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Abstract

Multithreaded processors use a fast context switch to bridge 
latencies caused by memory accesses or by synchronization 
operations. In the block-multithreaded processor Ð called 
Rhamma Ð load/store, synchronization and execution opera-
tions of different threads of control are executed simultane-
ously by appropriate functional units. A fast context switch is 
performed, whenever a functional unit comes across an oper-
ation destined for another unit. Switching contexts on each 
load/store instruction sequence allows a much faster context 
switch in the execution unit than previously published 
designs do. The results show the potential of multithreading 
to spare expensive off-chip cache in a workstation environ-
ment. The load/store unit proves as the principal bottleneck. 
In particular the memory cycle time is performance critical. 
We show that multithreaded processors profit more than con-
ventional RISC processors by a shorter memory cycle time.

1. Introduction

� Standard microprocessors are developed and optimized 
for microcomputers or workstations with a single proces-
sor or with a low number of processors tied to a common 
bus. Since processor cycle times shrink faster than RAM 
access times, standard microprocessors suffer from data 
shortage unless provisions are made to bridge latencies 
caused by memory accesses or by synchronization opera-
tions. On-chip and off-chip caches in combination with 
prefetching techniques lessen the gap of the processor-
memory access, but cannot completely remove the data 
shortage.
� Our research project aims at the development of a proces-
sor usable in a single- or a multi-processor workstation, 
running in a multithreaded operating system environment. 
The access of data and the synchronization of threads 
cause processor idle times. It is the object of our research 
to fill these idle times by extremely fast switches between 
different threads of control. We further implement suit-

able synchronization primitives that prevent busy waiting.
� Related approaches are the HEP [1], Horizon [2] and 
Tera systems [3], the Sparcle processor of the MIT Ale-
wife machine [4], the *T [5], and data flow architectures 
[6] in general. HEP, Horizon and Tera are finely grained 
multithreaded processors that switch context on every 
instruction paying with a bad single thread performance. 
The Sparcle processor switches context on a cache miss 
that causes a remote memory access. Data cache misses 
are detected in a late stage of the processor pipeline, thus 
several pipeline stages have to be reloaded, causing a con-
text switch overhead of 14 cycles. The *T does not incor-
porate multiple register sets, therefore a context switch 
causes an overhead of load and store operations. Princip-
ally, all these approaches differ from our approach by 
assuming a multiprocessor environment with a much 
higher memory access time. The processor should be able 
to bridge memory latencies and synchronization waiting 
times so efficiently that it is appropriate for use in a sin-
gleÐprocessor workstation.
� The multithreaded processor of the Media Research Labo-
ratory of Matsushita Electric Industrial Co. [7] uses the 
simultaneous multithreading [8] technique. Instructions of 
several threads are simultaneously issued to the functional 
units of a superscalar processor. This approach shows the 
best performance gains, but also high overhead for the dis-
patch unit.
� Another related proposition is the decoupled architecture, 
which achieves high scalar perfomance by cleanly split-
ting instruction processing into memory access and execu-
tion tasks [9]. This architecture has two separate sets of 
instructions executed by different units. The units commu-
nicate via Òarchitectural queuesÓ.
� Our approach Ð called Rhamma Ð is a combination of the 
block-multithreading technique and the decoupled archi-
tecture approach. It is similar to the Sparcle processor. 
However, the execution unit of our processor switches the 
context whenever it comes across a load, store or synchro-
nization instruction, and the load/store unit switches whe-



        

never it meets an execution or synchronization instruction. 
In contrast to Sparcle, the context switch is triggered by 
the decode unit in an early stage of the pipeline, thus 
decreasing context switch time. On the other hand, the 
overall performance of our processor may suffer from the 
higher rate of context switches unless the context switch 
time is very small. Implementation alternatives for a very 
fast context switch from 1 to 5 processor cycles are pre-
sented and their hardware costs discussed.
� The next section describes the Rhamma processor and its 
behavior in detail, Section 3 the simulator and workload, 
and Section 4 the simulation results concerning the appli-
cation in a single-processor workstation.

2. The Rhamma Processor

2.1 Overview

� The main idea is to remove all operations that may cause 
active waiting from the execution unit. Therefore 
load/store and synchronization operations are performed 
by different units within the processor. We distinguish 
idle times caused by memory accesses from idle times 
caused by synchronization operations. The former are pre-
dictable. They depend on the memory hierarchy of the 
microcomputer or workstation. The latter depend on the 
program execution and are nonpredictable. We assign a 
unit for the load and store operations Ð the load/store 
unit Ð and another unit for the synchronization operations 

- the sync unit. The execution unit processes the arithme-
tic-logic and the control instructions. The load/store unit 
detects the end of a memory access by load/store acknowl-
edgements. The units are coupled by FIFO buffers and 
access different register sets. Figure�1 shows the 
microarchitecture of the multithreaded processor.
� A unique thread tag identifies the thread. An activation 
frame is assigned to each thread holding thread-local data, 
e.g. the program counter, the thread tag, and other state 
information. The activation frames are physically distrib-
uted to the register sets. Activation frames of blocked 
threads are stored in the memory if more activation 
frames exist than register sets are available.
� Each unit stops the execution of a thread when its decode 
stage recognizes an instruction intended for another unit. 
To perform a context switch, the unit passes the thread tag 
to the FIFO buffer of the unit that is appropriate for the 
execution of the instruction. Then the unit resumes pro-
cessing with another thread of its own FIFO buffer. The 
units execute different threads of control. Therefore they 
access different activation frames and thus different reg-
ister sets. A fast context switch is realized by simply 
switching to another register set.

� Using a five stage processor pipeline (e.g. instruction 
fetch, decode, operand fetch, execution, write back) a con-
text switch is recognized in the decode stage. This unne-
cessary decoding costs one cycle. Access to the new 
thread tag and loading the new instruction pointer from 
the thread tag, respectively, need one cycle each. The first 
instruction of the new thread is decoded after two more 
cycles - thus context switching overhead sums up to 5 
cycles.

� However, context switching overhead can be reduced to 
one clock cycle: Coding the context switch in the preced-
ing instruction saves the waste of the first cycle (decode 
an instruction that can not be executed by the unit). If 
enough threads are loaded on the processor, access to the 
next thread tag and loading the respective instruction 
pointer in advance saves two more cycles. Duplication of 
the instruction fetch stage and preloading the next instruc-
tion reduces context switching overhead to a single cycle. 
If the decode stage is also doubled, context switching over-
head would even be zero.
� The main bottleneck of each high-performance processor 
is the unit which executes load and store instructions. In a 
multithreaded processor the load/store bottleneck is even 
more essential than in a conventional processor due to the 
higher throughput of data. But multithreading allows new 
possibilities to solve the load/store bottleneck:
� Several load/store requests are send to the memory (pro-
vided that the load/store instructions are data-independent 
of each other and that the cycle time is less than the 
access time). Then the thread tag is handed over to the exe-
cution unit, sync unit respectively. The next execution 
instructions are executed if the instructions are data-inde-
pendent from the previous ones. Depending on scoreboard-
ing bits in the register set the execution unit or the 
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Figure 1: Microarchitecture of the Rhamma processor



        

SHARED R : ARRAY THREADTAG, REGISTER OF WORD;

UNIT load/store;

UNIT req;
BEGIN

LOOP
LOOP

pc := R[ F, PCReg ];
(op, r1, r2, r3, imm) := load instruction at pc;
pc := next pc;
CASE op OF
| add..getfr: hand F over to execution;

EXIT inner loop;
| lw: IF (r1, r2 IN R[ F,SbReg ]) OR (R[ F,CtReg ]  0) THEN

hand F over to load/store;
EXIT inner loop;

ELSE
INCL( R[ F, SbReg ], r2);
hand (F, loadRequ, R[F, r1]+imm, r2) 

over to memory;
END;

| sw: IF (r1, r2 IN R[ F, SbReg ]) OR (R[ F,CtReg]  0) THEN
hand F over to load/store;
EXIT inner loop;

ELSE
INC ( R[ F, CtReg ] );
hand(F,storeRequ,R[F,r2]+imm, R[F,r1])

over to memory;
END;

| exch: IF (r1, r2 IN R[ F, SbReg]) OR (R[ F,CtReg ]  0) THEN
hand F over to load/store;
EXIT inner loop;

ELSE
INCL( R[ F, SbReg ], r2); INC ( R[ F, CtReg ] );
hand(F,exchRequ,R[F,r2]+imm,R[F,r1],r2) 

over to memory;
END;

| lock: IF (r1 IN R[ F, SbReg]) AND (R[ F, CtReg ]  0) THEN
hand F over to load/store;
EXIT inner loop;

ELSE
hand (F, lockRequ, R[F, r1]+imm) over to sync;
R[ F, PCReg ] := pc;
EXIT inner loop;

END;
| unlock: IF (R[ F, SbReg ]  {}) OR (R[ F, CtReg ]  0) THEN

hand F over to load/store;
EXIT inner loop;

ELSE
hand (F, unlockRequ, R[F, r1]+imm) over to sync;

END;
END;
R[ F, PCReg ] := pc;

END END END req;

UNIT ack;
BEGIN

LOOP
take (F, code, a, data, reg) from memory;
CASE code OF
| loadAckn: R[ F, reg ] := data; EXCL ( R[ F, SbReg ], reg);
| storeAckn: DEC ( R[ F, CtReg ] );
| exchAckn: EXCL ( R[ F, SbReg ], reg); DEC ( R[ F, CtReg ] );

END END;
END ack;

END load/store;

load/store unit stall on a data-dependent instruction. In the 
case the load/store unit or the execution unit has to stall 
for a dependent instruction, we use a finely grained multi-
threading technique: the unit switches the thread of con-
trol, and the instructions of the independent thread are 
scheduled. Execution of the succeeding instructions of the 
switched thread is resumed by the execution unit depend-
ing on the scoreboarding bit, respectively by the 
load/store unit after receiving the acknowledgement corre-
sponding to the memory request.

2.2 Behavioral Description

� The instruction set architecture of the Rhamma proces-
sor is derived from the DLX instruction set [10] extended 
by instructions for synchronization purpose (lock and 
unlock), by move instructions (mvr, mvl) and by thread man-
agement instructions (start, yield, stop, getfr and relfr). This 
subsection gives a detailed microarchitecture description 
of the multithreaded Rhamma processor using a descrip-
tion language syntactically similar to ModulaÐ2. 
� The load/store unit (see figure 2) retrieves a thread tag 
F from the FIFO buffer, loads the program counter, 
fetches the designated instruction, and decodes it. The 
address of the instruction is located in the register PCReg of 
the activation frame F. Register sets are modelled by a 
twodimensional shared array R. The first index maps the 
thread tag on its activation frame. The second index 
selects the register in the activation frame. Each instruc-
tion is represented by a tuple (op, r1, r2, r3, imm) with opera-
tion op, registers r1, r2, r3 and the constant value imm. The 
instruction dependencies are determined by testing 
scoreboarding bits R[F, SbReg ] in case of a pending load 
and a counter R [F, CtReg ] in case of pending store instruc-
tions. If the test fails, the thread tag F is stored again in 
one of the FIFO buffers that are read by the load/store 
unit (hand F over to load/store). Thereby the thread is resched-
uled by the load/store unit later.
� For each memory operation the requests loadRequ, store-

Requ and exchRequ are sent to the memory interface (store-

Requ and exchRequ transport data to be stored). Memory 
then returns a loadAckn, storeAckn or exchAckn acknowledge-
ment (loadAckn and exchAckn transport data to be loaded). 
Load, store and exchange requests are sent by the 
load/store unit until the next instruction is an execution 
or synchronization instruction. Then the load/store unit 
switches the actual thread (EXIT inner loop). The old thread 
is resumed when the load/store unit receives the corre-
sponding acknowledgement. Therefore the thread tag 
is necessary as an argument of each request.
 � The unlock instruction does not trigger a context switch. 

Figure 2: The Load/Store Unit



        

The following instructions are executed at once avoiding 
blocking the actual thread. With all requests being con-
firmed ( R[ F, SbReg ] = {}) AND (R[ F, CtReg ] = 0 ) the thread tag of 
the next instruction is handed over to the execution unit in 
case of an execution instruction, and the synchronization 
instruction is handed over to the sync unit otherwise. The 
thread is switched afterwards.
� The execution unit (see figure 3) retrieves a thread tag F 
from the load/store buffer, loads the program counter, 
fetches the designated instruction, and decodes it.
� If the instruction is an arithmetic or logic operation (add, 
sub, and, É , srli) and the instruction is independent of pend-
ing load/store instructions, the result is computed and writ-
ten back to the destination register. In case the instruction 
has to access unwritten registers, the unit stops the execu-
tion of the thread and hands the thread tag over to the 
FIFO buffer to the execution unit (hand F over to execution). 
The instructions mvr and mvl are used to exchange the 
contents of registers of different activation frames. 
Branches are realized by the instruction beqz.
� The instruction start activates the thread which is specified 

by the arguments of the start instruction by handing the 
thread tag over to the load/store unit. The instruction yield 
switches the running thread by the thread that is deter-
mined by the instruction. Activation frames are created 
and initialized by the instruction getfr, and released by relfr. 
The instruction stop suspends the actual thread. The execu-
tion succeeds with the instructions of the next thread tag.
� The instructions lw, sw, exch, lock and unlock are executed by 
the load/store unit and by the sync unit, respectively. Thus 
the execution unit stops the actual thread similarly to the 
stop instruction and hands the thread tag over to load/store 
unit via the FIFO buffer.
� The sync unit (see figure 4) supports the synchronization 
primitives lock and unlock. Each mutex variable exists only 
once. In case of a multiprocessor system each mutex vari-
able is bound to the sync unit of a specific processor. Syn-
chronization requests (lockRequ or unlockRequ) on mutex 
variables are sent to the corresponding sync unit.

Figure 3: The Execution Unit

SHARED R : ARRAY THREADTAG, REGISTER OF WORD;
LOCAL Free : SET OF THREADTAG;

UNIT execution;
BEGIN

LOOP
take F from load/store;
LOOP

pc := R[ F, PCReg ];
(op, r1, r2, r3, imm) := load instruction at pc;
pc := next pc;
CASE op OF
| add..srl: IF r1, r2, r3 IN R[ F, SbReg] THEN

hand F over to execution;
EXIT inner loop;

ELSE
R[ F, r3 ] := R[ F, r1 ] op R[ F, r2 ];

END;
| addi..srli: IF r1, r2 IN R[ F, SbReg] THEN

hand F over to execution;
EXIT inner loop;

ELSE
R[ F, r2 ] := R[ F, r1 ] op imm;;

END;
| mvr: IF (r1,r3 IN R[ F,SbReg]) OR 

(r2 IN R[ R[F,r3 ], SbReg ]) THEN
hand F over to execution;
EXIT inner loop;

ELSE
R[ R[ F, r3 ], r2 ] := R[ F, r1 ];

END;
| mvl: IF (r3,r2 IN R[ F,SbReg]) OR

(r1 N R[ R[ F, r2 ], SbReg ]) THEN
hand F over to execution;
EXIT inner loop;

ELSE
R[ F, r3 ] := R[ R[ F, r2 ], r1 ];

END;

| beqz: IF r1, r2 IN R[ F, SbReg] THEN
hand F over to execution;
EXIT inner loop;

ELSIF R[ F, r1 ] = Null THEN
pc := R[ F, r2 ] + imm;

END;
| start: IF r1 IN R[ F, SbReg] THEN

hand F over to execution;
EXIT inner loop;

ELSE
hand R[ F, r1 ] over to load/store;

END;
| yield: IF r1 IN R[ F, SbReg] THEN

hand F over to execution;
EXIT inner loop;

ELSE
R[ F, PCReg ]:=pc; F := R[ F, r1 ];
pc:=R[ F, PCReg ];

END;
| stop: R[ F, PCReg ] := pc;

EXIT inner loop;
| relfr: IF r1 IN R[ F, SbReg] THEN

hand F over to execution;
EXIT inner loop;

ELSE
add R[ F, r1 ] to Free;
IF F in Free THEN EXIT inner loop; END

END;
| getfr: IF r1, r2 IN R[ F, SbReg] THEN

hand F over to execution;
EXIT inner loop;

ELSE
pick one G out of Free;
R[F,r1] := G; R[G FrReg ] := G;
R[G,SbReg]:={};R[G,CtReg]:=0;
R[G,PCReg]:= R[F,r2] + imm;;

END;
| lw..unlock: hand F over to load/store;

EXIT inner loop;
END;
R[ F, PCReg ] := pc;

END END END execution;



        

� In case of a lock request the serving sync unit tests the 
state of the mutex variable. If the variable is in state 

ÒlockedÓ, the thread tag F is added to the set of threads 
waiting for the mutex variable. If the variable is in state 

ÒunlockedÓ, the mutex variable is locked and the thread tag 
is returned by a lockAckn. Then the next synchronization 
request is performed.
� In case of an unlock request, a thread tag is picked from 
the set of threads waiting for the lock variable, and the 
execution of the thread is resumed. If no waiting thread 
tag is left, the variable is unlocked.

3. The Simulator

� We evaluate the multithreaded Rhamma processor versus 
a conventional processor without multithreading repre-
sented by the original DLX processor [10] using an event-
driven simulation at the register-transfer level. Both, the 
multithreaded and the conventional processor overlap the 
execution of load/store instructions with the execution of 
independent execution instructions.
� We assume one simulation time step per pipeline stage 
for each instruction execution and for the access to the 
instruction memory. The access to a FIFO queue and the 
minimum delay time the data has to stay in a FIFO queue 
is also one simulation time step.

We vary
¥� the thread switching cost: the number of time steps nec-

essary to switch the execution unit or the load/store 
unit to another thread of control,

¥� the access time(s): the amount of time steps from a mem-
ory request to its completion, 

¥� the cycle time(s): the minimum number of time steps bet-
ween two memory accesses, and

¥� the hit rate(s): percentage of memory requests served by 
the on-chip cache(s), off-chip cache, or memory.

� Depending upon the memory hierarchy we distinguish 
access times, cycle times and hit rates of the on-chip 
cache, the off-chip cache and the main memory.
� As simulation work load we used several small applica-
tions written in Modula-2. The applications were com-
piled to the machine language of DLX and to the 
extended machine language of Rhamma. For the simula-
tions presented in this paper we chose a set of synthetic 
benchmark programs. The work load was characterized 
by 100.000 instructions, three threads and a rate of one 
load/store instruction to three execution instructions. The 
number of data independent succeeding instructions was 
two. These simulation work load did not contain synchro-
nization instructions.
� Access and cycle times were chosen due to a workstation 
memory configuration in [11] using a 100 MHz PowerPC 
604 [12]. Wang et al. [11] assume 9 ns synchronous burst 

LOCAL mutex: ARRAY WORD OF ( locked, unlocked );
waiting: ARRAY WORD OF SET OF THREADTAG;

UNIT sync;
BEGIN

LOOP
take (F, code, var) from  load/store or external sync;
CASE code OF
| lockRequ: IF var at this sync THEN

IF mutex[var] = locked THEN
add F to waiting[var];

ELSE
mutex[var] := locked;
IF (F, code, var) from load/store THEN

hand F over to load/store;
ELSE

hand (F, lockAckn, var) over to external sync;
END END

ELSE
hand (F, code, var) over to external sync;

END;
| unlockRequ: IF var at this sync THEN

IF mutex[var] = locked THEN
IF waiting[var] = {} THEN

mutex[var] := unlocked;
ELSE

pick F out of waiting[var];
IF (F, code, var) from load/store THEN

hand F over to load/store;
ELSE

hand (F, lockAckn, var) over to external sync;
END END END

ELSE
hand (F, code, var) over to external sync;

END;
| lockAckn:hand F over to load/store;

END END END sync;

2/1

9/9
27/14-27

� access time� cycle time

on-chip cache� 2� 1
off-chip cache� 9� 9
DRAM memory� 27� 14-27

Figure 4: The Sync Unit

Table 1: Access and cycle times



        

SRAM with 3-1-1-1 burst read for the off-chip cache, and 
60 ns DRAM with a 8-3-3-3 burst read for memory. The 
66 MHz processor/memory bus allows split transactions 
and address pipelining. Therefore the memory cycle time 
was chosen as fraction of the memory access time. Access 
and cycle times are shown in table 1.

4. Simulation Results

� The four diagrams in figure 5 compare performances of 
the conventional processor and of the Rhamma processor 
assuming context switch times of one, three and five 
cycles. The on-chip cache hit rate is fixed at 80%. We 
vary the combined hit rate of the on-chip and off-chip 

caches (assuming an inclusion principle) and the memory 
cycle time. The vertical axis shows the yielded simulation 
time steps for the executed benchmark program.
� We see that memory access rate and context switch time 
are critical for the performance. The influence of the mem-
ory access rate is shown by the slope of the planes in fig-
ure 5 from left to right. A low memory access rate 
corresponds to a high combined cache hit rate (at the right 
side of the diagrams). The conventional processor profits 

more than the Rhamma processor from high cache hit 
rates. The realistic (combined) cache hit rates range from 
95% to 99%. In this region the Rhamma processor with 
context switch time of one performs best and much better 
than the conventional processor. In figure 6 we compare 
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the performances of the Rhamma processor without off-
chip cache (varying context switch times from 1 to 5) 
with the conventional processor configuration assuming 
cache hit rates of 80% (no on-chip cache), 90% (com-
bined on-chip off-chip caches), and 100% (all on-chip 
cache misses are served by the off-chip cache). 
� The conventional processor can only use a small part of 
the access time by cycle time ratio. A context switch time 
of five for the Rhamma processor is not enough to outper-
form the conventional processor. We see that a Rhamma 
processor with a context switch time of one or two proces-
sor cycles and an on-chip cache with 80% hit rate per-
forms better than a conventional processor with the same 
on-chip cache and an ideal off-chip cache, i.e., multi-
threading saves the necessity of an expensive offÐchip 
cache. Of course, using an offÐchip cache would also 
increase the performance of the multithreaded processor.
� We conducted further simulations to test the robustness 
of our simulation results. These supplementary simula-
tions are summarized as follows:
¥� For the simulations as shown above we used a simula-

tion load of three threads. Increasing the number of 
threads also increases the work load usable for access 
time bridging which is advantageous when long laten-
cies (in case of synchronization operations, page 
misses, and reload via the PCI bus) have to be bridged 
by the multithreaded processor. For short latencies as 
assumed in the simulations above three threads proved 
to be sufficient.

¥� A longer memory access time does not necessarily slow 
down the performance. Provided that the work load is 
sufficient and the cycle time is not changed, perfor-
mance does not deteriorate because of the access time 
bridging capability of the multithreaded processor.

¥� The memory cycle time proves as the critical parameter 
for the multithreaded processor. Increasing the cycle 

time slows down the performance as soon as the access 
time cannot completely be bridged by the multi-
threaded processor. A shorter cycle time widens the 
load/store bottleneck, thus possibly increasing perfor-
mance.

¥�Increasing the context switch time worsens the 
performance of the multithreaded processor. However, 
repeating the simulations with the context switch time 
of more than five yields similar results if access times 
are increased, too.

¥� The measured performances depend on the number of 
data independent instructions following a load/store 
instruction. If enough threads are provided, the waiting 
time in the FIFO buffer to the execution unit is suffi-
cient to bridge the access time. In contrast, the conven-
tional processor slows down if the number of data- 
independent instructions decreases.

¥� Changing the instruction mix will change the processor 
utilization. Best utilization will be reached by choosing 
an instruction mix given by the equation:

¥� Our multithreaded processor as well as the conventional 
processor is based on a scalar RISC processor. It is not 
easy to compare the simulation results with a hypotheti-
cal superscalar processor. Since a superscalar proces-
sor is also equipped with a single load/store unit, it is 
comparable with our multithreaded processor contain-
ing an execution unit which is able to issue execution 
instructions simultaneously from a single thread to 
several functional units. Simulating a higher issue band-
width the main problem remains - the load/store bottle-
neck that can only be widened by faster cycle times.
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5. Conclusions

� We presented a multithreaded processor which uses fast 
context switching to bridge latencies caused by memory 
accesses or synchronization operations. Since the context 
switch is triggered by the decoding in an early stage of the 
pipeline, context switch time can be as short as one cycle. 
The multithreaded processor outperforms the conven-
tional processor by its ability to tolerate memory latencies 
by executing instructions of another thread. Applying the 
common access times, cycle times and hit ratios of a sin-
gle processor workstation or personal computer, we show 
that expensive off-chip caches can be saved using a multi-
threaded processor. Because of the short context switch 
time, a load of only few threads is sufficient for increas-
ing performance over a conventional processor.
� Memory latencies depend on the access and the cycle 
time. While the access time can be fully bridged by multi-
threading, the cycle time proves as the critical parameter. 
Cycle times should be shorter than access times. The 
implementation of the load/store unit is essential for the 
overall performance, too.
�Processor design is a trade-off between performance 
gains and hardware costs. Our simulations give a perfor-
mance estimation. To assess the hardware costs for reduc-
ing the context switch time, we work toward the hardware 
synthesis of different implementation alternatives.
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