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Enhanced Lower Entropy Bounds 
with Application to Constructive Learning 

Valeriu Beiu * 
Los Alamos National Laboratory, Division NIS-1. Mail Stop D466 

Los Alamos, New Mexico 87545, USA 

Abstract - In this paper we shall prove two new lower bounds for the number-of-bits 
required by neural networks for classification problems defined by in examples from 
IR”. Because they are obtained in a constructive way, they can be used for designing 
a constructive algorithm. These results rely on techniques used for determining tight 
upper bounds [6], which start by upper bounding the space with an n-dimensional 
ball. Very recently, a better upper bound has been detailed [9] by showing that the 
volume of the ball can always be replaced by the volume of the intersection of two 
balls. A first lower bound for the case of integer weights in the range [-p,p] has 
been detailed in [ 141: it is based on computing the logarithm of the quotient between 
the volume of the ball containing all the examples (rough approximation like in [6]) 
and the maximum volume of a polyhedron. A first improvement over that bound will 
come from a tighter upper bound of the maximum volume of the polyhedron by two 
n-dimensional cones (instead of a ball, as used in [14]). An even tighter bound will 
be obtained by upper bounding the space by the intersection of two balls (as has been 
done in [9] for obtaining a tight upper bound). 
Keywords - neural networks, size complexity, entropy, classification problems, lim- 
ited weights, constructive algorithms. 

1. Introduction and Notations 
Multilayer feedforward neural networks (NNs) have been experimentally shown to be 

quite effective in many different applications (see Applications of Neural Networks in [3], 
together with Part F: Applications of Neural Computation and Part G: Neural Networks 
in Practice: Case Studies from [15]), but cost effective solutions for large scale computa- 
tional paradigms have to be hardware implementable - and NNs are by no means an ex- 
ception. That is why a rigorous analysis of the mathematical properties that enable them 
to perform so well has generated two directions of research: 

one to find existence/constructive proofs for what is now known as the “universal 
approximation problem ’’ (Le., any continuous function can be approximated arbitrar- 
ily well by a NN); 
another one to find tight bounds on the number of neurons (size) needed by the 
approximation problem (or some particular cases). 

The focus of this paper will be on the second aspect. Here we shall denote by network 
any acyclic graph having several input nodes (inputs) and some (at least one) output nodes 
(outputs). If with each edge a synaptic weight is associated and each node computes the 
weighted sum of its inputs to which a nonlinear activation function is then applied (arti- 
ficial neuron): 

* On leave of absence from the “Politehnica” University of Bucharest, Department of Computer 
Science, Spl. Independentei 313, RO-77206 Bucharest, Romania. 
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the network is a NN ( ~ E I R  are the synaptic weights, BEIR is the threshold, A is the 
number of inputs of one neuron, and (T is a non-linear activation function). 

A classification problem is defined by a set of m examples (Le., data-set) belonging to 
k different classes. For simplicity we shall limit the number of classes to two (k = 2), known 
as a dichotomy, but all our results are valid in general. Now: 

and xi, 3,. . ., xm+ are the positive examples, while y,, yz,. - ., y ,  are the negative examples; 

they are taken from an n-dimensional space IR" (n E IN \ { I}): 

x ~ = ( x ~ , ~ , x ~ . ~  ,...,- q,,) E IR", i = l , 2  ,..., m,, m+E IN and 

y,=(yi.l,yj,z ,..., yjn) E IR" , j= l ,2  ,..., m - ,  m-E IN. 

The distance between two vectors (examples) is the classical Euclidean distance: 

(3) 

2 2 112 (4) 2 dist E (a, b) = 4 (a, - b,) + (4 - bJ + . . . + (a, - b,,) = { .,,(ai - } - 
For characterising the data-set, we also define the minimum and the maximum distance 

between any positive and negative examples: 

d = min [distE(q,y,)] and D = max [ d i s t E ( ~ , y , ) ]  
hi. ... in, kl, ... in- kl. ... in, j3. ...in- 

A ball of radius r (r E IRf\ (0)) centered at c E IR" will be denoted by Bn [c, r]: 

if n = 2  this is a round disc; if n=3 it is a round ball. We shall denote by p, the n-di- 
mensional Lebesgue measure in IR". If A c IR2, pz (A) is the 'area' of A; if A c IR3, 
p3 (A)  is the 'volume' of A.  Finally, a (n) = p, (B,, [0, 13) is the volume of the unit bail 
in IR". In particular we have a (2) =n, a (3) = 4n/3, while in general a (2n) = n " / n !  
[12, 17, 201 and a (2n - 1) = 2" - nn- /[1.3.5- ..:(2n-l)], or in terms of the gamma func- 
tion: a (n) = 7P2/r (n/2+ 1). 

This paper will prove two lower bounds- based on the entropy of the data-set -on 
the number-of-bits required for classification problems. In Section 2 we shall briefly go 
through some very recent results, while the proofs will be given in Section 3. They are 
based on computing the required number-of-bits for representing the data-set as the loga- 
rithm of the quotient between the volume of a ball containing all the examples (rough 
approximation like in [6]) and the maximum volume of a polyhedron [14]. The first im- 
provement over the bound detailed in [14] is based on a tighter upper bound of the volume 
of the polyhedron by two n-dimensional cones instead of a ball (as used in [14]). An even 
tighter bound can be obtained because all the examples from one class always lie inside 
the intersection of two balls [9], thus the volume of a ball can be replaced by the volume 
of the intersection of two balls. 
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2. Previous Results 

The problem to find the smallest size NN which can realise an arbitrary function given 
a set of in vectors (examples, or points) in n dimensions is not new. Many results have 
been obtained for NNs having a threshold activation function (see references in [7, 81). 
Probably the first lower bound on the size of a threshold gate circuit for "almost all" n-ary 
Boolean functions (BFs) was given by Neciporuk in 1964 size 2 2 (2 "hi) ' I 2  [23]. Later, 
Lupanov has proven a very tight upper bound: size 1 2  (2"/n) '12x (1 +Q [(2n/n) 'I2]} 
for the case when depth=4 [22]. Similar existence exponential bounds can be found in 
[123], while in [27] a SL (2"13) existence lower bound for arbitrary BFs has been presented. 

For classification problems, one of the first result was that a NN with only one hidden 
layer having rn - 1 nodes could compute an arbitrary dichotomy (sufficient condition). The 
main improvements have been as follows: 

Baum [4] presented a NN with one hidden layer having rrn/nl neurons' capable of 
realising an arbitrary dichotomy on a set of rn points in general position in IR"; if 
the points are on the comers of the n-dimensional hypercube (i.e., binary vectors), 
rn - 1 nodes are still needed; 
a slightly tighter bound was proven in [18]: only r l  + (rn-2)/nl neurons are needed 
in the hidden layer for realising an arbitrary dichotomy on a set of rn points which 
satisfy a more relaxed topological assumption (only the points from a sequence from 
some subsets are required to be in general position); also, the rn - 1 nodes condition 
was shown to be the least upper bound needed; 
Arai [2] showed that rn - 1 hidden neurons are necessary for arbitrary separability 
(any mapping between input and output for the case of binary-valued units), but im- 
proved the bound for the two-category classification problem to rn/3 (without any 
condition on the inputs). 

These results show that for binary inputs the size grows exponentially (as rn 1 2  "). Some 
existence lower bounds for the arbitrary dichotomy problem are (see [16]): (i) a depth-2 
NN requires at least rn/[nlog(rn/n)] hidden neurons (if rn23n); (ii) a depth-3 NN re- 
quires at least 2 (rn/logrn) ' I 2  neurons in each of the two hidden layer (if m >> n 2); this 
bound is identical to the one presented in [23] for rn = 2 "; (iii) an arbitrarily interconnected 
NN without feedback needs (2rn/logrn) ' I2  neurons (if rn >>n 2). Several other bounds for 
arbitrary BFs can be found in [25]. All of these are: (i) revealing a gap between the upper 
and the lower bounds, thus encouraging research efforts to reduce (or even close) these 
gaps; (ii) suggesting that NNs with more hidden layers might have a smaller size. 

A different approach to classification problems has been presented in [6, 9, 141; it is 
based on computing the entropy (see also [l] and [28]) of the data-set. 
Proposition 1 Cfrorn [6]). The dichotomy of rn exumplesfrorn 1R" can be solved with: 

#bits c mn.(rlog(D/d)l  + 5/2}. 

Sketch of proof: Find the examples (from the different classes) which are the closest to 
one another: x,,,yd# (the distance between them is 6). Translate the origin of the axes into 

* rxl is the ceiling of x, Le., the smallest integer greater than or equal to x, and LxJ is the floor of 
x, Le., the largest integer less than or equal to x, and all the logarithms are taken to base 2. 

Valeriu Beiu (for EumMiao'97) 3 



Enhanced Lower Entropy Bounds with Appllcatlon to Const~ctive Learning 2 Previous Results 

xd and rotate the axes such as the origin (i.e., xd) and yd. represent the opposite comers of 
a hypercube of side length is 1 = d / 6 .  Quantize the whole space; as there are no examples 
situated at a distance closer than d, there will be no hypercube containing exampIes from 
the two different classes. Because the largest distance is D, there is a ball in IR" of radius 
D which contains all the m examples. The number-ofbits for one example can be computed 
as [log (vbu/f/vhc)l where the volume of the ball is Vbu, (D, n)  = ct (n) - D", and the volume 
of the hypercube is v,,, (d, n) = (d /6) ". By multiplying with m the result follows: 

7c"/2Dt1 v,, n) .e}] < n{rlog(D/d)l+5/2}. CI #bits = Fog{ vhc (d, n, }] = [log{ T ( n / 2 + 1 )  d n  

The exact value detailed is #bitscw, < rnlog ( D  /d) + 2.0471n - (logn) /2 - 0.82571 . 
A non constructive bound has also been presented. 

Proposition 2 (from [6]). The entropy of a dichotomy of m examples from IRn is bounded 
by in rlogml 

A better bound has been obtained by replacing the volume Vbu, with the volume of the 
intersection of two balls V(D, n). 

Proposition 3 (from 191). The volume of the intersection of hvo balls in IRn of the same 
radius r E IR+\ {O}, placed such that the center of each one is on the boundary of the 
other one, is V (r, n) = 2 0: (n - 1 )  r" - a (n) with: 

(n-1)/2 n/2 
n - 1  

a (n) = (cos0) " de = - - a (n-2) - 
n n .2"  n/6 

Proposition 4 (from [9]). The dichotomy of m = m++ m- examples from 
be solved with: 

IRn can always 

#bits c m-n {[log (D/d)l + 2 )  

where m-=max(m+,m-)>m/2. 
The exact value detailed is #bitstmp,c < rnlog (D /d) + 1.8396n - 1.08001. 
These bounds are valid for NNs having integer lweightsl c 2 *bitscwle'" (see [ I O ,  1111, 

but the bound on weights is a result of bounding the number-of-bits. The problem can be 
tackled the other way around, i.e. by taking the weights from {-p, -p+l, ... , p }  (see [19] 
and Fig.la), and proving lower bounds on the number-ofbits [14]. 
Proposition 5 (from [14]). Using integer weights in the range [-p,p], one can correctly 
classifr any set of pattern for which the minimum distance between hvo patterns of op- 
posite classes is d- = 1 / p .  

Proposition 6 (from [14]). The number-of-bits necessary for the separation of the pat- 
t ern  in general position using weights in the set (-p, -p+l, ... , 0, ... , p }  is: 

#bits > m n - rlog (2pD)l= m n [log (D /d)l 
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3. Lower Entropy Bounds 
Proposition 7. The volume of an n-dimensional cone of height h and having as basis an 
(n-1)-dimensional ball of radius r E IR+ \ { 0) is.- 

Proo$ The volume of an n-dimensional cone can be computed by summing the ‘volume’ 
of very thin cylinders, or, at the limit, by summing the ‘area’ of the thin discs. This gives: 

k 

yon, (rs n, h) = l P n 4  (L, [(x, 0, ..- ,019 rl )dr 
0 

k 

and concludes the proof. 

(a) Fig. 1. (a) The hyperplanes implemented with integer weights in [-3,3] (adapted from [19]); (b) the 
largest resulting polythope in 3D (adapted from [14]); (c) the largest polythope in the plane (used for 
computing h,, h, and r in Proposition 8). 
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We can now prove a tighter bound for the largest polyhedron (than that with a ball 
which has been used in [I41 -see Fig.lb) . 
Proposition 8. The volume of the two n-dimensional cones bounding the largest polyhe- 
dron obtained by using weights in the set (-p, -p+l, ... , 0, ... , p] is: 

Pro05 We shall first determine the height of each of the two cones h, and h, and the 
radius of the (n-1)-dimensional ball r (see Fig.lc). From one triangle we have r=h , /p ,  
while from another triangle we have r= 4; we also know that h, + 4 = 1 /p. By solving 
this system of three equations with three unknowns we get: 

1 h, = - 
p + l '  

1 and r =  1 &=-  
P @ + U  P @ + U  

The volume of the two n-dimensional cones bounding the largest polyhedron can now be 
easily computed using Proposition 7: 

= a ( n - 1 ) .  1 . u t 2  
p n - l ( p + l ) n - l  n 

- a ( n -  I )  - 
n -p"  @+ I)"-* 

which concludes the proof. c1 

Proposition 9. For solving a dichotomy of m = m, + m- examples in general position in 
IR", more than: 

#bits = m.rnlog(D/d) + 0.6515n + 0.65151/2 

are needed. 

Proo$ The number-of-bits for one example can be computed as [log (vba///v~-canes)7, where 
the volume of the ball of radius D is Vbaa (D, n) = a (n) D n, and the volume of the largest 
polyhedron has been upper bounded by the volume of the two cones (given by Proposition 
8): 

We shall first compute a bound for: 
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= log{ B ( n / 2 + 1 / 2 ,  1 1 2 ) )  

where 
I a / 2  

~ ( m , I t )  = J ~ m - 1 ( 1 - X ) n - ~ d r  = 2 . J  (sine)2m-'(cose)2n-1de. 
0 0 

In our particular case 2m - 1 is in fact 2 (n/2 + 1 /2) - 1 = n, while 2n - 1 becomes 
2 (1 /2) - 1 = 0, and by substitution we obtain: 

Because 8 belongs to [0, x/2],  we also have e / (n /2 )  I sine 58, which gives us the fol- 
lowing bound (here we do need an upper bound as this term is negative): 

= 1 + (n + 1) log(x/2) - log (n + 1) 

= 0.6515 II - log (n+ 1) + 1.6515 

For the interested reader we mention that a slightly tighter bound for log( a (n) /a (n-1)} 
could be obtained by using Stirling's formula, but we are anyhow going to prove a tighter 
bound in Proposition 10. 

Using this result and taking d = 1 / ( 2 p ) ,  which is the minimum value, we have: 

> r0.6515 - log (n + 1) + 1.6515 + niogD + n ~ o g p  + (n - 1) log@ + 1) + iogni 
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0.6515 IZ + log [n - y 1]+ nlogD + d o g  ( i d )  - + (n - 1) log ( I t  i d )  + 1.6515 1 

In the worst case log (% - ')can be log2= 1 (for p =  1, d= 1/2), thus: 

1 n + nlog(D /d) - n + log (.: - l )  + ( n -  1) + 1.6515 

> rnlog(D/d) + 0.6515 n + 0.6515'1. 

By multiplying with min (m+, m-) 5 m / 2  the proof is concluded. a 

A tighter lower bound can be obtained if instead of the volume V,,/ used in Proposition 
9, we use the volume of the intersection of two balls V ( D ,  n) as detailed in [9]. 

Proposition IO. For solving a dichotomy of m = m+ + m- examples in general position in 
IR", more than: 

#bits = max (m+, m-) . rnlog ( D / d )  - 0.2075 n + logn + 0.06651 

are needed. 
Proof: The number-of-bits for one example can be computed as rlog (V (D, n) / V2-conu)l , 
where the volume of the intersection of two balls is V (D, n) = 2 a (n - 1) D " - a (n) (see 
Proposition 3 and 4 as well as [9]), and the volume of the largest polyhedron is upper 
bounded by the volume of the two cones (given by Proposition 8): 

= rl  + nlo@ + log {a (n)} + logn + nlogp + (n - 1) log@ + 1)l. 

The bounds for log { a (n)} follow from the fact that a (n) =I :f (cose) " de (??); because 

€le [n /6 ,n /2] , (6 /2+n/12)-8 /2Icos~I~/2=cos(n /6) .Hereagain  we haveto 
compute an upper bound as log {a (n)} is negative for any n: 

I1 

log {a (n)} c log [ ' r ( 6 / 2 )  " dO} = log [ (3 -:] = 0.0665 - 0.2075 n 
x/6 

and by taking d =  1 /(2p), which is the minimum value, the result follows: 

#bitsvk > r l  + nlo@ + 0.0665 - 0.2075 n + logn + nlogp + (n - 1) log@ + 1)l 

- 0.2075 n + logn + nlog 
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(D /d) - 0.2075 n + logn - it + (n - 1) log ('2 - I ) +  1.06651 

> rnlog (D /d) - 1.2075 n + logn + ( n  - 1) + 1.06651 

= rnlog (D /d) - 0.2075 n + logn + 0.06651 . 
By multiplying with max (rn+, rn-) 2 rn /2, and the proof is concluded. 

4. Conclusions 
Based on the entropy of the data-set, this paper has presented a new nonconstructive 

proof on the number-of-bits required for solving a dichotomy problem. The resulting lower 
bounds are tighter than the ones previously known. It seems very promising that the bound 
proved in Proposition IO is in fact lowering the nlog ( D / d )  term! 

Because the proofs for the number-of-bits are constructive, they can be used in conjunc- 
tion with results like the ones presented in [I91 for designing a constructive algorithm. 
There is still one problem: the shape of the bounding spaces does not lend itself easily to 
practical applications. Bounding the space with a ball, or the intersection of two balls- 
which, as we have seen, is theoretically possible - is computationally too difficult. For all 
practical cases, the simplest bounding space is a hypercube (or an intersection of hyper- 
cubes). Unfortunately, by using the intersection of two hypercubes we have to pay by a 
logarithmic factor of logn (for the number-of-bits). We are working on this particular aspect 
by trying to use other co-ordinates (e.g., polar co-ordinates instead of the rectangular ones). 
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