N

N

Broadcast with Time and Causality Constraints for
Multimedia Applications
Roberto Baldoni, Ravi Prakash, Michel Raynal, Mukesh Singhal

» To cite this version:

Roberto Baldoni, Ravi Prakash, Michel Raynal, Mukesh Singhal. Broadcast with Time and Causality
Constraints for Multimedia Applications. [Research Report] RR-2976, INRIA. 1996. inria-00073722

HAL 1d: inria-00073722
https://inria.hal.science/inria-00073722
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073722
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Broadcast with Time and Causality Constraints
for Multimedia Applications

R. Baldoni , R. Prakash, M. Rayna , M. Singhal

N° 2976
Septembre 1996

THEME 1

apport
derecherche

VAV 1 IN IN 1 A

RENNES

Broadcast with Time and Causality Constraints
for Multimedia Applications

R. Baldoni*, R. Prakashf, M. Raynal*, M. Singhal'

Theme 1 — Réseaux et systeémes
Projet Adp

Rapport de recherche n°2976 — Septembre 1996 — 12 pages

Abstract: A-causal ordering is a communication abstraction designed for distributed applications
whose messages (i) have to be delivered according to causal ordering and (ii) have a limited lifetime
after which their data can no longer be used by the application. Example of such applications are:
multimedia real-time collaborative applications and groupware real-time applications. For such appli-
cations, the broadcasting of information is of primary importance. In this paper, we propose a simple
and efficient A-causal ordering protocol in the context of broadcast communication. By taking into
account transitive dependencies on message sends, this algorithm gets a significant reduction in the
control information piggybacked on application messages, compared to previous algorithms.

Key-words: distributed computing, causal ordering, multimedia, real-time communication.

(Résumé : tsup)

Appeared in the Proceedings of the 22nd EUROMICRO Conference, Pragua, September 1996.

* IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France. {baldoni,raynal}@irisa.fr
! Department of Computer and Information Science, The Ohio State University, Columbus, Ohio, 43210.
{prakash,singhal}@cis.ohio-state.edu. Mukesh Singhal was supported by an INRIA grant during a stay at IRISA.

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone : (33) 99 84 71 00 — Télécopie : (33) 9984 7171

Diffusion pour applications multimedia avec des contraintes de
temps et de causalité

Résumé : La notion de A-causalité a été introduite pour faciliter la conception d’applications ré-
parties dans lesquelles (1) les messages ont une durée de vie (A) apres laquelle leur contenu n’a plus
d’utilité pour le destinataire et (2) leurs livraisons doivent respecter 'ordre causal. Dans cet article,
nous proposons un protocole simple de diffusion qui respecte ces deux contraintes.

Mots-clé : Applications multimedia, calculs répartis, communication temps-réel, ordre causal

broaacast wilh 1me ana Causalily Constrainls b

1 Introduction

The notion of A-causal ordering was introduced in [Yav92], and later refined and formalized in
[BMRO5]. This communication mode has been defined in order to reduce the asynchrony of com-
munication channels in distributed systems with the following characteristics: (i) messages can be
lost and (ii) messages have a lifetime, A, after which their data can no longer be used. In other
words, messages whose transmission delays are greater than A are considered to be lost. A-causal
order strives to deliver as many messages as possible before their deadlines in such a way that these
deliveries respect causal order. Causal ordering means that if two message sends are causally related
[Lam78] and have the same destination, then the corresponding messages are delivered in their sending
order. Indeed, when we consider a reliable distributed system and messages whose contents have no
delivery constraints, A-causal ordering boils down to the original definition of causal ordering given
by Birman and Joseph in [BJ87].

In the context of broadcast communication, the A-causal ordering abstraction matches the requi-
rements of an important class of multimedia applications, namely, distributed multimedia real-time
applications, where participants are required to exchange real-time audio and video information over a
communication network. This flow of information must preserve the causal dependency even though
part of the information can be lost or can be discarded when it violates the timing constraints imposed
by a real-time interaction.

Several protocols implementing pure causal ordering [BJ87, RST91] and A-causal ordering [BMR95,
AS95] appeared in the literature; however, they suffer from the typical pitfall of the timestamping
(logical or physical) technique: to ensure causal order, in the context of broadcasting, messages have
to carry a vector of integers whose dimension is given by the number of processes [Mat89].

In this paper we introduce a new and eflicient A-causal ordering protocol, reducing the amount
of information carried by messages. Only in the worst case, this information has the same size as
previous algorithms. This reduction is obtained by taking into account transitive dependencies on the
message sends.

The paper is structured into two main sections. Section 2 points out the problem of messages
deliveries in multimedia real-time applications, presents the model of asynchronous distributed exe-
cutions, and recalls the formal definition of A-causal order. Section 3 presents the A-causal ordering
protocol with its proof of correctness.

2 A-Causal Ordering

2.1 Distributed System

A distributed program is a finite set P of n sequential processes { Py, P,,..., P,} that communicate
and synchronize only by exchanging messages. The underlying system, on which distributed programs
execute, is composed of n processors (for simplicity, we assume one process per processor) that can
exchange messages. When a message arrives on a channel, it can be delivered as soon as the delivery
condition becomes true; in an asynchronous system with no special constraints on deliveries' this
condition is always true. We assume that each pair of processes is connected by an asynchronous
and unreliable logical channel (messages can be lost and transmission delays of non lost messages are
unpredictable). Processors do not have a shared memory, there is no bound on their relative speeds,
and there are no hidden channels.

!Examples of special constraints in deliveries are fifo order, Causal Order and A-causal order.

RR n° 2976

4 rt. bataont, k. rrakash, M. naynal & M. Singhal

2.2 Distributed Executions

At the application level, execution of a process produces a sequence of events which can be classified as:
send events, delivery events, and internal events. An internal event may change only local variables;
send or delivery events involve communication. The causal ordering of events in a distributed execution
is based on Lamport’s happened-before relation [Lam78] denoted by —. If @ and b are two events then
a—b iff one of these conditions is true:

1. a and b occur at the same process with a before b

ii. a = send(m) is the send event of a message m and b = delivery(m) is the delivery event of the
samme message

1i1. there exists an event ¢ such that e—c and c—b.

Such a relation allows us to represent a distributed executions as a partial order of events, called
E = (E,—) where E is the set of all events. Hereafter, we call Mz the set of all messages exchanged

in E and we do not consider internal events since they do not affect the causal ordering of events.

2.3 The Lifetime of a Message

The lifetime, A, of a message is the physical time duration, after its sending time, during which its
content is meaningful and consequently can be used by its destination process(es). A message that
arrives at its destination after its lifetime is useless and must be discarded; as far as the destination
process is concerned, the message is lost. A message that arrives at its destination within its lifetime
must be delivered at the target process within the expiration of its lifetime. For simplicity, we assume
an identical lifetime for all the messages (in case of distinct types of messages with different lifetimes,
we can assume the minimum among them as the lifetime to be respected by all the messages). As
indicated in the introduction, for a message m the instant “sending time of m + A” is the deadline
after which this message is useless for the destination process.

In multimedia systems, the lifetime of a message is the maximum delay, after its sending, that can
be tolerated before delivering it without degrading the quality of the service. This delay is dependent
on the type of multimedia applications. For example, in teleconferencing, the maximum lifetime for
audio and video messages is 250 msec.[JSS94] (an acceptable one is 100 msec. [RB93]), videophones
systems may tolerate a lifetime of 350 msec., non-interactive video systems have a lifetime of 1 sec.
and catalog browsing services have a lifetime of 2 sec. [RB93, Fer90].

2.4 Global Clock

In order to enforce the real-time delivery constraints, processes are endowed with a global clock
value whose drift with respect to physical time is bounded, and whose granularity and precision
[KO87, Ver94] are such that all the causally dependent events are produced at different times. Many
clock synchronization protocols have been described in the literature. Some currently used protocols
provide a global clock synchronization that bounds the clock drift value, ¢, within 5 — 10 milliseconds
[GZ89]. Without loss of generality, we assume that € is incorporated in the lifetime A of the message.
The relation between the value A and the granularity and precision of a global clock is thoroughly

discussed in [BMR95].
2.5 Definition

The notion of A-causal ordering was introduced in [Yav92]; and was later formalized in [BMR95].
This notion is very general as it assumes an unreliable communication system where messages contain

INRIA

broaacast wilh 1me ana Causalily Constrainls)

Pi

Pi

Py

O Message discarded A
® Message delivery
m Message sent

Figure 1: Deliveries of broadcast communications respecting A-causal ordering

real-time data. That is, messages can be discarded if they arrive at their destinations when their data
are obsolete (after the expiration of their deadlines).

Definition [A-Causal Ordering]: A distributed computation E respects A-causal ordering if:

i. All messages in M(E) that arrive within A are delivered within A, all the others are never
delivered (they are lost or discarded);

1. All delivery events respect causal ordering, i.e.,
For any two messages m1 and m2 € My that arrive within A we have: if send(m1) — send(m2)
and ml, m2 have the same destinalion process, then deliver(ml) — deliver(m?2).

Note that A-causal ordering meets the original causal ordering definition [BJ87] when channels are
reliable (all the messages will be eventually delivered) and A is greater than any message transmission
delay over the distributed system (in this case the content of messages has actually no real-time
characteristics). In the context of broadcast communications, an example of deliveries respecting
A-causal ordering is shown in Figure 1.

2.6 A Class of Multimedia Real-Time Applications

Multimedia real-time collaborative applications or groupware real-time applications such as teleconfe-
rencing, shared window systems, group word-processors, videophones systems, require participants
to exchange real-time audio and video information over a communication network. For example
in a teleconferencing the audio and video signal of each participant should be received by all the
others. To preserve the real-time interaction of such applications, the audio and video information
have a maximum transmission delay. Information arriving at the destination site with greater de-
lays must be discarded since their use may seriously degrade the quality of the real-time interaction
[Wak93, Fer90, HB94].

Consider as an example an analog video signal. The video is sampled at the source site and
such samples produce a continuous flow of information over the communication network. In order
to reconstruct a high quality analog signal at the destination site, as many samples as possible must
be delivered within the maximum transmission delay, and samples arriving within the maximum
transmission delay should be delivered in the order they were sent. Deliveries of samples out of order,
or with higher delay than the maximum could greatly deteriorate the quality of the analog signal at
the destination site (for example, the audio signal is very sensitive to out of order delivery of samples)
[HB94, Yav92].

Such signals may however tolerate a loss of information as long as these losses do not cause a
major degradation of analog signals (making them unintelligible) at the destination site [Wak93,
HB94, Fer90]. Another important property is that video and audio signals do not impose uniformity
upon the reception of samples, i.e., a sample can be received by only a subset of all the participants.
Such a property results in a different quality of the audio and video signal for each participant. Such a
RR n° 2976

0 rt. bataont, k. rrakash, M. naynal & M. Singhal

G S G
S ERNEEN N

Figure 2: Example of a computation

m3
<.\.
mo ml / ma
m2

Figure 3: Message causality graph of the computation of Figure 2

situation does not deteriorate the conference interaction as long as participants receive an intelligible
signal.
The notion of A—causal ordering is well suited for such a class of applications.

3 An Efficient A-Causal Broadcasting Protocol

An implementation of A-causal ordering consists of implementing a protocol over the original under-
lying system, such that events of distributed computations can be A-causally ordered at the application
level. At the underlying system level, three types of events are associated with each message: send, ar-
rival, and delivery (only send and delivery events are visible to processes). Due to delivery constraints
imposed by A-causal ordering, when a message arrives either it is discarded (if it has missed its dead-
line) or it can be delayed until its delivery condition becomes true (if the message arrives within its
deadline but some, not yet received, messages causally precede it and their deadlines have not yet
expired).

The core of the protocol then consists in defining the delivery condition DC(m) associated with
each broadcast message m in such a way that m is delivered as soon as possible, i.e., when all broadcast
messages that causally precede m have either been delivered (for example, the delivery of message m4
in process P; depicted in Figure 1) or have been lost or they are still in transit when their deadlines
expire (for example, the delivery of message m2 in process Py depicted in Figure 1). Next, some
notions and variables are introduced.

3.1 Message Causality Graph

The message causality graph of a distributed computation E= (E, —)is adirected acyclic graph whose
vertices are all messages belonging to My, such that there is a direct edge from m; to my (denoted
my ~ mg) if (i) send(m;) — send(mgy) and (ii) Am : send(m;) — send(m) and send(m) —
send(mz). In the following we say that m; is an immediate predecessor of my. It is to be noted that
a message m can have at most n — 1 immediate predecessors, one from each process. The causality
graph associated with the computation of Figure 2 is shown in Figure 3.

Let & denote the transitive closure of ~». Two messages m; and msq are said to be concurrent if
neither of them is a predecessor of the other in the message causality graph, i.e., =(my N mz) and

—(mq % my). The sendings of concurrent messages constitute independent events.

INRIA

broaacast wilh 1me ana Causalily Constrainls K

3.2 Data Structures

Processes have access to a variable current_time of type time (whose domain is the set of non-negative
integers) that is continuously updated by an underlying physical clock synchronization protocol. This
variable represents the global physical time as perceived by processes; current_time is used to times-
tamp messages.

Moreover, each process P; manages (i) a local variable sent_time; in which it stores the time of
its last broadcasting and (ii) an array DEL; : array[l..n] of time whose meaning is as follows:
DFEL;[j] = d < the last message broadcast from P; and delivered to P; was sent at the global time d.

Each entry of this array is initialized to a value lower than the initial value of the variable
current_time.

3.3 Delivery Condition

In order to express the delivery condition DC'(m) each message m has to carry some control information
that will delay its delivery until all messages that precede it in the message causality graph have either
been delivered or have missed their deadlines. In what follows, first we address the problem to ensure
correct causal ordering for message delivery by exploiting the message causality graph, and then we
solve the problems due to the lifetime of messages.

Tracking direct dependencies to ensure causal order

Figure 3 shows that the delivery of my4 cannot occur before the delivery of mg, my, ms, and ms. But,
due to transitive dependencies, the delivery of m4 can depend only on its direct predecessors my and
mgs as these two messages can only be delivered after m; which, in turn, can be delivered only after
the deliver of m,. This simple observation allows us to reduce the control information piggybacked
on messages as shown in the next paragraph.

Each message m, uniquely identified from a pair (sender_identity, sending_time), called times-
tamp, carries only the timestamps of its immediate predecessors in the message causality graph. This
set of timestamps constitutes the causal barrier (C'B,,) of message m [PRS95]. As indicated in Section
3.1, this set has at most n — 1 elements. The fewer the number of immediate concurrent predecessors
m, the smaller the number of timestamps in C'B,,.

So, for a destination process P, if we consider only causal deliveries, the delivery constraint DC'(m)
associated with m is:

Y(k,d) € CB,, : (d < DEL;[k))

which expresses all immediate predecessors of m in the message causality graph have been delivered
to process F;.

Taking lifetime into account

A message m is discarded if it misses its deadline, i.e., if:

(send_time,, + A < current_time)

By definition, all messages arriving at their destination(s) within their deadlines must be delivered.
So a message m is delivered as soon as every message contained in its causal barrier C'B,, either has
been delivered (part C1 of DC(m)), or missed its deadline (part C2 of DC(m)).

Hence, the delivery constraint DC'(m) associated with m is:

d < DEL;[k] (C1)
V(k,d) € CBy, : or
d+ A < current_time (C2)

RR n° 2976

S rt. bataont, k. rrakash, M. naynal & M. Singhal

procedure SEND(m,i): % m is the message, P, is the sender %

begin % this procedure is executed atomically
send_time; := current_time; (s1)
for each z € P do send (m, send_time;,CB;) to P, od (s2)
CB; := (i, send_time;) ; (s3)
end.

when (m,sendtime,,,C'B,,) arrives at P; from P;:

begin
if send_time,, + A < current_time (R1)
then discard(m); (R2)
else (R3)
wait (Y(k,d) € CB,, : (R4)
(d < DEL[k]) (R5)
V (d < current_time — A)); (R6)
DFEL[j] := send_time,, ; (R7)
CB; := CB; — CB,,, U{(j, sendtime,)}; (R8)
deliver (m) (R9)
fi (R10)

end.

Figure 4: the A-causal broadcasting protocol

The notion of causal barrier causes the addition of a new data structure managed by each process
FP;: a set CB; of message timestamps. This set is initially empty and its size varies between zero and
n— 1.

3.4 The Algorithm

The A-causal ordering protocol is described in Figure 4. When broadcasting a message m, process F;
sends m with the current value of the causal barrier C'B; and the time of the sending of m (line S2).
Moreover, if P; sends another message m’, the delivery of m’ will only be constrained by the delivery
of m, to the current knowledge of P;. So P, resets C'B; to the timestamp of m (line 83)2.

Upon its arrival, a message m will be immediately discarded if it misses its deadline (lines R1
and R2). If m is not discarded, its delivery is determined by the delivery condition. Message m is
delivered as soon as the predicate DC(m) is true (R4-R6). When a broadcast message m, sent by P;,
is delivered to F;, the state variables DFEL; (lines R7) and C'B; (lines R8) are updated according to
their definitions. In particular, the first part of line R8 (namely, C'B; := CB; — CB,;) removes from
the causal barrier C'B;, all immediate predecessors of message m (they are contained in C'B,,), since
as m is delivered, all immediate predecessors of m either were delivered or missed their deadlines.
Then, the second part of line R8 (namely, CB; := C'B; U {(j, send_time,,)}) adds m’s timestamp to
C'B; in order to constraint the delivery of messages that will be immediate successors of m, in the
message causality graph, to occur after the delivery of m.

Note that if we assume reliable channels and A greater than any message transmission delay over
the network, we no longer have real-time delivery constraints and then by suppressing lines (R1-R3,

21f, before sending such a message m’, P; is delivered messages, CB; will be updated accordingly; see line R8 and its
explanation in the next paragraph.

INRIA

broaacast wilh 1me ana Causalily Constrainls J

R6 and R10) and by replacing physical time with a logical one (line S1: send_time; := send_time;+1),
we get a protocol for asynchronous causal broadcasting that compares favorably with previous pure
causal ordering protocols [BJ87, RST91].

3.5 Correctness Proof
3.6 Liveness Property

Before proving the liveness property, let us note that because of the definition of the causal barrier
sets CB, and the continuous progress of the variable current_time, the following relation holds for
each message m:

V (k,d) € CB,, :: send_time,, > d (P)

Theorem 1 (Liveness) (i) All messages arriving within their deadlines will be delivered within their
deadlines and (1) all messages arriving after the expiration of their deadlines will be discarded.

Proof Point (i¢) follows from the test (line R1) of the protocol of Figure 4. Point (7) is proved
by contradiction. Suppose that there exists a message m that arrived within its deadline and has
not been delivered within its deadline. Hence, on its deadline, from the delivery condition DC(m)
(lines R4-R6), the following condition NDC follows:

3(k,d) € OBy, :
(d > DEL;k]) A (d > current_time — A)

On the deadline of message m we have: current_time = send_time,, + A. So the second term of NDC
becomes: 3(k,d) € CB,, : (d > send_time,,). This contradicts property P.

It follows that at the deadline of an arrived message m, NDC is false contradicting our initial
assumption. Therefore, for any message m, arrived before its deadline, the delivery condition DC(m)
will be verified before its deadline expires. °

3.7 Safety Property

Lemma 1
Let mg, timestamped (ko,dy), and my be two messages such that mg is an immediate predecessor of
my in the message causalily graph mg ~» my (i.e., send(mg) — send(my) and Am : send(mg) —

send(m) and send(m) — send(my)). Then (ko,do) € CB,,, .

Proof Let P; be the sender of m,. As mg is an immediate predecessor of m, (mg ~» m;), two cases
have to be considered (Figure 5): before it sent m,, either P; has sent mq (case S5), or P; has been
delivered mg (case D). In both cases P; updates C'B; (at line S3 in case S, and at line R8 in case D),
which now includes (ko, dp). We show that, as mg is an immediate predecessor of m, in the message
causality graph, P; does not suppress (kg, dp) from C'B; until m, is sent (and consequently (ko, do)
will belong to CB,,,).

First, between the sending (case S) or the delivery (case D), of mg and the sending of m,, P; does
not send any message (otherwise, mg would not be an immediate predecessor of m;, contradicting our
hypothesis).

RR n° 2976

rt. bataont, k. rrakash, M. naynal & M. Singhal

mg ma/ My
P
/i / /m
%/_J
(ko,d,) € C'B; (ko,d,) € CB;
Case S Case D

Figure 5: Update of C'B;

Suppose between the sending (case S) or the delivery (case D), of mg and the sending of m,, P; is
delivered a message m’. Three cases have to be considered.
case i). If mg and m' are concurrent in the message causality graph, then (ko, do) ¢ C'B,,. Tt follows
that when m' is delivered at P;, (ko,dp) cannot be suppressed from C'B; at line R8.
case ii). mg and m' are not concurrent and mg L om! (i.e., mg is a predecessor of m' in the message
causality graph). As m'is delivered to P; before m; is sent, it follows that mq L m! s m, and so, mg
is not an immediate predecessor of m, in the message causality graph, contradicting our hypothesis.
case 1ii). mg and m’ are not concurrent and m/’ e mg (i.e., m’ is a predecessor of mg in the message
causality graph). Then, (ko, dg) cannot belong to C'B,,, and consequently cannot be suppressed from
CB; at line R8 when m' is delivered to P;. °

Theorem 2 (Safety) Delivery events respect causal order.

Proof Let us consider two messages mg and m, such that (1) send(mg) — send(m;) (i.e., mg is a
predecessor of m, in the message causality graph: mq N mz) and (2) both are delivered to a process
F;. We show that they are delivered to F; according to causal ordering, i.e., mg is delivered to P;
before m,. The proof is by induction on the lenght [of the path from mg to m, in the message
causality graph.

Base case: [=1.

In this case, mg is an immediate predecessor of m, in the message causality graph. From Lemma 1,
we have (ko, dy) € CB,,,. It follows that lines R4 and R5 will delay the delivery of m, until after the
delivery of mg.

Induction case: | > 2.

Let mg ~» mq ~» mg -+~ my_1 ~ my be the path from mg to m, in the message causality graph. By
induction hypothesis, all messages of the set {mg, my, ..., m;_;} that are delivered to P; are delivered
according to causal ordering. Two cases have to be considered depending on whether m,_; has been
delivered or discarded by P; (m_1 is timestamped (k;—1,dz—1)).

case ©: my_ is delivered to P;. Then, as m,_; immediately precedes m, in the message causality
graph, the Base case applies to these messages: m,_y is delivered before m, and by transitivity
(induction hypothesis) myg is delivered before m, at P;.

case ii: my_1 is discarded by P;. In that case, due to (ky—1,ds—1) € CB,,, (Lemma 1) and lines R4
and R6, it follows that m, was delivered after the deadline associated with m,_; had expired. Let
us assume that this delivery deadline of m,_; corresponds to time {. Each message my in the path
mo & mg, such that 1 <k < (2 — 1), has its deadline at or before time ¢. Hence, if mj has not been
discarded by, or delivered to P; by time ¢, it will necessarily be discarded by F; on its arrival at the

INRIA

broaacast wilh 1me ana Causalily Constrainls

process. This is because its deadline expired before . From our hypothesis, mg is not discarded; it is

delivered before {. Consequently, m, is delivered at P; after mg. °

4 Conclusion

In the context of broadcast communication, the A-causal ordering abstraction matches the requi-
rements of an important class of multimedia applications, namely, distributed multimedia real-time
applications, where real-time communications of each participant should be received by all the others.
This flow of information must preserve the causal dependency even though part of the information
can be lost or can be discarded if it violates the real-time constraints.

Protocols implementing pure causal ordering [BJ87, RST91] and A-causal ordering [BMR95, AS95]
suffer from the typical pitfall of the timestamping (logical or physical) technique: to ensure A- or pure
causal ordering, in the context of broadcasting, messages have to piggyback a vector of n integers
where n is the number of processes [Mat89].

In this paper, we introduced a new and efficient A-causal ordering protocol reducing the quantity
of information piggybacked on messages. Only in the worst case, this information has the same size
as previous algorithms. This reduction is obtained by exploiting the transitive dependencies of the
message causality graph of a distributed computation. We used the causal barrier for a message m
that corresponds to the set of the immediate predecessors of m in the message causality graph. Each
message m carries its causal barrier CB,,, and the message is delivered to the destination process
as soon as each message belonging to its causal barrier has either been delivered or has missed its
deadline. The cardinality of a C'B set is between zero an n — 1.

References

[AS95] F. Adelstein, M. Singhal. Real-time causal message ordering in multimedia systems. In Proceedings
of the 15" IEEE Int. Conf. on Distributed Computing Systems, pages 36-43, 1995.

[BMRY95] R. Baldoni, A. Mostefaoui, and M. Raynal. Causal delivery of messages with real-time data in
unreliable networks. Journal of Real-Time Systems, 10(3):1-18, 1996.

[BJ87] K. Birman and T. Joseph. Reliable communication in the presence of failures. ACM Transactions on

Computer Systems, 5(1):47-76, 1987.

[Fer90] D. Ferrari. Clients requirements for real-time communication services. IFEE Communication Maga-

zine, 65-72, 1990.

[GZ89] R. Gusella and S. Zatti. The accuracy of the clock synchronization achieved by TEMPO in Berkeley
UNIX 4.3BSD. IEEFE Transactions Software Engineering, 15(7):847-853, 1989.

[HB94] T. Houdoin and D. Bonjour. ATM and AAL layer issues concerning multimedia applications. Annals
of Telecommunications, 49(5):230-240, 1994.

[JSS94] K. Jeffay, D.L. Stone, and F.D. Smith. Transport and display mechanisms for multimedia conferencing
across packet switched networks. Computer Networks, 26:1281-1304, 1994.

[KO87] H. Kopetz and W. Ochsenreiter. Clock synchronization in distributed real-time systems. IEEE
Transactions on Computers, (8):933-940, 1987.

[Lam78] L. Lamport. Time, clocks and the ordering of events in a distributed systems. Communications of

the ACM, 21(7):558-565, 1978.

RR n° 2976

rt. bataont, k. rrakash, M. naynal & M. Singhal

[Mat89]

[PRS95]

[RB93]

[RST91]

[Ver94]

[Wak93]

[Yav92)

F. Mattern. Virtual time and global states of distributed systems. In Cosnard, Quinton, Raynal and
Robert Editors, Proceedings of the International Workshop on Parallel and Distributed Algorithms,
pages 215-226, North Holland, 1989.

R. Prakash, M. Raynal, and M. Singhal. An efficient causal ordering algorithm for mobile computing
environments. In Proceedings of the 16" IEEE Int. Conf. on Distributed Computing Systems Hong-
Kong, june 1996.

K. Ravindran and V. Bansal. Delay compensation protocols for synchronization of multimedia data
streams. IEEE Transactions on Knowledge and Data Engineering, 5(4):574-589, 1993.

M. Raynal, A. Schiper, and S. Toueg. The causal ordering abstraction and a simple way to implement

it. Inform. Process. Lett., 39:343-350, 1991.

P. Verissimo. Ordering and timeliness requirements of dependable real-time programs. Real-time

Systems, 7:105—128, 1994.

I. Wakeman. Packetized video: options for interaction between the user, the network and the codec.

The Computer Journal, 36(1):55-66, 1993.

R. Yavatkar. MCP: a protocol for coordination and temporal synchronization in multimedia collabo-
rative applications. In Proceedings of the 12t" IEEE Int. Conf. on Distributed Computing Systems,
pages 606613, 1992.

INRIA

/<

Unit e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

