDECON knowledge-based con�guration tool for printed circuit boards. Currently,
CODES targets the design of processor-based systems.

The Thomas co-synthesis approach consists of specifying a system as a set of tasks, and of
allocating these tasks to processes implemented in specialized hardware and application
software running on general-purpose CPUs. Thomas proposes to specify in the Verilog
Hardware Description Language the processes to be implemented in hardware, and to
build Unix processes for the software. Hardware and software communicate by means of

4

BSD Unix sockets and by a Verilog module that corresponds to an abstract bus interface.
A co-simulation of a system speci�ed in this manner can be performed using a simulator
for Verilog.

Gupta and DeMicheli capture system functionalities using the hardware description lan-
guage HardwareC which is the input language of the hardware synthesis system Olympus.
A data
ow graph derived from the system speci�cation is used to evaluate a partition
cost function.

The Ptolemy design environment supports the development and simulation of functional
and behavioral models of hardware and allows the generation of assembly code for DSP
microprocessors. A Ptolemy user can synthesize software, model hardware and simulate
algorithms. He speci�es on the Ptolemy input: a synchronous data
ow structure, and
functional graphics with abstraction levels from the gate level to the behavioral level. He
can obtain as output: a DSP assembly code, and netlist descriptions of the hardware
con�guration that can be fed to logic synthesis tools.

The application domain considered by each approach depends closely on the description
power of the input speci�cation language chosen. The approaches that can be used for
protocol design are those that accept a language used in protocol engineering, e.g., Estelle
or SDL.

This paper is organized as follows: Section 2 identi�es the implementation blocks of a
protocol and relates Estelle constructs to them. Section 3 describes how to split up Estelle
speci�cations to allow for distinct handling of software and hardware parts. Section 4 gives
insights into the complete tool environment using an example, and Section 5 concludes
the paper.

2 Implementation blocks of a protocol

A protocol speci�cation de�nes a cooperation of communication processes. The pro-
cesses are implemented as computation units and cooperate by means of communication
units. A communication unit represents a communication medium together with hard-
ware/software means of accessing the medium. In some cases, the communication units
already exist within the target system, and only links between computation units and the
existing communication units should be done (e.g., operations on the UNIX TCP sockets).
The communication units should behave in the same way as the abstract communication
models of the speci�cation. Because we have selected the Estelle language for an abstract
protocol speci�cation, the communication models are the unbounded FIFO queue and the
exported variables1.

A computation unit may be built on the base of the ASICs, PLDs, microcoded devices,
standard microprocessors widely used, and standard computers. When the unit is imple-
mented on a standard computer, the link to the communication unit is implemented by

1The use of exported variables is very limited in Estelle; e.g., there are no shared variables between

Estelle systems.

Hardware/Software Co-Design of Communication Protocols 5

system calls. When the computation unit is implemented on a standard microprocessor,
the link is realized as a hardware-related assembler routine. When it is implemented on
micro-controlled data paths, then the link is done by a microcode routine. Finally the
computation unit may be implemented entirely in hardware, in which case the link is built
from RTL structures (e.g., multiplexers, registers).

Frequently, a communication unit is a complex system. In such a case, it can be imple-
mented using a lower-level communication protocol that may be broken down into simple
building elements, i.e., subprogram calls and hardware functional blocks. The implemen-
tation may be done in many di�erent ways, and it is not possible to arbitrarily select
the best one when starting from an abstract protocol speci�cation. A design library for
interactive use by a designer or a synthesis system can be created. It should be open to
any user modi�cations and should contain generic templates and communication units, as
well as descriptions of the existing and commonly used interface units, e.g. a set of TCP
socket functions, drivers to Ethernet or Token Ring cards, VHDL description of 16550,
16450, 8250 UARTs etc.

An Estelle speci�cation can describe a distributed communication system. As shown in
Figure 1, an Estelle speci�cation consists of systems, which in turn consists of modules.
We assume that a single system will be implemented as a closely coupled architecture,
i.e, on one machine, however two ore more systems can be physically distributed. A
module behavior is represented by an extended �nite state automaton. The behavior is
described by a set of transitions. A transition is de�ned by a set of selection clauses
and statements to evaluate. These clauses and statements do not precise the access
mechanism to the module interface. They can send a message or receive it via a FIFO
queue, or they can access an exported variable. These actions are atomic. Thus, the
module's transitions describe an algorithm performed by a protocol computation unit. A
communication unit is modeled by either a pair of connected Estelle interaction points
together with the associated FIFO queues or by a set of Estelle's exported variables. In
both cases, the Estelle speci�cation does not give any premises about the communication
unit implementation.

The decision to partition a system's functionality among interacting hardware and soft-
ware must be made by a designer. Though there are some research e�orts to completely
automatize this task [22], we argue that the choice should be made by a designer. Most
of the partitioning algorithms are based on the assumption that a system designer's goal
is to implement a system using a minimal amount of application-speci�c hardware to sat-
isfy required performance. But in reality, the designer considers more goals, e.g. the time
required to put a product on the market, the volume of the �nal realization, the length of
production runs (Does assembly cost exceed the design cost of an ASIC?). Moreover the
price of application-speci�c hardware design decreases continuously. The designer does
not need an HW/SW partitioning resolver, but a speci�cation evaluator that supports
some metrics about complexity and throughput of computation units.

Some metrics for an Estelle speci�cation are already de�ned [16, 15]. These were de-
veloped to measure a speci�cation's quality, to improve its modi�ability, reusability and

6

System CSystem A System B

Figure 1: Example for the structure of an Estelle speci�cation

readability. They give us an idea about particular modules' complexity. However the
metrics for HW/SW partitioning of an Estelle speci�cation are still subject to future
research.

3 Distribution of an Estelle speci�cation

For Estelle, there exist several toolsets allowing easy production of software simulations
for a given system speci�cation, e.g. [23, 17, 19]. Some of them are already headed towards
implementation, e.g. by allowing distribution on several nodes of a network [12, 20] or
parallelization on multiprocessors to achieve higher speed [5, 14]. With respect to co-
design, system distribution is an especially important aspect.

However, currently available tools all follow the same distribution pattern: the speci�ca-
tion is translated as a whole from Estelle into programming language code, e.g. C or C++.
The resulting code is then distributed over the network and translated into executables
on each node. This \classical" approach has the following disadvantages:

� During the code generation process, only one Estelle compiler can be used. That
means that at every site the same type of programming language code is available,
e.g. C or C++. This is usually not a problem, as on most systems compilers exist for
all common programming languages. However, some code types may be not suitable
for certain machines. Experience shows, for example, that it is quite di�cult to port
generated C++ code to transputers, due to the very huge executables produced from
it. Thus, it would be desirable to be able to use di�erent compilers at each site.

� Hardware and software co-design becomes very di�cult. Partitioning of C functions
between hardware and software design units and building an interface among them
is a laborious and error-prone task.

Hardware/Software Co-Design of Communication Protocols 7

Inter-

mediate

FormSpec.

Estelle

original

Generator

New

Spec.

A

New

Spec.

B

New

Spec.

C

Code

Code

C

C++

e2v

Pet/Dingo

EDT

VHDL

spec.

Compiler

Compiler

Layouter

Estelle

Translator

(from EDT)

Executable

Executable

Distributed

Specification

Figure 2: Splitting up Estelle speci�cations

� The generated C code can be easily linked with implementation-oriented functions,
but it is almost illegible for a human | thus making code re�nement very di�cult.

We therefore propose a new methodology, in which not programming language code, but
speci�cations are distributed. Instead of producing code from the original speci�cation,
we split up the latter into several partial speci�cations. Each of these can then be handled
separately. Speci�cations intended to be realized in software can be transformed by one
of the existing code generators into programming language code; hardware parts may be
translated into hardware description techniques like VHDL and then further processed.
The whole process of splitting up a speci�cation may be seen in Figure 2.

Three main requirements on the new methodology have to be taken into account:

1. We need, on each node, a compilable Estelle speci�cation. This means that the split-
ting is more a constructive process rather than a simple extraction of a given subsys-
tem de�nition; some de�nitions of data types, communication channels etc. de�ned
globally elsewhere should be included in the generated parts.

2. Each speci�cation part must o�er an additional interface to provide a means of com-
munication between these parts. To ensure better performance, the tra�c through
these interfaces should be minimized.

3. The derived implementations have to be executable within the existing environments
(compilers/runtime systems). This means that within the generated speci�cation
parts, any handling of the additional interface has to be speci�ed explicitly within
Estelle transitions, as otherwise, the runtime systems would have to have special
knowledge of how to handle certain Estelle constructs used for the external interface.

Described next are the main design decisions and the structure of the new partial speci�-
cations; for the reasons behind those decisions as well as for a more detailed description,
please have a look at [13].

8

To ful�ll requirement (1), a new module has to be added to each partial speci�cation to
make it syntactically correct. This module is a model of a communication unit part, which
is the external interface of the separated Estelle system. It is equipped with transitions
(requirement (3)) describing the external interface mentioned in requirement (2). There is
one transition for each possible incoming or outgoing message with respect to this partial
speci�cation. Every incoming message is immediately forwarded to the part split o� from
the original speci�cation; every message outgoing from this part is sent via the external
interface to the environment.

In the new transitions, some function and procedure calls are used to address the external
interface. A library of their implementations has to be provided. Typically, these libraries
o�er a TCP socket or an RPC interface; for hardware-software interfaces, one has to
provide calls to a device driver as described in Section 2.

Two important issues to be discussed are correctness and performance of the new method.
Again, details on this may be found in [13]. There, we showed that the method works
correctly. Some experiments and measurements with sample Estelle speci�cations show
that performance is also very good.

4 EDT environment in a co-design process

The Estelle Development Toolset has been used for several years by more than 30 uni-
versities, research centers and industrial laboratories in protocol validation and software
implementation. Its current commercial version consists of the following tools:

� Compiler (translator and C code generator with the implementation motor),

� Simulator/debugger,

� Universal Test Drivers Generator.

Some new tools under development whose prototype versions are already available include:

� Graphic Mouse-Menu Interface,

� Documentation Generator,

� Distributed Speci�cation Generator,

� Metrics Evaluator,

� Estelle to VHDL Translator.

The enhanced EDT environment can be used in both hardware/software co-simulation
and co-design. Figure 3 shows how an EDT user can put an Estelle speci�cation into
hardware or software implementation environments. Let's assume we have a complete

Hardware/Software Co-Design of Communication Protocols 9

motor

EDT Tools
Estelle Specification

Estelle Translator

Intermediate Form

C generator VHDL Generator

implementation implementationC code

C compiler VHDL simulator

VHDL code implementation
library

synthesis tools

hardware implementationsoftware implementation

Estelle simulator

motor

Figure 3: Working with the Estelle Development Toolset

Estelle speci�cation of a system. Using EDT's Estelle translator, we generate an Interme-
diate Form (IF) �le from an Estelle speci�cation. The IF �le is built only for syntactically
correct speci�cations. All other tools take as their input the IF �le.

In the next step, the Estelle speci�cation of the overall system should be validated and
veri�ed with respect to designer requirements by using the Estelle Simulator. It helps
to analyze the system's behavior, to eliminate deadlocks, livelocks, unspeci�ed events,
incompleteness of the speci�cation and dead code errors. Test modules can be written
in Estelle to either stimulate the whole system or each individual module. In addition,
the Universal Test Drivers Generator can be used to produce test modules automatically,
providing a very
exible means for interactive testing.

The designer can use the Metrics Evaluator to analyze the quality and complexity of
the speci�cation. Some iterations of speci�cation re�nements and simulations have to be
done to develop a system speci�cation which may enter the implementation process. The
�rst step in this process is hardware/software partitioning. The Metrics Evaluator can be
helpful at this step, but here, the application behind the protocols, with its algorithms
and requirements, must also be considered. Some time analysis can be done using the
Estelle Simulator facilities. For a more detailed time analysis, the designer can translate
all system speci�cations into VHDL to pro�t from the VHDL time expressiveness.

When the system has been tested to the designer's satisfaction, the next step is headed
toward implementation. Using the Distributed Speci�cation Generator described in Sec-
tion 3, the overall speci�cation may be split up into its part, following the result gained
from the tools described above.

10

The partial speci�cations will then be distributed over the network, and each part is
further processed at the network site where it will later be implemented. For the software
parts, EDT's C Code Generator ec may be used to produce C-code from the Estelle
speci�cation. Using the Estelle-to-VHDL Translator e2v, the hardware parts may be
transformed into a more hardware-oriented language. The resulting VHDL code may
then be put into a VHDL behavioral level environment, e.g. AMICAL from the TIMA
Laboratory [11].

The generated C code and VHDL speci�cation have to be re�ned. All subroutines that
are relevant to the communication rules (and omitted in the Estelle speci�cation or only
mentioned as so-called prototype functions) have to be integrated.

To re�ne a generated VHDL speci�cation much more work is needed than to re�ne a
generated C code. The C code is ready to be compiled into object �les. The VHDL
speci�cation is ready for simulation, but it must be reworked to obey the restrictions of
selected synthesis tool and to �t the interfaces of computation and communication units.

Finally, the C code has to be compiled and linked with the di�erent communication unit
interfaces provided in object code libraries. In EDT, there exists one such library, o�ering
a TCP Socket interface for interprocess communication. Interfaces for standard hardware
devices are currently under development.

Chipboard layout tools may be used to produce hardware implementations. The resulting
chip boards contain standard communication units as described in Section 2, for which
hardware drivers are available. The communication connection between software and
hardware parts is established using the device drivers and the communication interfaces
provided in the libraries.

5 Example: A Simple Video-on-Demand System

To show how the tool environment works for a real-life system, we will now have a look at
a simple Video-on-Demand system. In our system, movies are stored on a server disk in
MPEG format [9]. Clients may connect to the server and ask for the transmission of such
movies. Incoming frames at the client site have to be directed to an MPEG decoder/player
which �nally displays the movie on the screen. Incoming control data such as connection
information is directed to the user. The overall system speci�cation using Estelle systems
and modules is shown in Figure 4.

Basically, all the functionality of the Movie Protocol module is speci�ed in Estelle. For
the server module, only the disk access has to be speci�ed using a primitive procedure
in Estelle, which has to be provided in C later. All other server functions are written in
Estelle. In this example, the User module is generated using the Test Drivers Generator.
As a result, we obtain an interactive test module. A human user may arbitrarily select
transitions and parameters of this module to test all the system's functions.

The only module which is very rudimentarily described in Estelle, is the MPEG decoder.
This is because the MPEG algorithm is very complex which makes it a hard task to

Hardware/Software Co-Design of Communication Protocols 11

Video System specification module

MPEG deco-User der/player

Movie
Protocol

Movie
Protocol

Movie
ServerDisk

control

framescontrol

frames

frames control

control

Client Site System Server Site System

Figure 4: System Level Speci�cation of a Simple Video-on-Demand System

specify it in a high-level language. Basically, the Estelle transitions inside the module
look as follows:

TRANS

when data.I-frame begin

decode-frame;

display-frame;

end;

The procedures decode-frame and display-frame are primitive; they have to be pro-
vided by the implementor.

The testing and validation process is based on this speci�cation. We use the EDT Sim-
ulator to test the protocol functions. It is also possible to get �rst impressions of the
system's performance. Before advancing to the implementation process, intensive testing
should be performed in order to keep mistakes away from the implementation. Possibly,
a redesign of the speci�cation is necessary.

Let us assume, that we have tested our video example, removed all faults and now start
to implement the system. The �rst step is to partition the overall speci�cation into its
parts, using the Distributed Speci�cation Generator. For this example, we obtain three
partial speci�cations: one for the server system, one for the client system and one for the
MPEG decoder. We then have to �nally decide which parts to implement in software and
which in hardware. In this example, the User, Server, and Movie Protocol module are
translated into software using the C Code Generator. The Movie Protocol Module can be

12

logic

Movie

Protocol

module

standard hardware circuits
implementing a queue

comm.
interface
and device
driver

bit level

interface

MPEG

Figure 5: Connection from Movie Protocol to MPEG chip board

used as is. The C code for the User module should be re�ned to ful�ll the needs of a real
user application. In the Server module, the C functions for disk access have to be added.

The main problem is the implementation of the MPEG module. In the following, we
consider two possible implementations: a pure software decoder and a hardware solution.

� Building a software decoder
In the software solution, the primitive functions decode-frame and display-frame

have to be �lled with the corresponding C code. For our example, we do not develop
a completely new MPEG software decoder. Instead, we use the existing Berkeley
MPEG Player's functionality [18]. It is not a di�cult task to integrate this code
into the module framework code generated for the MPEG Decoder module. This
decoder also includes the functions necessary to display frames in an X-Windows
environment.

� Producing an MPEG decoder chip board
To produce a hardware implementation, we use the Estelle-to-VHDL Translator to
transform the MPEG Decoder module into VHDL code. The translator generates
one MPEG entity (the computation unit) and two queue entities (the communica-
tion unit). The generated MPEG entity contains only the description of the MPEG
decoder behavior, which is initially speci�ed in Estelle. The generated queue entities
represent the framework for designing a bit level communication interface, which is
needed to access the hardware implementation of the MPEG logic. The building
blocks existing in a VHDL design library can be taken to create the �nal imple-
mentation of the communication interface. To allow software parts to access the
hardware, a device driver has to be written. The Distributed Speci�cation Genera-
tor allocates the device driver calls within the Movie Protocol speci�cation. Thus,
it is easy to connect the software and hardware parts. This connection is shown in
Figure 5.

The MPEG logic, which is doing all the decoding work, is designed using a VHDL
development tool as described in the previous section. These environments allow

Hardware/Software Co-Design of Communication Protocols 13

User and

Movie Protocol
code

hardware

Ethernet

MPEG

TCP/IP TCP/IP

code

Movie Protocol

Server and

comm. int.
dev. driver

processprocess

Figure 6: Implementation of the MPEG movie system

testing of the hardware before really implementing it. As a �nal step, the chipboard
layout for the MPEG decoder may be generated from the VHDL speci�cation.

The last step in the production of the distributed implementation is to compile and link
the programs. Let us look at the hardware solution: The Movie Protocol module code has
to be linked with the communication interface accessing the device driver for the standard
queue circuit. It also needs an interface to TCP sockets, because it communicates with
its peer. The resulting implementation is shown in Figure 6 in terms of processes, chip
boards and networks.

6 Conclusions

We have presented a toolset which supports hardware/software co-design for communi-
cation protocols by using the formal language Estelle. The abstract notion of the Estelle
communication mechanisms simpli�es speci�cation and analysis of such protocols. A de-
signer can describe in Estelle a system that is composed of hardware and software blocks
that communicate through unbounded FIFO queues. A hardware/software co-simulation
of the protocol is based on one global speci�cation. C code generation and derivation of
a VHDL speci�cation from a formal speci�cation is easier and much less time-consuming
than its derivation from a speci�cation given in natural language. A formal speci�cation
already contains a structure and interprocess communication control
ow. An automatic
translation does not introduce additional errors and is better able to relate implementa-
tion back to the original requirements. Thus, developing a distributed system by stepping
down from Estelle to C and VHDL can speed up the design process. Test modules trans-
lated into C or VHDL are useful in subsequent veri�cation steps.

14 REFERENCES

The designer can start a rapid hardware/software co-designing taking advantage of the
following tools: a generator of distributed Estelle speci�cations, a translator from Estelle
to a programming language (C, C++) and a translator from Estelle to a hardware speci-
�cation language (VHDL). A library of communication units will speed up integration of
the synthesized modules.

The Estelle tools presented can be a front end to these system analysis environments which
have an input for VHDL speci�cation. For example the COSMOS and SpecSyn frame-
works can be useful to allocate the library and generic components for the communication
and computation units and to obtain a synthesizable VHDL code.

The Distributed Speci�cation Generator and the Estelle-to-VHDL-Translator are cur-
rently being integrated into the EDT distribution and will thus be available to the public
in the near future. The existing libraries providing interfaces to communication units are
extended to include more hardware and software interfaces.

References

[1] K. Buchenrieder, A. Sedlmeier, and C. Veith. HW/SW Co-Design with PRAMs Using
CODES. In Proceedings of the International Conference on Computer Hardware
Description Languages (CHDL'93), Ottawa, Canada, Apr. 1993.

[2] S. Budkowski. Estelle Development Toolset. Computer Networks and ISDN Systems,
Special Issue on FDT Concepts and Tools, 25(1), 1992.

[3] M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno, H. Hsieh, and A. Sangiovanni-
Vincentelli. A Formal Speci�cation Model for Hardware/Software Codesign. In
Handouts of the International Workshop on Hardware Software Co-design, Cam-
bridge, Mass., Oct. 1993.

[4] D. Coelho. The VHDL Handbook. Kluwer Academic Publishers, 1989.

[5] S. Fischer and B. Hofmann. An Estelle Compiler for Multiprocessor Platforms. In
R. L. Tenney, P. D. Amer, and M. �U. Uyar, editors, Formal Description Techniques,
VI, pages 171{186. Elsevier Science Publishers B.V. (North{Holland), Amsterdam,
1994.

[6] D. Gajski, F. Vahid, and S. Narayan. A Design Methodology for System Speci�cation
Re�nement. In Proceedings of the Euro Design Automation Conference (EDAC'94),
Paris, France, Feb. 1994.

[7] R. Gupta and G. DeMicheli. Hardware-Software Cosynthesis for Digital Systems.
IEEE Design and Test of Computers, pages 29{41, Sept. 1993.

[8] T. B. Ismail and A. Jerraya. Synthesis Steps and Design Models for CoDesign. IEEE
Computer, 28(2):44{52, Feb. 1995.

REFERENCES 15

[9] Information technology { Coding of Moving Pictures and Associated Audio for Digital
Storage Media up to about 1.5 MBit/s (MPEG). International Standard ISO/IEC
IS 11172, 1993.

[10] Information processing systems | Open Systems Interconnection | Estelle: A for-
mal description technique based on an extended state transition model. International
Standard ISO 9074, 1989.

[11] A. Jerraya, M. Aichouchi, E. Berrebi, H. Ding, P. Kission, M. Rahmouni, and P. V.
Raghavan. AMICAL: Interactive Architectural Synthesis Based on VHDL. Technical
report, INPG/TIMA Grenoble, France, 1994.

[12] D. Kreuz and R. Gotzhein. A Compiler for the Parallel Execution of Estelle Speci�-
cations. In H. K�onig, editor, Formale Methoden f�ur Verteilte Systeme, pages 161{178.
K. G. Saur M�unchen, New Providence, London, Paris, 1993.

[13] E. Lallet, S. Fischer, and J.-F. Verdier. A New Approach for Distributing Estelle
Speci�cations. In G. von Bochmann, R. Dssouli, and O. Ra�q, editors, 8th Interna-
tional Conference on Formal Description Techniques (FORTE'95), pages 439{448,
Montr�eal, Kanada, 1995.

[14] R. Plato, T. Held, and H. K�onig. PARES { A Portable Parallel Estelle Compiler. In
P. Dembi�nski and M. �Sredniawa, editors, Protocol Speci�cation, Testing an Veri�ca-
tion XV, Warsaw, pages 403{418. Chapman & Hall, London, 1995.

[15] J.-L. Ra�y. Mastering Complexity at Design Level. In AOWSM'95, Portland, USA,
June 1995.

[16] J.-L. Ra�y. M�esures de complexit�e de speci�cations �ecrites en Estelle. In Colloque
Francophone sur l'Ingenierie des Protocoles (CFIP'95), Rennes, France, pages 497{
516, May 1995. (in French).

[17] J.-L. Richard and T. Claes. A Generator of C{Code for Estelle. In M. Diaz, J.-P.
Ansart, J.-P. Courtiat, P. Azema, and V. Chari, editors, The Formal Description
Technique Estelle, pages 397{420. Elsevier Science Publishers B.V. (North{Holland),
Amsterdam, 1989.

[18] L. A. Rowe and B. C. Smith. A Continuous Media Player. In P. V. Rangan, editor,
Network and Operating System Support for Digital Audio and Video (Third Inter-
national Workshop, La Jolla, California, USA, November 1992), Lecture Notes in
Computer Science 712, pages 376{386. Springer-Verlag, Berlin Heidelberg, 1993.

[19] D. P. Sidhu and T. P. Blumer. Semi{automatic Implementation of OSI Protocols.
Computer Networks and ISDN Systems, 18:221{238, 1990.

16 REFERENCES

[20] R. Sijelmassi and B. Strausser. The PET and DINGO tools for deriving distributed
implementations from Estelle. Computer Networks and ISDN Systems, 25(7):841{
851, 1993.

[21] D. E. Thomas, J. K. Adams, and H. Schmitt. A Model and Methodology for Hard-
ware/Software Codesign. IEEE Design and Test of Computers, pages 6{15, Sept.
1993.

[22] F. Vahid, J. Gong, and D. Gajski. A Binary-Constraint Search Algorithm for Min-
imizing Hardware during H/S Partioning. In Proceedings of EURO DAC'94, pages
214{225, 1994.

[23] S. T. Vuong, A. C. Lau, and R. I. Chan. Semiautomatic Implementation of Pro-
tocols Using an Estelle{C Compiler. IEEE Transactions on Software Engineering,
14(3):384{393, Mar. 1988.

[24] J. Wytrebowicz and S. Budkowski. Communication Protocols Implemented in Hard-
ware: VHDL Generation from Estelle. In J.-M. Berge, O. Levia, and J. Rouillard,
editors, Current Issues in Electronic Modeling: Languages for System Abstraction,
pages 77{98. Kluwer Academic Publishers, 1995.

