
The Harpoon Security System for Helper Programs on a Pocket Companion

Gerard J.M. Smit Paul J.M. Havinga Daniel van Os

University of Twente, deptartment of Computer Science
P.O. Box 217,7500 AE Enschede, the Netherlands

{ smit, havinga, os} @cs.utwente.nl

Abstract
In this paper we present a security framework for executing
foreign programs, called helpers, on a Pocket Companion:
a wireless hand-held computer. A helper program as pro-
posed is this papel; is a service program that can migrate
once from a server to a Pocket Companion or vice-versa. A
helper program is convenient, provides environment
awareness and allows asynchronous interaction. Moreovel;
helpers can be used to save processing power and to
reduce communication. By migrating to the location of a
resource, a helper can access the resource more eficiently.
This is particularly attractive for mobile computing, where
the network conditions can be poor and unreliable, and
because it does not require a permanent connectivi9.
Security is a signijcant concern for helpers, as the user of
a Pocket Companion receiving a piece of code for execu-
tion may require strong assurances about the helper’s
behaviour The best way to achieve a high security is to use
a combination of several methods.
We are designing a prototype of a helper system, called
Harpoon, on top of the Inferno operating system.

1 Introduction
This paper is written as part of the Moby Dick project’

[15]. In this project we develop and define the architecture
of a new generation of hand-held computers, so-called
Pocket Companion. It is a small portable computer and
wireless communications device that can replace cash,
cheque book, passport, keys, diary, phone, pager, maps and
possibly briefcases as well. These devices are resource-
poor, i.e. small amount of memory, limited battery life, low
processing power, and they are connected with the environ-
ment via a network with variable connectivity.

The aim of the Moby Dick project is to exploit the
availability of these Pocket Companions by including them
in larger systems. The Pocket Companion is more than just
a small machine to be used by one person at a time like the

1 . The Moby Dick project is a joint European project (Esprit
Long Term Research 20422).

traditional organizers. If users incorporate them into a glo-
bal distributed system, they must be confident that the sys-
tem is trustworthy. In order to use the full potential of these
personal machines, the user must be in full control over its
machine, its information flow, and who can access it.

The design challenges of the Moby Dick project lie pri-
marily in the creation of a single architecture that allows
the integration of security functions, externally offered
services, personality, and communication.

Security will play an important role in the design of
such an ’open’ architecture. A user will not allow any for-
eign service on his very personal machine unless security is
handled well enough. Vice versa, his machine should not
provide services to guest machines either, unless security is
guaranteed. The integration of a security module with the
Pocket Companion and the wireless network can for exam-
ple provide the basis for a secure and seamless integration
of payment services.

Helper programs are service programs that a Pocket
Companion can receive and execute locally. Additionally,
it can also be a service program that is executed on a
remote machine on behalf of the local machine. These
helper programs are security critical, as they run on a
machine on which you might have stored valuable and sen-
sitive data. Furthermore, helper programs might use the
machine in a way that you do not like, but where you are
not aware of immediately. It might for example drain your
batteries, or communicate via expensive communication
lines.

Our aim is to create a secure environment on a Pocket
Companion to contain untrusted helper programs. We are
currently building the Harpoon helper system, that allows
untrusted programs to run in the Lucent Technology’s
Inferno operating system [9].

The main goals of the Harpoon system are security,
flexibility and user friendliness.

Outline
In this paper we will first describe the particular advan-

tages of using so called helpers in an environment envi-
sioned for Moby Dick (section 2). Then we will investigate

23 1
1089-6503/97 $10.00 0 1997 IEEE

in particular the security problems of downloading a for-
eign service on a Pocket Companion and give a survey of
possible security mechanisms (section 3). In section 4 we
will provide a security model in which several methods of
detecting and preventing the helpers of doing harmful
things are combined. Finally in section 5 we sketch the
architecture and design of a prototype implementation in a
modern operating system.

2 Moby Dick Helper programs
In this section we describe the concept of helper pro-

grams and why we think this concept is useful.

2.1 Concept
The concept of a helper program is related to so called

mobile agents. In general a mobile agent is an autonomous
program that can migrate under its own control from
machine to machine in a heterogeneous network [6, 71. In
other words, an agent can suspend its execution at any
point, transport its code and state to another machine, and
resume execution on the new machine. By migrating to the
location of a resource, the agent can access the resources
more efficiently even when the network conditions are poor
or the resource has a low-level interface. This efficiency,
combined with the fact that an agent does not require a per-
manent connection with its home site, makes an agent par-
ticularly attractive for mobile computing since roving
devices often have low-bandwidth and unreliable connec-
tion to the network.

In our concept we have a restricted view on mobile
agents. A helper program, as mentioned in this paper, is
static: the program can migrate only once. We have made
this restriction for simplicity and security reasons. A helper
is a service program that a Pocket Companion can receive
and executes locally. Additionally, it can also be a service
program that is executed on a remote machine on behalf of
the local machine. When a helper migrates from a service
provider to a Pocket Companion it can provide services rel-
evant to its environment.

The main emphasis in this paper is on downloaded
helpers from a service provider (also called server) to the
Pocket Companion. Security is a significant concern, as a
client receiving a piece of code for execution may not
know anything about the helper’s intentions and behaviour.
In chapter 3 we will deal with this in more detail.

Helper programs have some similarities with the helper
applications (like ghostview and MPEG players) that many
WWW net browsers use to process data from the network.
However, these helpers are already part of the system of
the user, they do not origin from a remote server. Although
less urgent, in such an environment it is also desirable to
create a secure environment [5] .

service provider

Pocket Companion

Figure 1 : Helper migration with a Pocket Companion

2.2 Why using helpers on a Pocket Companion?
Executing helper programs on your Pocket Companion

implies that you allow unknown foreign programs to run
on your personal machine on which you might have stored
valuable and sensitive data. Why would someone even
want to interact with a piece of code for which nothing can
be absolutely guaranteed? The answer is, obviously, that
the person hopes that the program will be useful to him.

First of all it is convenient to receive helpers on a
Pocket Companion where and when you need them. Mem-
ory of a Pocket Companion will not likely be sufficient to
hold all programs that you might need. Helpers that offer
these services in a particular environment can be loaded
and activated dynamically.

Helpers can be used to save processing power or reduce
communication, and hence save battery power. A helper
has the ability to perform information retrieval and filter-
ing, while returning to the client only the relevant informa-
tion, thus saving communication bandwidth. For example,
if a Pocket Companion runs a helper with an extensive user
interface, no communication resources are used for the
user-interaction because the user-interface is executed
locally on the Pocket Companion. If a Pocket Companion
has a relatively high computational intensive task, it can
send a helper to a remote server to perform this task on his
behalf, thus saving processing power for the Pocket Com-
panion.

The machine can run environment aware software like
a guided tour program in a museum and a ticket agent in a
railway station. The user can even download personalized
helpers, e.g. a Dutch version of the guided tours service in
an Italian museum. Therefore it will be vital to a Pocket
Companion to be able to find out what services are availa-
ble in a particular place.

The Pocket Companion might only be connected to a
network intermittently, hence it has only intermittent
access to the server. A downloaded helper may continue

232

with its task, even when it is disconnected. Furthermore,
because the programs we foresee often have a considerable
user interface, a fast response time is achievable.

Because for security reasons a visiting helper program
is constantly checked, the code of an unknown user can be
run relatively secure on your Pocket Companion. Quite
remarkably, these security measures are normally not taken
during the installation of a new program!

3 Security aspects and solutions
Security and safety plays a dominant role in the design

of a system that accepts and uses helper programs. In this
section we review security mechanisms that provide pro-
tection and integrity in the presence of malicious programs.
Safety features mainly promote robustness and prevent
accidents. Usually, an operating system limits the damage
that an unsafe program can do, but safety alone is not suffi-
cient.

A main security aspect is the amount of privileges the
helper program can obtain when entering the client. The
problem is to find a useful compromise between the desire
to isolate the helper’s execution environment from the sys-
tem, and the need to provide sufficient privileges in order
to accomplish the helper’s task.

Security can be divided into issues related to network
communication and issues related to the execution of a
helper. The network security deals with mutual authentica-
tion, integrity of the communication and confidentiality.
Crytography can be used to provide secure communication.
We mainly focus on security issues related to the execution
of a helper on a Pocket Companion.

Basically the security involved in executing a helper
can be handled in two ways: by preventing the helpers
doing harmful things, or by detecting that it does, or intents
to do harmful or unpleasant things.

3.1 Survey of security mechanisms
Today most operating systems support some form of

protection of system resources. However, the protection
mechanism of these operating systems are typically based
on the amount of privileges of a user on whose behalf the
program runs, and not on the amount of privileges of the
program. Furthermore, some current agent security
approaches rely on a trusted external authority who is
responsible for the correct behaviour of the agent. This
though implies that agents of unknown principals are
rejected, even if they can do useful work for you.

Another approach is to prohibit a program that is not
trusted from accessing any security relevant resources. On
the first sight, this seems reasonable. However, the more
functionality a program can have, the more resources it
needs to access. This means that the user has to make

resources explicitly available to a program, and needs to
make a detailed classification and security assessment of
his resources.

Prevention of malicious behaviour of programs has
been a research area for long. A number of mechanisms
have been proposed, we will only mention some of the
main mechanisms.

Trusted compiler or interpreter
The compiler or interpreter only allows access to safe
resources and a restricted set of library functions. The
language’s type system should be safe - preventing
forged pointers and checking array bounds. In addition
to that, the system should garbage-collect memory to
prevent memory leakage, and carefully manage system
calls that can access the environment outside the pro-
gram, as well as allow programs to effect each other.
Examples are: Java [101, Safe-Tcl [13, Agent-Tcl [111,
Telescript [18], and Phantom [2]. Recent research, for
instance concerning Java [4], has exposed several secu-
rity flaws.

Access Control List
An Access Control List (ACL) is a central data structure
in the operating system that specifies which users have
what access rights to which resources. The list can be
inspected before the program is allowed to execute. This
gives the user the ability to refuse the program on
beforehand. Once the program is accepted and running
it needs to be checked whether it behaves according the
access control list. This can be accomplished in software
at the system call to the OS, or - for some resources - in
hardware for instance with the help of an MMU.
ACLs are inflexible and the circumstances in which a
request may or may not be granted can become unclear.
It is therefore essential that the policies as described in
an ACL are clear and unambiguous, so that security
loopholes and contradictions can be discovered. The
user-interface might give a problem because classifying
resources according to how private they are is hard and
the secrecy of a piece of information also depends on by
whom it is accessed [141.

Capability list
A capability list is data structure of an object that defines
which resources it is allowed to use, i.e. its capability
[161. So, capabilities are related to objects that can be a
user, but also a program. An object is allowed access to
resources only when it has the right capabilities. The
main advantage is that capabilities are easy to maintain.

Restricted view of the name space
In this method only a restricted set of resources can be
used by the program by giving it a restricted view of the
possible resources. For example, in Plan 9 [19] and

233

Inferno [9] this is accomplished by giving an application
a mount point in a tree based file system. It can only
access resources below the mount point. Resources that
are available to applications all appear exclusively in the
name space of the application. This implies to data, to
communication resources, and to the executable mod-
ules that constitute the applications. Security-sensitive
resources of the system are accessible only by calling
the particular devices that provide them.

Restricted environment
Another approach is to run an untrusted program in a
‘safe’ or restricted environment. This is used, for exam-
ple, by the Safe-Tcl interpreter, which has removed the
‘dangerous’ primitives of Tcl [11 and is also used by the
HotJava class loader [lo].

Signature of the code

Programs have some principal’ that can be held respon-
sible for its behaviour. Digital signatures can be used to
authenticate the principal and to guarantee that the pro-
gram has not been tampered with. The program’s
maliciousness, whether deliberate or due to bugs, cannot
be decided by any level of cryptography. This item has
some relation with network security in which the sender
of a program is authenticated. Note that the sender does
not have to be the principal of the program.

None of these methods prevent the helper from doing
nasty things like abundant CPU-usage or unrestricted
memory usage. This misuse may also give opportunities
for criminals to break the system. Therefore this potential
misuse has to be detected as well.

Detection methods
The objective of detection is to find deviations from an

expected behaviour pattern. The detection measurements
can for example be based on: time (e.g. time of day or
amount of time used), numbers (e.g. number of files or
bytes read), or intensity (e.g. detect bursts of behaviour).
An untrusted program is not denied access to resources
unless it misbehaves in some way. As long as the user has
the possibility to supervise what is happening he might be
prepared to take the chance and let it access his computer.

Detection methods draw a lot from the work done in
intrusion detection in computer systems [13]. It is used to
detect anomalies in user behaviour or misuse of a compu-
ter. Anomalies behaviour is behaviour that deviates from
‘normal use’ pattern, e.g. accessing a certain number of
files per minute. Misuse means that the weaknesses or

flaws in the system are deliberately used to get unauthor-
ised access to system resources.

Crosbie and Spafford have used autonomous agents to
detect maliciously behaving programs [3].

Instead of making up rules for what programs are
allowed to do and how they are allowed to interact with the
rest of the system, the user can be given information about
what the program is doing [17]. This however requires that
the users knows enough of the system to judge whether the
program misbehaves or not. To reduce the amount of
knowledge a users needs to have, a program can be catego-
rized according to the kind of the application. The program
will be granted access to only those resources a typical
application usually needs to accomplish its tasks. The user
will be notified when the program deviates from its
expected behaviour and can decide whether what the pro-
gram does is illegal.

3.2 Why another method?
The mechanisms described each try to solve specific

security problem in a particular way. However, we believe
that individual solutions are not sufficient to solve all secu-
rity risks. Moreover, there may exist security holes,
unknown today, that are not covered by these solutions.
Therefore we propose a structured framework in which
several complementary methods - using both prevention
and detection - are integrated, with which we hope to
obtain sufficient security. We expect that intrusions due to
holes in one security method will be detected by other
methods.

What we want is a security policy that facilitates the
execution of new unknown helpers without having to base
the trust on an external authority, and without a security
structure in which the user has to do a manual classifica-
tion.

4 Harpoon security model

4.1 Design goals
The helper security system used in Moby Dick is called

‘Harpoon’. This system allows foreign helpers to run on a
Pocket Companion in a secure way. The proposed frame-
work not only deals with security sec, but also with secu-
rity related items such as QoS management and protection
against abundant resource usage like processor cycles,
power and memory.

The basic design goal is security. An untrusted helper
program should not be able to access any part of the system
for which it has no permission. Unauthorized behaviour
and unauthorized access to system resources will be pre-
vented and trespassing will be detected.

Another goal isflexibility. The system should be able to
allow or deny accesses to system resources flexible, i.e. to

1. A principal can be a computer system, a programmer, or an
organisation. This does not include a compiler since a com-
piler itself cannot be held responsible.

234

allow the helper only to write in some particular files, or to
allow only network access to a particular network address.
Flexibility also implies that helpers that do not fit into the
Harpoon security model still have means to execute: the
user should have the possibility to run the helper program
in a restricted environment (a default minimal environment
or one chosen by the user).

And last but not least, in our view helpers always run
under the control of the user, i.e. the user on which the
machine the helper runs, may refuse a helper or kill a
helper. The user only trusts its own Pocket Companion, i.e.
the hardware and embedded software, but not the software,
nor the downloaded helper of the server. An important
aspect is the user-interface of the security module. It should
help the user rather than unnoy him. The system should be
configurable by the user. This configurabilty is useful since
different users have different requirements as to which files
and resources the helper should have access.

4.2 Structure of Pocket Companion helpers
The basis of the framework is a profile that specifies the

resources the helper needs or expects to use. The frame-
work encloses a number of detection and prevention con-
cepts, for example: a capability list, a restricted view on
namespace and QoS management. The code of the helper
and the profile can be authenticated with a signature.

The helper programs have to follow certain rules. We
assume that all helpers have a principal that can be held
responsible for its behaviour. In our view helpers consist
of a piece of code, a profile and the signature of the princi-
pal (see figure 2).

Pocket Companion

Service provider

helper

Figure 2: Helper migration to a Pocket Companion

+ The signature
The signature is used to authenticate the helper’s princi-
pal and to guarantee that the helper’s code and profile
have not been tampered with. The sender’s authentica-
tion and integrity of the received data is dealt with in the
network security.

+ Theprofile
The profile defines the resources the helper needs or
expects to use; and can also include the capabilities to
access these resources (a capability list).
The profile is used for two purposes. First the Pocket
Companion will use it - in interaction with the user - to
decide whether the helper is allowed to use the requested
resources of the machine. During execution of the
helper, the profile is used to detect malicious behaviour.
Although at first sight, the profile seems to have similar
properties as Quality of Service (QoS) parameters, the
profile extends this view. The profile is not only related
to the ‘common’ resources such as disk, network, dis-
play, but also power consumption, CPU usage, etc. A
profile might even include the access rights of a partic-
ular file, e.g. reading a password file’. A capability is a
certified statement from a principal that a service can
use as credentials when accessing client’s resources.
The capability consists of a list of access rights it has and
a signature. This is normally a signature from the user of
a Pocket Companion but may also be from some princi-
pal that the owner trusts.
When a helper is loaded the profile will be presented to
the Pocket Companion. Once accepted the helper gains
access to the resources it needs, albeit not exceeding the
granted QoS.

+ The helper’s code
This code can be either a machine language executable
or an interpreted language. A trusted compiler can be
useful to provide additional security.

4.3 Security procedure
In first instance, the user decides whether to accept or

refuse a helper. The credibility of a helper depends on its
profile and the identity (trustworthiness) of the origin of the
helper or principal. Before a helper is activated on a Pocket
Companion the following actions have to be taken:

I Signature veriJication
The user checks the signature to authenticate the helper
and the origin of the helper; and to detect whether the
helper has been modified. The profile is authenticated
also and needs to be verified as well. When needed, the
helper can be secured with cryptography, for instance to
allow only specific clients to execute the helper.

The profile can be inspected and might be compared
with a list of privileges of known helpers, servers and

2 Profile acceptance

1. Access rights to a file can also be gained with delegation cer-
tificates, which will authorise access to files [8]. The certifi-
cates can be part of the profile.

235

principals. This gives the user the ability to accept or
refuse the helper. Helpers that are not known to the sys-
tem can be allowed only restricted access according to
the kind of helper and its principal. When the profile
includes capabilities the Pocket Companion only needs
to check whether these are valid.

Once the user has accepted the helper and it is running,
the system needs to check whether it behaves according the
profile, the profile verification. System resources (such as
files and devices) that a helper may not access, are
shielded. Furthermore, to detect malicious behaviour the
system will support a number of detection mechanisms. It
detects excessive resource consumption of a helper beyond
the accepted profile (e.g. power, bandwidth, memory or
CPU usage).

4.4 Profile categories
A main problem of the security policy described above

will be the user interface. The security user interface is crit-
ical for helping the average user choose and live with a
security policy. The user has to do a classification and secu-
rity assessments of his resources. This can be a annoying
and rather complex matter, and so it is hard make the sys-
tem secure. Users might disable security if they are bur-
dened with repeated authorization requests from the same
helper program. Also, annoyed users may stop reading the
dialogues and repeatedly click Okay, defeating the utility
of dialogues.

If the user can classify programs the kind of program,
rather than by which resources they should be granted
access, the demands on what the users need to know about
resource consumption etc. could decrease. We have defined
a limited set of profile categories such as: super use, pay-
ment application, normal use, file read only use, display
only, etc. The profile category determines the access rights
of the system resources that typical applications usually
need to accomplish their tasks. A program is granted access
to only those system resources that are specified in the pro-
file category.

5 Harpoon prototype in Inferno
Some of the requirements to implement a secure envi-

ronment for helper programs as mentioned previously, are
already implemented in existing (prototypes of) operating
systems like Inferno [9], Unix and Amoeba [16]. None of
these can fulfil all of our requirements, or are not suitable
for a Pocket Companion due to for instance memory usage.
It is however possible to prototype a helper system on top
of an existing operating system. In this project we use the
Lucent Technology’s Infemo operating system as a proto-
typing environment. Inferno offers some security mecha-
nisms against erroneous or malicious applications.

5.1 Inferno
Inferno is an operating system for delivering interactive

media to its users. It is under development within the Com-
puting Sciences Research Center of Bell Labs at Lucent
Technologies. It is intended to be used in a variety of net-
work environments, for example TV set-top boxes, hand-
held devices like the Pocket Companion, but also in con-
junction with traditional computing devices. Inferno’s
strenght lies in its portability and versatility. It currently
runs on Intel, MIPS, Motorola 68K, and AMD 29K archi-
tectures. It runs useful1 applications standalone on
machines with as little as 1 MByte of memory. Infemo also
provides communications security and key management.
Applications and system may be split easily - and even
dynamically - between client and server.

There are three main design principles in Inferno. First,
all resources are named and accessed as files in a forest of
hierarchical file systems. Devices are represented as files,
and device drivers (such as a network interface) attached to
a particular hardware box present themselves as small
directories. System services also live behind file names.

Second, disjoint resource hierarchies provided by dif-
ferent services are joined together into a single private hier-
archical namespace. Resources available to applications all
appear exclusively in the name space of the application.
This applies to data, to communication resources, and to
the executable modules that constitute the applications.

Finally a uniform communication protocol, called Styx,
is used to access these resources, whether local or remote.
The Styx communication protocol is used for both local
and remote file operations. To access a file, or to navigate
through the file system a client sends a request to a server
and then receives replies in a manner similar to Unix
remote procedure calls.

Inferno applications are typically written in a new lan-
guage called Limbo [12]. Limbo is carefully type-checked
at compile- and run-time; for example, pointers, besides
being more restricted than in C , are checked before being
referenced, and the type-consistency of a dynamically
loaded module is checked when it is loaded. All Limbo
data and program objects are subject to a garbage collector,
built into the Limbo run-time system.

5.2 Harpoon security system
The principles of Inferno are used to create the Harpoon

security system. Harpoon has three main tasks: assisting a
user in making the initial decision whether to run the appli-
cation or not, setting up a safe environment and finally
monitoring the behaviour of a selected application.

As said before the helper program has a signafure and a
profile that Harpoon can use to determine the capabilities of
the program. The signature and the profile are stored in a

236

separate file. When a user selects a helper program that it
wants to run, Harpoon will assist the user to choose the
appropriate security level. After checking the signature of
the application and of the profile it will display the princi-
pal of the program and the profile. Subsequently Harpoon
will analyse the profile, and inform the user about how
harmful it thinks the application could be. In the first proto-
type we provide a few customizable standard profiles. The
user can now decide to grant a permission to execute the
application according to the profile in the selected
restricted environment.

The next security provision is that Harpoon assigns a
private namespace to a helper program. This namespace is
used to restrict the program’s view of the file system. Fig-

/

global namespace private namespace of helper

Figure 3: Helper namespace assignment

ure 3 gives an example of the namespace of a helper that is
constructed of the console device, and subdirectory noot.

When the helper program is running, Harpoon will
monitor the behaviour and checks for un-allowed actions.
Since all resources are represented as files and are accessed
using the Styx protocol, all specific accesses (in a finer
grained sense than its address space) can be controlled by a
single mechanism. By monitoring the Styx messages to the
Inferno file system, the access of resources contained in the
namespace can be controlled. By interpreting the Styx mes-
sages it is not only possible to restrict access to specific
resources, but also to perform some form of accounting
(i.e. quotas).

User intelface
Helper programs that enter a machine are visualized

with an icon in a special Harpoon window. The colour of
the icon represents the profile category, e.g. from white (for
example display only), to black (system super use). The
colour is only an indication of the possible danger of the
program. Which colour is assigned to a group of profiles,
and the number of colours is flexible: the user decides the
number of colours it wants to use, and how profiles are cat-
egorized. This configurabilty is useful since different users
have different requirements as to which files and resources

the helper should have access.
When a user clicks on the icon the profile as well as the

identity of the principal will be displayed. The user can
change the colour of the helper and overrule the profile.
During execution the user can inspect the resource usage of
a helper in a graphical way.

Prototype implementation
To realize the security provisions, a server is required

between a client and the actual file server (see figure 4). In

original Styx messages w
I

server restriction in name space

restricted Styx messages

Inferno (23 file server

Figure 4: Harpoon server environment

the target secure environment it should be impossible for
an application to bypass the Harpoon system by talking
directly to the real file server.

The Harpoon server relays messages from a helper pro-
gram to the real Inferno server and vice versa while inter-
preting the Styx messages. Depending on the profile,
Harpoon chooses which messages should be relayed to the
Inferno file server and which messages should return an
appropriate error message The first Harpoon server proto-
type is implemented at user level, thus not requiring any
kernel adaptions.

5.3 Further study
The ideas presented in the previous sections are cur-

rently being prototyped on top of the Inferno operating sys-
tem. When the prototype is finished, tests have to be done
on how secure these mechanisms work, how user friendly
the approach is and what the performance penalty is.

Research has to be done to distinguish relevant catego-
ries that defines a limited set of profile categories such as:
super use, payment application, normal use, file read only
use, display only, etc.

Furthermore, as this system only checks accesses to
resources and files, we also want to perform checks on
processor utilisation and memory usage. Therefore other
mechanisms, similar to accounting or currency based
resource allocation, could be used. We also investigate the
possibilities in adapting the scheduler of Inferno to a more
elaborate QoS aware scheduler that can be used to perform

237

this task.

6 Conclusion
Execution of foreign code on your personal computer is

not a new phenomenon, but additional work and experi-
menting is required to make it secure. We have designed a
security framework for executing foreign programs, called
helpers, on a Pocket Companion. Helper programs have a
profile associated with it, that specifies what files and
resources will be accessed, the way they are accessed, and
the capabilities of the helper.

This mechanism uses a two phase approach: i t checks
the profile in order to make the decision whether to run the
application or not, and after that i t monitors the behaviour
of an application.

The Inferno operating system is used as prototyping
vehicle, which turns out to be a proper choice not only
because it already offers some security mechanisms against
erroneous or malicious applications, but also because i t
allows us to prototype the required security mechanisms at
user level.

References and related literature
Borenstein N.S.: “E-mail with a Mind of its Own: the
Safe-Tcl Language for Enabled Mail” available from ftp:/
/ftp.fv.com/pub/code/other/safe-tcl. tar
Courtney A.: “Phantom: An interpreted language for dis-
tributed programming”, in Usenix Conference on Object
Oriented Technologies, June 1995 (available from http://
www.apocalypse.org/pub/u/antony/phantom/phan-
tom.htm1)
Crosbie M., Spafford E.: “Defending a Computer System
using Autonomous Agents”, Proceedings 18th National
Information Systems Security Conference, Oct. 1995.
Dean D., Felten E.W., Wallach D.S.: “Java Security: from
Hotjava to Netscape and beyond”, Proceedings 1996
IEEE Symposium on Security and Privacy, Oakland CA,
May 6-8, 1996.
Goldberg I., et al.: “A secure environment for untrusted
helper applications, confining the Willy Hacker”, 1996
USENIX Security Symposium (see also: http://
http.cs.berkeley.edu/-daw/janus-usenix96.p~).

Harrison C.G., Chess D.M., Kershenbaum A.: “Mobile
agents: Are they a good idea?”, IBM research report,
1995
Hartvigsen et al.: “The Virtual Secretary Architecture for
Secure Software Agents”, PAAM96 - The First Intema-
tional Conference and Exhibition of Intelligent Agents
and Multi-Agents, London, April 22-24, 1996 (see also:
http://www.pegasus.esprit.ec.org/people/ame/publica-
tions/paam96-f.ps)
Helme A., Stabell-Kulg T.: “Off-line Delegation in a File
Repository”, DIMACS Workshop on Trust Management
in Distributed Systems, Rutgers University, October,
1996. (see also: http://www.pegasus.esprit.ec.org/people/
ame/publications/dimacs96.ps)
“Infemo reference manual”, Lucent Technologies 1997,
document id: TMOlFRlO, see also http://cmel.com/vanni/
The Java Language Specification, Release 1.0 Alpha 3,
Sun Microsystems, Mountain View, CA, May 1995. See
also http:/www.javasoft.com.
Kotz D., Gray R., Rus T.: “Transportable Agents Support
Worldwide Applications”, Proceedings 7th ACM SIG-
OPS European Workshop, Connemara, Ireland, Septem-
ber 9-11 1996.
Limbo information can be found on http://cruel.com/
vanni/
Lunt T.F.: “A survey of Intrusion Detection Techniques”,
Computers and Security, 12(4) June 1993, pp 405-418.
Levitt K.N., Lo R.W.: “MCF: a malicious code filter”,
Computers and Security, 1995, pp 541-566.
Mullender S.J., Corsini P., Hartvigsen G.: “Moby Dick -
The Mobile Digital Companion”, LTR 20422, Annex I -
Project Programme, December 1995 (see also http://
www.cs.utwente.nl/-havingdpp.htm1).
Mullender S.J., Tanenbaum AS.: “The design of an capa-
bility based distributed operating system”, The computer
Journal, Volume 29-4, pp 289-300, 1986.
Rasmusson A., Jansson S,: “Personal Security Assistance
for Secure Internet Commerce”, submitted New Security
Paradigms ‘96 workshop, Lake Arrowhead, CA, Septem-
ber 16-19, 1996.
White J.E.: “Telescript Language Reference Manual”,
General Magic, Inc. Sunnyvale, CA, October 1995. See
also http://www.genmagic.com/Telescript
Pike R., et al.: ‘The Use of Name Spaces in Plan 9”, Pro-
ceedings of the 5th ACM SIGOPS Workshop, Mont
Saint-Michel. 1992

238

http://www.pegasus.esprit.ec.org/people/ame/publica
http://www.pegasus.esprit.ec.org/people
http://cmel.com/vanni
http:/www.javasoft.com
http://cruel.com
http://www.genmagic.com/Telescript

