

Towards Extremely Fast Context Switching
in a Block-Multithreaded Processor

Winfried Gr�newald and Theo Ungerer

Department of Computer Design and Fault Tolerance, University of Karlsruhe, 76128 Karlsruhe, Germany,
Phone +721-608-6048, Fax + 721-370455, Email: {gruenewald, ungerer}@informatik.uni-karlsruhe.de

Abstract

Multithreaded processors use a fast context switch to bridge
latencies caused by memory accesses or by synchronization
operations. In the block-multithreaded processor Ð called
Rhamma Ð load/store, synchronization and execution opera-
tions of different threads of control are executed simultane-
ously by appropriate functional units. A fast context switch is
performed, whenever a functional unit comes across an oper-
ation destined for another unit. Switching contexts on each
load/store instruction sequence allows a much faster context
switch in the execution unit than previously published
designs do. The results show the potential of multithreading
to spare expensive off-chip cache in a workstation environ-
ment. The load/store unit proves as the principal bottleneck.
In particular the memory cycle time is performance critical.
We show that multithreaded processors profit more than con-
ventional RISC processors by a shorter memory cycle time.

1. Introduction

� Standard microprocessors are developed and optimized
for microcomputers or workstations with a single proces-
sor or with a low number of processors tied to a common
bus. Since processor cycle times shrink faster than RAM
access times, standard microprocessors suffer from data
shortage unless provisions are made to bridge latencies
caused by memory accesses or by synchronization opera-
tions. On-chip and off-chip caches in combination with
prefetching techniques lessen the gap of the processor-
memory access, but cannot completely remove the data
shortage.
� Our research project aims at the development of a proces-
sor usable in a single- or a multi-processor workstation,
running in a multithreaded operating system environment.
The access of data and the synchronization of threads
cause processor idle times. It is the object of our research
to fill these idle times by extremely fast switches between
different threads of control. We further implement suit-

able synchronization primitives that prevent busy waiting.
� Related approaches are the HEP [1], Horizon [2] and
Tera systems [3], the Sparcle processor of the MIT Ale-
wife machine [4], the *T [5], and data flow architectures
[6] in general. HEP, Horizon and Tera are finely grained
multithreaded processors that switch context on every
instruction paying with a bad single thread performance.
The Sparcle processor switches context on a cache miss
that causes a remote memory access. Data cache misses
are detected in a late stage of the processor pipeline, thus
several pipeline stages have to be reloaded, causing a con-
text switch overhead of 14 cycles. The *T does not incor-
porate multiple register sets, therefore a context switch
causes an overhead of load and store operations. Princip-
ally, all these approaches differ from our approach by
assuming a multiprocessor environment with a much
higher memory access time. The processor should be able
to bridge memory latencies and synchronization waiting
times so efficiently that it is appropriate for use in a sin-
gleÐprocessor workstation.
� The multithreaded processor of the Media Research Labo-
ratory of Matsushita Electric Industrial Co. [7] uses the
simultaneous multithreading [8] technique. Instructions of
several threads are simultaneously issued to the functional
units of a superscalar processor. This approach shows the
best performance gains, but also high overhead for the dis-
patch unit.
� Another related proposition is the decoupled architecture,
which achieves high scalar perfomance by cleanly split-
ting instruction processing into memory access and execu-
tion tasks [9]. This architecture has two separate sets of
instructions executed by different units. The units commu-
nicate via Òarchitectural queuesÓ.
� Our approach Ð called Rhamma Ð is a combination of the
block-multithreading technique and the decoupled archi-
tecture approach. It is similar to the Sparcle processor.
However, the execution unit of our processor switches the
context whenever it comes across a load, store or synchro-
nization instruction, and the load/store unit switches whe-

never it meets an execution or synchronization instruction.
In contrast to Sparcle, the context switch is triggered by
the decode unit in an early stage of the pipeline, thus
decreasing context switch time. On the other hand, the
overall performance of our processor may suffer from the
higher rate of context switches unless the context switch
time is very small. Implementation alternatives for a very
fast context switch from 1 to 5 processor cycles are pre-
sented and their hardware costs discussed.
� The next section describes the Rhamma processor and its
behavior in detail, Section 3 the simulator and workload,
and Section 4 the simulation results concerning the appli-
cation in a single-processor workstation.

2. The Rhamma Processor

2.1 Overview

� The main idea is to remove all operations that may cause
active waiting from the execution unit. Therefore
load/store and synchronization operations are performed
by different units within the processor. We distinguish
idle times caused by memory accesses from idle times
caused by synchronization operations. The former are pre-
dictable. They depend on the memory hierarchy of the
microcomputer or workstation. The latter depend on the
program execution and are nonpredictable. We assign a
unit for the load and store operations Ð the load/store
unit Ð and another unit for the synchronization operations

- the sync unit. The execution unit processes the arithme-
tic-logic and the control instructions. The load/store unit
detects the end of a memory access by load/store acknowl-
edgements. The units are coupled by FIFO buffers and
access different register sets. Figure�1 shows the
microarchitecture of the multithreaded processor.
� A unique thread tag identifies the thread. An activation
frame is assigned to each thread holding thread-local data,
e.g. the program counter, the thread tag, and other state
information. The activation frames are physically distrib-
uted to the register sets. Activation frames of blocked
threads are stored in the memory if more activation
frames exist than register sets are available.
� Each unit stops the execution of a thread when its decode
stage recognizes an instruction intended for another unit.
To perform a context switch, the unit passes the thread tag
to the FIFO buffer of the unit that is appropriate for the
execution of the instruction. Then the unit resumes pro-
cessing with another thread of its own FIFO buffer. The
units execute different threads of control. Therefore they
access different activation frames and thus different reg-
ister sets. A fast context switch is realized by simply
switching to another register set.

� Using a five stage processor pipeline (e.g. instruction
fetch, decode, operand fetch, execution, write back) a con-
text switch is recognized in the decode stage. This unne-
cessary decoding costs one cycle. Access to the new
thread tag and loading the new instruction pointer from
the thread tag, respectively, need one cycle each. The first
instruction of the new thread is decoded after two more
cycles - thus context switching overhead sums up to 5
cycles.

� However, context switching overhead can be reduced to
one clock cycle: Coding the context switch in the preced-
ing instruction saves the waste of the first cycle (decode
an instruction that can not be executed by the unit). If
enough threads are loaded on the processor, access to the
next thread tag and loading the respective instruction
pointer in advance saves two more cycles. Duplication of
the instruction fetch stage and preloading the next instruc-
tion reduces context switching overhead to a single cycle.
If the decode stage is also doubled, context switching over-
head would even be zero.
� The main bottleneck of each high-performance processor
is the unit which executes load and store instructions. In a
multithreaded processor the load/store bottleneck is even
more essential than in a conventional processor due to the
higher throughput of data. But multithreading allows new
possibilities to solve the load/store bottleneck:
� Several load/store requests are send to the memory (pro-
vided that the load/store instructions are data-independent
of each other and that the cycle time is less than the
access time). Then the thread tag is handed over to the exe-
cution unit, sync unit respectively. The next execution
instructions are executed if the instructions are data-inde-
pendent from the previous ones. Depending on scoreboard-
ing bits in the register set the execution unit or the

register
sets

sync
unit

load/store
unit

execution
unit

sync
requests

thread
tags

memory interface

thread
tags

thread
tags

sync
requests/

thread
tags

load/store
acknowledgements

thread
tags

Figure 1: Microarchitecture of the Rhamma processor

SHARED R : ARRAY THREADTAG, REGISTER OF WORD;

UNIT load/store;

UNIT req;
BEGIN

LOOP
LOOP

pc := R[F, PCReg];
(op, r1, r2, r3, imm) := load instruction at pc;
pc := next pc;
CASE op OF
| add..getfr: hand F over to execution;

EXIT inner loop;
| lw: IF (r1, r2 IN R[F,SbReg]) OR (R[F,CtReg] 0) THEN

hand F over to load/store;
EXIT inner loop;

ELSE
INCL(R[F, SbReg], r2);
hand (F, loadRequ, R[F, r1]+imm, r2)

over to memory;
END;

| sw: IF (r1, r2 IN R[F, SbReg]) OR (R[F,CtReg] 0) THEN
hand F over to load/store;
EXIT inner loop;

ELSE
INC (R[F, CtReg]);
hand(F,storeRequ,R[F,r2]+imm, R[F,r1])

over to memory;
END;

| exch: IF (r1, r2 IN R[F, SbReg]) OR (R[F,CtReg] 0) THEN
hand F over to load/store;
EXIT inner loop;

ELSE
INCL(R[F, SbReg], r2); INC (R[F, CtReg]);
hand(F,exchRequ,R[F,r2]+imm,R[F,r1],r2)

over to memory;
END;

| lock: IF (r1 IN R[F, SbReg]) AND (R[F, CtReg] 0) THEN
hand F over to load/store;
EXIT inner loop;

ELSE
hand (F, lockRequ, R[F, r1]+imm) over to sync;
R[F, PCReg] := pc;
EXIT inner loop;

END;
| unlock: IF (R[F, SbReg] {}) OR (R[F, CtReg] 0) THEN

hand F over to load/store;
EXIT inner loop;

ELSE
hand (F, unlockRequ, R[F, r1]+imm) over to sync;

END;
END;
R[F, PCReg] := pc;

END END END req;

UNIT ack;
BEGIN

LOOP
take (F, code, a, data, reg) from memory;
CASE code OF
| loadAckn: R[F, reg] := data; EXCL (R[F, SbReg], reg);
| storeAckn: DEC (R[F, CtReg]);
| exchAckn: EXCL (R[F, SbReg], reg); DEC (R[F, CtReg]);

END END;
END ack;

END load/store;

load/store unit stall on a data-dependent instruction. In the
case the load/store unit or the execution unit has to stall
for a dependent instruction, we use a finely grained multi-
threading technique: the unit switches the thread of con-
trol, and the instructions of the independent thread are
scheduled. Execution of the succeeding instructions of the
switched thread is resumed by the execution unit depend-
ing on the scoreboarding bit, respectively by the
load/store unit after receiving the acknowledgement corre-
sponding to the memory request.

2.2 Behavioral Description

� The instruction set architecture of the Rhamma proces-
sor is derived from the DLX instruction set [10] extended
by instructions for synchronization purpose (lock and
unlock), by move instructions (mvr, mvl) and by thread man-
agement instructions (start, yield, stop, getfr and relfr). This
subsection gives a detailed microarchitecture description
of the multithreaded Rhamma processor using a descrip-
tion language syntactically similar to ModulaÐ2.
� The load/store unit (see figure 2) retrieves a thread tag
F from the FIFO buffer, loads the program counter,
fetches the designated instruction, and decodes it. The
address of the instruction is located in the register PCReg of
the activation frame F. Register sets are modelled by a
twodimensional shared array R. The first index maps the
thread tag on its activation frame. The second index
selects the register in the activation frame. Each instruc-
tion is represented by a tuple (op, r1, r2, r3, imm) with opera-
tion op, registers r1, r2, r3 and the constant value imm. The
instruction dependencies are determined by testing
scoreboarding bits R[F, SbReg] in case of a pending load
and a counter R [F, CtReg] in case of pending store instruc-
tions. If the test fails, the thread tag F is stored again in
one of the FIFO buffers that are read by the load/store
unit (hand F over to load/store). Thereby the thread is resched-
uled by the load/store unit later.
� For each memory operation the requests loadRequ, store-

Requ and exchRequ are sent to the memory interface (store-

Requ and exchRequ transport data to be stored). Memory
then returns a loadAckn, storeAckn or exchAckn acknowledge-
ment (loadAckn and exchAckn transport data to be loaded).
Load, store and exchange requests are sent by the
load/store unit until the next instruction is an execution
or synchronization instruction. Then the load/store unit
switches the actual thread (EXIT inner loop). The old thread
is resumed when the load/store unit receives the corre-
sponding acknowledgement. Therefore the thread tag
is necessary as an argument of each request.
 � The unlock instruction does not trigger a context switch.

Figure 2: The Load/Store Unit

The following instructions are executed at once avoiding
blocking the actual thread. With all requests being con-
firmed (R[F, SbReg] = {}) AND (R[F, CtReg] = 0) the thread tag of
the next instruction is handed over to the execution unit in
case of an execution instruction, and the synchronization
instruction is handed over to the sync unit otherwise. The
thread is switched afterwards.
� The execution unit (see figure 3) retrieves a thread tag F
from the load/store buffer, loads the program counter,
fetches the designated instruction, and decodes it.
� If the instruction is an arithmetic or logic operation (add,
sub, and, É , srli) and the instruction is independent of pend-
ing load/store instructions, the result is computed and writ-
ten back to the destination register. In case the instruction
has to access unwritten registers, the unit stops the execu-
tion of the thread and hands the thread tag over to the
FIFO buffer to the execution unit (hand F over to execution).
The instructions mvr and mvl are used to exchange the
contents of registers of different activation frames.
Branches are realized by the instruction beqz.
� The instruction start activates the thread which is specified

by the arguments of the start instruction by handing the
thread tag over to the load/store unit. The instruction yield
switches the running thread by the thread that is deter-
mined by the instruction. Activation frames are created
and initialized by the instruction getfr, and released by relfr.
The instruction stop suspends the actual thread. The execu-
tion succeeds with the instructions of the next thread tag.
� The instructions lw, sw, exch, lock and unlock are executed by
the load/store unit and by the sync unit, respectively. Thus
the execution unit stops the actual thread similarly to the
stop instruction and hands the thread tag over to load/store
unit via the FIFO buffer.
� The sync unit (see figure 4) supports the synchronization
primitives lock and unlock. Each mutex variable exists only
once. In case of a multiprocessor system each mutex vari-
able is bound to the sync unit of a specific processor. Syn-
chronization requests (lockRequ or unlockRequ) on mutex
variables are sent to the corresponding sync unit.

Figure 3: The Execution Unit

SHARED R : ARRAY THREADTAG, REGISTER OF WORD;
LOCAL Free : SET OF THREADTAG;

UNIT execution;
BEGIN

LOOP
take F from load/store;
LOOP

pc := R[F, PCReg];
(op, r1, r2, r3, imm) := load instruction at pc;
pc := next pc;
CASE op OF
| add..srl: IF r1, r2, r3 IN R[F, SbReg] THEN

hand F over to execution;
EXIT inner loop;

ELSE
R[F, r3] := R[F, r1] op R[F, r2];

END;
| addi..srli: IF r1, r2 IN R[F, SbReg] THEN

hand F over to execution;
EXIT inner loop;

ELSE
R[F, r2] := R[F, r1] op imm;;

END;
| mvr: IF (r1,r3 IN R[F,SbReg]) OR

(r2 IN R[R[F,r3], SbReg]) THEN
hand F over to execution;
EXIT inner loop;

ELSE
R[R[F, r3], r2] := R[F, r1];

END;
| mvl: IF (r3,r2 IN R[F,SbReg]) OR

(r1 N R[R[F, r2], SbReg]) THEN
hand F over to execution;
EXIT inner loop;

ELSE
R[F, r3] := R[R[F, r2], r1];

END;

| beqz: IF r1, r2 IN R[F, SbReg] THEN
hand F over to execution;
EXIT inner loop;

ELSIF R[F, r1] = Null THEN
pc := R[F, r2] + imm;

END;
| start: IF r1 IN R[F, SbReg] THEN

hand F over to execution;
EXIT inner loop;

ELSE
hand R[F, r1] over to load/store;

END;
| yield: IF r1 IN R[F, SbReg] THEN

hand F over to execution;
EXIT inner loop;

ELSE
R[F, PCReg]:=pc; F := R[F, r1];
pc:=R[F, PCReg];

END;
| stop: R[F, PCReg] := pc;

EXIT inner loop;
| relfr: IF r1 IN R[F, SbReg] THEN

hand F over to execution;
EXIT inner loop;

ELSE
add R[F, r1] to Free;
IF F in Free THEN EXIT inner loop; END

END;
| getfr: IF r1, r2 IN R[F, SbReg] THEN

hand F over to execution;
EXIT inner loop;

ELSE
pick one G out of Free;
R[F,r1] := G; R[G FrReg] := G;
R[G,SbReg]:={};R[G,CtReg]:=0;
R[G,PCReg]:= R[F,r2] + imm;;

END;
| lw..unlock: hand F over to load/store;

EXIT inner loop;
END;
R[F, PCReg] := pc;

END END END execution;

� In case of a lock request the serving sync unit tests the
state of the mutex variable. If the variable is in state

ÒlockedÓ, the thread tag F is added to the set of threads
waiting for the mutex variable. If the variable is in state

ÒunlockedÓ, the mutex variable is locked and the thread tag
is returned by a lockAckn. Then the next synchronization
request is performed.
� In case of an unlock request, a thread tag is picked from
the set of threads waiting for the lock variable, and the
execution of the thread is resumed. If no waiting thread
tag is left, the variable is unlocked.

3. The Simulator

� We evaluate the multithreaded Rhamma processor versus
a conventional processor without multithreading repre-
sented by the original DLX processor [10] using an event-
driven simulation at the register-transfer level. Both, the
multithreaded and the conventional processor overlap the
execution of load/store instructions with the execution of
independent execution instructions.
� We assume one simulation time step per pipeline stage
for each instruction execution and for the access to the
instruction memory. The access to a FIFO queue and the
minimum delay time the data has to stay in a FIFO queue
is also one simulation time step.

We vary
¥� the thread switching cost: the number of time steps nec-

essary to switch the execution unit or the load/store
unit to another thread of control,

¥� the access time(s): the amount of time steps from a mem-
ory request to its completion,

¥� the cycle time(s): the minimum number of time steps bet-
ween two memory accesses, and

¥� the hit rate(s): percentage of memory requests served by
the on-chip cache(s), off-chip cache, or memory.

� Depending upon the memory hierarchy we distinguish
access times, cycle times and hit rates of the on-chip
cache, the off-chip cache and the main memory.
� As simulation work load we used several small applica-
tions written in Modula-2. The applications were com-
piled to the machine language of DLX and to the
extended machine language of Rhamma. For the simula-
tions presented in this paper we chose a set of synthetic
benchmark programs. The work load was characterized
by 100.000 instructions, three threads and a rate of one
load/store instruction to three execution instructions. The
number of data independent succeeding instructions was
two. These simulation work load did not contain synchro-
nization instructions.
� Access and cycle times were chosen due to a workstation
memory configuration in [11] using a 100 MHz PowerPC
604 [12]. Wang et al. [11] assume 9 ns synchronous burst

LOCAL mutex: ARRAY WORD OF (locked, unlocked);
waiting: ARRAY WORD OF SET OF THREADTAG;

UNIT sync;
BEGIN

LOOP
take (F, code, var) from load/store or external sync;
CASE code OF
| lockRequ: IF var at this sync THEN

IF mutex[var] = locked THEN
add F to waiting[var];

ELSE
mutex[var] := locked;
IF (F, code, var) from load/store THEN

hand F over to load/store;
ELSE

hand (F, lockAckn, var) over to external sync;
END END

ELSE
hand (F, code, var) over to external sync;

END;
| unlockRequ: IF var at this sync THEN

IF mutex[var] = locked THEN
IF waiting[var] = {} THEN

mutex[var] := unlocked;
ELSE

pick F out of waiting[var];
IF (F, code, var) from load/store THEN

hand F over to load/store;
ELSE

hand (F, lockAckn, var) over to external sync;
END END END

ELSE
hand (F, code, var) over to external sync;

END;
| lockAckn:hand F over to load/store;

END END END sync;

2/1

9/9
27/14-27

� access time� cycle time

on-chip cache� 2� 1
off-chip cache� 9� 9
DRAM memory� 27� 14-27

Figure 4: The Sync Unit

Table 1: Access and cycle times

SRAM with 3-1-1-1 burst read for the off-chip cache, and
60 ns DRAM with a 8-3-3-3 burst read for memory. The
66 MHz processor/memory bus allows split transactions
and address pipelining. Therefore the memory cycle time
was chosen as fraction of the memory access time. Access
and cycle times are shown in table 1.

4. Simulation Results

� The four diagrams in figure 5 compare performances of
the conventional processor and of the Rhamma processor
assuming context switch times of one, three and five
cycles. The on-chip cache hit rate is fixed at 80%. We
vary the combined hit rate of the on-chip and off-chip

caches (assuming an inclusion principle) and the memory
cycle time. The vertical axis shows the yielded simulation
time steps for the executed benchmark program.
� We see that memory access rate and context switch time
are critical for the performance. The influence of the mem-
ory access rate is shown by the slope of the planes in fig-
ure 5 from left to right. A low memory access rate
corresponds to a high combined cache hit rate (at the right
side of the diagrams). The conventional processor profits

more than the Rhamma processor from high cache hit
rates. The realistic (combined) cache hit rates range from
95% to 99%. In this region the Rhamma processor with
context switch time of one performs best and much better
than the conventional processor. In figure 6 we compare

240000

100000
80% 85% 90% 95% 100%

14
18

22
27120000

140000
160000
180000
200000
220000

240000

100000
80% 85% 90% 95% 100%

14
18

22
27120000

140000
160000
180000
200000
220000

240000

100000
80% 85% 90% 95% 100%

14

22
27120000

140000
160000
180000
200000
220000

240000

100000
80% 85% 90% 95% 100%

14
18

22
27120000

140000
160000
180000
200000
220000

cache hits

memory cycle

tim
e

st
ep

s

time

context switch time = 5

context switch time = 1context switch time = 3

conventional processor

Figure 5: Conventional processor compared with Rhamma assuming context switch times of 1, 3 and 5 cycles.

the performances of the Rhamma processor without off-
chip cache (varying context switch times from 1 to 5)
with the conventional processor configuration assuming
cache hit rates of 80% (no on-chip cache), 90% (com-
bined on-chip off-chip caches), and 100% (all on-chip
cache misses are served by the off-chip cache).
� The conventional processor can only use a small part of
the access time by cycle time ratio. A context switch time
of five for the Rhamma processor is not enough to outper-
form the conventional processor. We see that a Rhamma
processor with a context switch time of one or two proces-
sor cycles and an on-chip cache with 80% hit rate per-
forms better than a conventional processor with the same
on-chip cache and an ideal off-chip cache, i.e., multi-
threading saves the necessity of an expensive offÐchip
cache. Of course, using an offÐchip cache would also
increase the performance of the multithreaded processor.
� We conducted further simulations to test the robustness
of our simulation results. These supplementary simula-
tions are summarized as follows:
¥� For the simulations as shown above we used a simula-

tion load of three threads. Increasing the number of
threads also increases the work load usable for access
time bridging which is advantageous when long laten-
cies (in case of synchronization operations, page
misses, and reload via the PCI bus) have to be bridged
by the multithreaded processor. For short latencies as
assumed in the simulations above three threads proved
to be sufficient.

¥� A longer memory access time does not necessarily slow
down the performance. Provided that the work load is
sufficient and the cycle time is not changed, perfor-
mance does not deteriorate because of the access time
bridging capability of the multithreaded processor.

¥� The memory cycle time proves as the critical parameter
for the multithreaded processor. Increasing the cycle

time slows down the performance as soon as the access
time cannot completely be bridged by the multi-
threaded processor. A shorter cycle time widens the
load/store bottleneck, thus possibly increasing perfor-
mance.

¥�Increasing the context switch time worsens the
performance of the multithreaded processor. However,
repeating the simulations with the context switch time
of more than five yields similar results if access times
are increased, too.

¥� The measured performances depend on the number of
data independent instructions following a load/store
instruction. If enough threads are provided, the waiting
time in the FIFO buffer to the execution unit is suffi-
cient to bridge the access time. In contrast, the conven-
tional processor slows down if the number of data-
independent instructions decreases.

¥� Changing the instruction mix will change the processor
utilization. Best utilization will be reached by choosing
an instruction mix given by the equation:

¥� Our multithreaded processor as well as the conventional
processor is based on a scalar RISC processor. It is not
easy to compare the simulation results with a hypotheti-
cal superscalar processor. Since a superscalar proces-
sor is also equipped with a single load/store unit, it is
comparable with our multithreaded processor contain-
ing an execution unit which is able to issue execution
instructions simultaneously from a single thread to
several functional units. Simulating a higher issue band-
width the main problem remains - the load/store bottle-
neck that can only be widened by faster cycle times.

100000

150000

200000

250000

100%
90%
80%

5
4
3
2
1

2726252423222120191817161514
memory cycle time

si
m

ul
at

io
n

st
ep

s

context switch time

conv. proc. cache hit rate

Figure 6: Conventional processor with off-chip cache compared with Rhamma without off-chip cache

load/store
instructions# » #

average
cycle time

execution
instructions·

5. Conclusions

� We presented a multithreaded processor which uses fast
context switching to bridge latencies caused by memory
accesses or synchronization operations. Since the context
switch is triggered by the decoding in an early stage of the
pipeline, context switch time can be as short as one cycle.
The multithreaded processor outperforms the conven-
tional processor by its ability to tolerate memory latencies
by executing instructions of another thread. Applying the
common access times, cycle times and hit ratios of a sin-
gle processor workstation or personal computer, we show
that expensive off-chip caches can be saved using a multi-
threaded processor. Because of the short context switch
time, a load of only few threads is sufficient for increas-
ing performance over a conventional processor.
� Memory latencies depend on the access and the cycle
time. While the access time can be fully bridged by multi-
threading, the cycle time proves as the critical parameter.
Cycle times should be shorter than access times. The
implementation of the load/store unit is essential for the
overall performance, too.
�Processor design is a trade-off between performance
gains and hardware costs. Our simulations give a perfor-
mance estimation. To assess the hardware costs for reduc-
ing the context switch time, we work toward the hardware
synthesis of different implementation alternatives.

References

[1]� B. J. Smith: The Architecture of HEP. In: J. S. Kowalik
(Ed.): Parallel MIMD Computation: The HEP Supercom-
puter and Its Applications. The MIT Press, Cambridge
1985.

[2]� M. R. Thistle, B. J. Smith: A Processor Architecture for Hori-
zon. Supercomputing 88, Orlando1988, 35�-�41.

[3]� R. Alverson et al.: The Tera Computer System. 4th Interna-
tional Conference on Supercomputing, Amsterdam, June
11-15, 1990, 1- 6.

[4]� A. Agarwal et al.: The MIT Alewife Machine: Architecture
and Performance. The 22nd Annual International Sympos-
ium on Computer Architecture, Santa Margherita Ligure,
June, 22-24, 1995, 2 - 13.

[5]�R. S. Nikhil, G. M. Papadopoulos, Arvind: *T: A Multi-
threaded Massively Parallel Architecture. 19th Interna-
tional Symposium on Computer Architecture,�1992,
156Ð167.

[6]� Arvind, L. Bic, T. Ungerer: Evolution of Dataflow Comput-
ers. In: J.-L. Gaudiot, L. Bic (Eds.): Advanced Topics in
Data-Flow Computing. Prentice-Hall 1991, 3 - 33.

[7]� H. Hirata, S. Kimura, S. Nagamine, Y. Mochizuki, A. Nishi-
mura, Y. Nakase, T. Nishizawa: An Elementary Processor
Architecture with Simultaneous Instruction Issuing from
Multiple Threads. 19th Annual International Symposium
on Computer Architecture, 1992, 136Ð145.

[8]� D. E. Tullsen, S. J. Eggers, H. M. Levy: Simultaneous Multi-
threading: Maximizing On-Chip Parallelism. The 22nd
Annual International Symposium on Computer Architec-
ture, Santa Margherita Ligure, June, 22-24, 1995, 392 -
403.

[9]� J. E. Smith, S. Weiss, N. Pang: A Simulation Study of Decou-
pled Architecture Computers. IEEE Transactions on Com-
puters, Vol. C-35, No. 8, August 1986, 692 - 701.

[10]� J. L. Hennessy, D. A. Patterson: Computer Architecture a
Quantitative Approach, San Mateo 1996.

[11]� K. Wang, et al.: Designing the MPC105 PCI Bridge/Mem-
ory Controller. IEEE Micro, April 1995, 44 - 49.

[12]� B. Ryan, T. Thompson: PowerPC 604 Weighs In. BYTE,
June 1994, 265 - 266.

