
Continuous Discrete-Event Simulation of a Continuous-Media Server YO
Subsystem

Michael Weeks Chris Bailey
University of Teesside, SST

Middlesbrough, TS 1 3BA, UK
Department of Computer Science

University of York,
E-mail: michael.weeks@tees.ac.uk York, UK

Fax: +44 1642 342401 E-mail:chrisb@cs.york.ac.uk
Reza Sotudeh

Department of Electronic, Communication, and Electrical Engineering
University of Hertfordshire

Hatfield, UK
E-mail :r. sotudeh @ herts. ac .uk

Abstract

When designing computer systems, simulation tools are
used to imitate a real or proposed system. Complex, dy-
namic systems can be simulated without the cost and time
constraints involved with real systems. Experimentation
with the simulation enables the system characteristics to be
rapidly explored and system performance data to be gener-
ated, so encouraging modijication to improve performance.

This paper details the experiences encountered when
designing and building a proprietary continuous discrete-
event object-oriented simulation in order to further investi-
gate the performance of a proposed continuous-media sew-
er t/O subsystem. Previous investigations of the proposed
architecture have been based upon mathematical model-
s in order to calculate comparative performance. Howev-
er; such static models do not take into account the dynam-
ic properties of a system. A simulation tool was therefore
built in order to assess quality of service under high system
load conditions. The resulting simulation rapidly produced
more realistic performance jgures, in addition to provid-
ing a flexible simulator infrastructure for other unrelated
projects.

els. These models were used to gain comparative perfor-
mance figures for various continuous-media server U 0 sub-
systems, with the performance measure being based up-
on the maximum number of concurrent constant bit-rate
(CBR) streams that can be supported by the U0 subsys-
tem. This research highlighted bottlenecks in the servers
design, the results from which were used to propose new
configurations[9]. However, static mathematical models do
not take into account the effect of buffering, bus and mem-
ory contention, and other dynamic properties of the system.
A static model is also unable to provide data regarding the
quality of service (QoS) of a streams delivery. This latter
performance metric is of vital importance for continuous
media data, if the client or viewer is to receive jitter-free
video and/or audio data.

To investigate further the proposed I/O subsystem and
to gain more realistic performance figures that are based
upon quality of service criteria, a simulation tool was re-
quired. There are many computer-based simulation systems
available both commercial and free-ware. A quick survey of
available packages was unable to find a system that would
meet our requirements of low-cost, short learning curve,
and flexibility. It was decided that we would create a pro-
prietary simulator and tailor it to our needs. This would also
provide invaluable experience in building computer simula-
tors. C++ was chosen as the simulation language as it is a
fast, flexible, object-oriented language that is freely avail-
able, well-documented and highly portable.

1 Introduction

The object of our research is improved cost/performance
ratios for the input/output (UO) sub-systems of continuous-
-media servers. Previous investigations of the proposed ar-
chitecture have been based upon static mathematical mod-

2
1089-6503/00 $10.00 0 2000 IEEE

mailto:michael.weeks@tees.ac.uk
mailto:E-mail:chrisb@cs.york.ac.uk

2 Simulator Requirements

There are three categories of simulation model;
continuous-time, discrete-time, and continuous-time
discrete-event. The latter category is the most suitable for
a simulation based upon the interaction of function-based
entities operating at differing, unevenly spaced and/or
arbitrary intervals.

In continuous-time discrete-event simulations, the time
parameter is conceptually continuous and the observation
period is a real interval starting at zero. The operation path
is completely determined by the sequence of event times
and the discrete changes in the system due to these events.
The simulator can advance simulated time directly from one
discrete event to another, taking any necessary steps that are
required to advance the state accordingly.

The simulators infrastructure should be;

Flexible and easy to learn The simulator should have a s-
teep learning curve. It should be flexible and extensible
so that it is relatively easy to add new functionality to
the system.

Efficient Due to the large amounts of data that traverse a
media servers VO sub-system, the expected simula-
tion will be highly processor intensive. For instance,
a 33MHz PCI bus will require 66 million events per
second (i.e. every clock edge) for itself, as well as ev-
ery attached master and slave interface. The design
under investigation utilises three PCI buses, therefore
efficient simulator code is necessary in order to lim-
it the time taken to complete an observation period.
Therefore, the core scheduling program and individual
objects are coded as efficiently as possible, in terms of
speed and resource utilisation.

Portable Due to the varied computer resources available,
the simulator must be platform and architecture inde-
pendent. It should be possible to use any standard C++
compiler and operating system combination without
any major changes to the code.

Object-Oriented Inheritance is used at the high-end of ac-
tive simulation objects, in order to allow the sched-
uler to have common interface access to various en-
tity types. Entities also use passive components such
as queues, as well as more complex active-entities such
as servers and interfaces. These enable the simulator to
be more flexible and extensible, allowing new object-
s to be added without affecting the overall simulator
infrastructure.

Documentation and Reporting Good documentation is
necessary for several reasons. When building and de-
bugging the simulator code, it's vital to be aware of the

capabilities and software interfaces to the simulations
objects. The operation of each object, and its interac-
tion with others must be clearly specified.
Each object must also have the ability to report on its
behaviour and performance, in order to prove its cor-
rect operation. Significant performance data, where
appropriate, must also be logged to data files for anal-
ysis at a later date.

3 Simulation Strategy

The basic premise of simulation is that a complex sys-
tem is replaced with a model that is simpler to observe, but
has all the original systems major characteristics intact. To
realise this, we must decide which components of the real
system should be considered for the model. This abstrac-
tion requires certain initial assumptions that will decrease
the complexity of the model, this in turn simplifies imple-
mentation and observability. This can be achieved by deter-
mining the key features of the simulation; i.e. what is it we
are trying to achieve and/or measure, and what characteris-
tics have an effect on them?

PCI Bus

, -1 AMIOM 17
(Storage1 7; (Network1
Adaptor Adaptor

Figure 1. Modular bus-based streaming archi-
tecture

For the media server simulation, this work has been ex-
amined in a previous paper that derived the mathematical
model for the system [9]. Figure 2 shows the architec-
ture under investigation. The VO module, under supervision
from the host CPU system, controls concurrent data stream-
ing from the storage device, via the temporary streaming
memory buffers, to the network adaptor. In order to provide
local scalable processing, the module incorporates an on-
-board CPU whose code and data stream are separate from
the media data streams.

From previous studies, we know that bottlenecks occur
on the data streaming pathways due to the high transport
bandwidth that multiple continuous-media data streams re-
quire. These pathways must therefore be included in the

3

PCI Bus

I I AMIOM '

1 - Network Storage
Adapt or Adaptor

DRAM

AMIOM I
I Network

Adaptor
DRAM

Figure 2. Modular bus-based streaming archi-
tecture

model. The stream pathway, and hence the simulation, con-
sists of multiple network and storage adaptors, two subor-
dinate I/O interconnect buses, and the streaming module.

In order to quantify the performance of the system, the
measure of performance will be the maximum number of
streams that the YO subsystem can support before quality of
service suffers due to contention. The latter shall be realised
by monitoring the delay in servicing deterministic network
requests.

Due to the size and complexity of the scenario under
investigation, the quantity of data that the simulator can
produce can be overwhelming for both simulation analysis
tools and observer alike.

Therefore, only significant events must be logged. In this
simulation we need to know all of the PCJ bus occupancy
rates, and the delay incurred when issuing network YO re-
quests. The former is achieved by logging any change in a
bus's PCI Grant signal. The latter is recorded as the time
difference between a stream-process request being issued,
and the time it gains control of the network interface. Both
resulting data files require some post-processing, using pro-
prietary data-processing utilities, in order to make use of the
data.

Several factors require consideration when executing a
simulation run. The first is the level of resolution and accu-
racy of the observation points. For our purposes, the critical
components of the simulation are the subordinate PCI bus-
es. These are clocked at 33MHz, which means 66 million
events per second due to the two phases of the buses clock.
The observation points are therefore set at 1 nanosecond in-
tervals, which means that each clock phase requires 15 sim-
ulator ticks. This gives an accuracy of 99% of the real PCI
timing value.

The observation period determines the length of real-
-time that the simulation is modelled. The rule of thumb
[6] for this period is at least ten cycles of every distribution.

In our case, the storage request period is the least frequent
distribution. ,Therefore, an observation period of approxi-
mately two seconds is required for IOMbps streams.

The warmup period determines the length of time taken
by the simulation to settle into a stable state. The complex
and time-consuming nature of the model makes this very
important. It is therefore imperative that the warmup period
is kept as short as possible in order to minimise overall pro-
cessing time. Several stream start-up scheduling schemes
were employed in order to minimise the warm-up period.
The most successful at low stream loading levels, intro-
duced new streams to the simulation at equally-spaced time
intervals over the period of a storage request. The effect
of this traffic pattern must be carefully observed under high
stream loading, however. We have chosen a warmup period
length of four storage request periods.

In order to obtain accurate results from the simulation,
several replications must be effected for each set of con-
figuration data. A rule of thumb [6] requires three to four
replications.

4 Simulator Infrastructure, Objects, and
Analysis Tools

The simulation is fundamentally composed of a collec-
tion of active temporal-based entities and a scheduler, de-
tails of which are given below. Upon implementation, each
object was verified inside a test harness for correct perfor-
mance and operation, and the results documented.

4.1 The Scheduler

The scheduler is the most important part of the simulator
infrastructure. It co-ordinates the entire simulation through-
out the observation period, by monitoring active and passive
entities in order to activate them at the correct time. The
objects cannot interfere with the scheduler directly, but can
do so only indirectly through modifications of the scheduler
queue.

There are two approaches for scheduling simulator
events; event-oriented and process oriented. For event-
-oriented systems, a procedure or function-member in the
case of C++, is associated with each type of event in the
system. The event procedure performs a required action to
handle that type of event and it is invoked by the scheduler
every time such an event occurs. A process-oriented ap-
proach, as used by the C++SIM Simulation Package [4], u-
tilises a number of interacting processes that are executed in
parallel. For our simulator tool we have opted for the event-
-oriented approach due to its ease of implementation. Also,
the process-oriented approach raises the issue of portability,
as process handling varies with operating system platforms.

4

The scheduler's initial task is to create entities and define
their interactions at run-time as specified by configuration
data. An internal "clock" is used to monitor the passing of
simulated time. The scheduler then queries an entity's event
time and compares it with the current time. If the compar-
ison is favourable the scheduler requests the entity to acti-
vate and respond. Entity event responses are executed in
pseudo-parallel. At any instance of real time, only one enti-
ty is serviced, but in terms of simulated time, many entities
are serviced concurrently. Simulated time is discretely ad-
vanced when all entities have been processed for the current
instance of simulation time.

4.2 Active Entities

There are two levels of entities; simulation devices and
simulation components. Examples of simulation devices
are high-level complex devices such as a bus, a bridge, a
disk, or a CPU. A simulation component on the other hand
can be active, such as an interface or server, or passive, in
the case of queues, lists, arrays, etc. The use of the abstrac-
t terms high-level and low-level depend upon the context
within which they are used. For instance, several simula-
tion devices could be easily converted to components, then
grouped together to form a module simulation device. The
effect of this grouping is to make configuration far simpler.
This technique however makes the simulator less config-
urable, but more importantly in our case, it saves precious
time. The major difference between active simulation de-
vices and components is that simulation devices inherit in-
terface compatibility from an abstract 'simobj' class, allow-
ing the scheduler to dynamically create and reference dif-
ferent entities at run-time.

All active entities require at least two vital function
members; nextEvent() and event(). The member nextEven-
t() returns the time of the next discrete event for that entity.
The event() member activates the entity to respond as deter-
mined by the functionality of the object it simulates. Figure
3 illustrates the structure of a simulation object. Note that
the upper level simulation object is accessed by the abstract
class 'simobj', and that the component objects are accessed
from within the simulation objects member functions.

4.3 Active Simulation Components

The following subsections give an overview of the active
entities that are used in the simulation (figure 4).

Each object has a verbosity level which enables entities
to report on their individual status. This is manually set
at compile-time and allows observation of correct operation
and to catch any problems. Differing verbosity levels enable
varying report levels to be coded into objects. On certain
objects, such as the PCI bus, the verbosity level can con-

Scheduler

/ %

I I(Simulation c-ponant J p i m u l a t i o n c-ponent J

Figure 3. Member function calls within a com-
posite simulation object

trol the logging of significant information to files for later
analysis.

Documentation for the project is produced by comment-
ing the source-code and using the 'Doxygen" automatic
documentation processor for C and C++. This package can
generate on-line html pages, or a reference manual from
specially formatted source code comments. By specifying
a web server account and the source-code paths in a con-
figuration file, on-line documentation can be automatically
generated with minimal effort.

4.3.1 PCI-Interface

A PCI interface consists of two entities; a PCI master entity
and a PCI slave entity. The purpose of these two entities
are to provide a standard means of communication over a
shared PCI bus entity.

The master and slave objects are designed to be com-
ponents within a PCI device object. The interface objects
connect to the shared PCI-bus via pointers to the PCI bus
objects function members. A PCI device connects to the in-
terfaces via data queues that are accessed via interface func-
tion members.

Both interfaces consist of a state machine, internal reg-
isters, and input and output queues. The state machine op-
erates on both rising and falling edges of the PCI bus clock.
Typically the interface reads data from the PCI bus on the
clocks rising edge, and writes data to the bus on the falling
edge, though there are a few exceptions.

The model specification requires PCI READ and
WRITE commands only, therefore no other commands have

' http://www.stack.nll dimitri/doxygen/index.html

5

http://www.stack.nll

3-port PCI

PCI Bus Object PCI Bus Object & "4 A 4 '

1nt.rt.c.

Aly Card
object

1nt.rt.e.

.............

U
To Network To Network

Figure 4. Software model of single bus-based
I/O module

been coded into the master/slave interface state machines.
The PCI interface entities match real PCI READNRITE
transaction performance, under optimal conditions, and al-
so when either master or slave inserts wait-states.

4.3.2 ATM Physical Interface

The ATM interface is a component in an ATM Network In-
terface Card (NIC) or device. It is a DMA-like object con-
sisting of two state machines for ATM network input and
output. No underlying technology, such as SONET, will be
used for the physical connection. It will be assumed that a
direct peer-to-peer path is made between between connect-
ing ATM interfaces. In order to increase the speed of the
simulation, the physical path widths will be one cell wide.

4.3.3 CPU Stream Process Object

For each media-stream being transmitted to the client, there
will be a CPU Stream Process entity that controls it. It ex-
ists within a CPU entity (figure 5) , and is intended to sim-
ulate a software process. A stream-process entity consists
of two inter-linked state machines, each having access to all
of the components contained within the CPU entity. One
state machine is used for controlling the attached storage
controllers, the other being used to control the attached net-
work controllers.

The trigger for both state machines is a Poisson-event
that is based upon the average U0 request rates of the spec-
ified stream. Upon receiving an I/O request event, the s-
tate machines issue requests to the relevant devices request

queue in the CPU entity. When the device is granted, the
state machine must request the PCI bus interface in a simi-
lar manner. With PCI access granted to a stream processes
state machine, initialisation data (source and destination ad-
dresses, block size, etc.) can be written to the U 0 device,
before initiation data is written to the device to instruct it to
act in semi-autonomous DMA mode. The stream process
then releases the PCI interface for use by other processes.

When the semi-autonomous peripheral has concluded its
transaction it raises an interrupt. The stream process with
current control over that device then requests PCI access
again. The stream process then clears the interrupt, so mak-
ing the peripheral device ready to complete another trans-
action.

This PCI bus requedgrant technique has a dual purpose.
Without it, all stream processes would execute concurrent-
ly. A single stream with access to the PCI interface, blocks
all other stream processes, therefore simulating real serial
processor operation. To simulate context switching, a Pois-
son delay is introduced when PCI access is granted to a new
stream process. This overhead is based upon data given in
configuration files.

4.4 Active Simulation Devices

4.4.1 PCI-Bus Model

The PCI-bus object consists of passive bus lines, and an ac-
tive arbiter. Real-world PCI bus arbiters decide on a "one
cycle at a time" basis, and can preempt transactions when
higher priority requests arrive. The C++ scheduler, howev-
er, works in pseudo-parallel, therefore an entity's priority
depends upon its location within the scheduler queue. To
solve this problem, all PCI-bus requests are given equal pri-
ority, and are stored in a FIFO request queue.

For every bus clock cycle, the arbiter checks for a request
on one of the request lines. If a request line is asserted, the
arbiter places that request in a FIFO arbiter queue and de-
-asserts the request line. When the PCI bus becomes idle,
as indicated by 'Frame' and 'Grant' being de-asserted, the
arbiter grants the bus to the device whose request is at the
front of the arbiter queue. This technique allows the arbi-
tration delay on consecutive transactions to be hidden. If
multiple requests are made within the same clock cycle, all
requests are processed with priority being given to the de-
vice with the highest request line.

In order to collect PCI bus utilisation data from the mod-
el, the PCI bus entity must record bus traffic patterns. The
time that the PCI bus is in use can be found by monitoring
the PCI master grant lines, and the PCI bus object therefore
has the ability to record this data to a file. From these data
files, two utility programs can provide performance figures.

6

The first, ’Gnuplot’2, is a command-line driven interactive
function plotting utility that enables visualisation of math-
ematical functions and data. The second is a proprietary
utility that extracts statistical data from the grant data files.
This utility provides data such as the bus utilisation, band-
width utilisation, bus efficiency and the number of transac-
tions over a specified period.

4.4.2 CPU Object

The CPU object consists of PCI master and slave inter-
faces, multiple CPU stream process entities, and YO request
queues for each storage and network peripheral under its
supervision (figure). Under our scenario, the continuous
media data is stored on disk using a data-striping technique.
This requires the use of multiple SCSI controllers, for which
there exists one I/O request queue per controller. There also
exists one I/O request queue per ATM controller. With one
PCI master interface being shared by multiple CPU stream
process object’s a PCI request queue also exists. All queues
in the object grant CPU resources using a FIFO policy.

I fzEzA I

Master processes
for P I

streams ’
queues for
M network

process

I (objects)

Figure 5. CPU object

4.4.3 3-Port PCI-Bridge Object

The PCI Bridge is a 3-port PCI-bridge based upon the oper-
ation of the Pericom Multi-Ported PCI-to-PCI Bridge Chip
[I] . The object consists of three modified PCI slave and
master interfaces (one each per port), and a bridge object
that links them. Figure 6 shows the graphical layout of the
object.

4.4.4 PCI-based DisWController object

The disk object simulates a PCI-SCSI controller attached to
a SCSI hard disk drive, and is based upon the operation of

Zhttp://www.cs.dartmouth.edu/gnuplothfo.html

Upstream PCI bus

Bridge

Subordinate PCI bus A Subordinate PCI bus B

Figure 6.3-port PCI Bridge object

the Symbios Logic SYM65C875A PCI-SCSI 1/0 Proces-
sor [8]. A disk entity (figure 7) consists of a state machine,
internal registers, PCI master and slave interfaces and ran-
dom or random Poisson distributed events to simulate disk
access times.

I I
Global
Time

Internal Registers

State
Machine

I I

Figure 7. PCI-based disk object

The disk object has two basic modes of operations. The
first is a ”disk slave” operation, whereby PCI transaction-
s access internal registers. The disk entity’s data can be
accessed via an external PCI master device. The disk enti-
ty’s PCI slave interface transfers the data to/from the inter-
nal registers as determined by the PCI transactions address
phase. The ”disk master” operation provides PCI bus mas-
tering capability, so ’stored data’ can be streamed to anoth-
er PCI device. The switch for this operation is an internal
register flag (DMA Scripts Pointer). When in disk-master
mode, the device transfers a quantity of disk-block sized
packets over the PCI bus, to the streaming memory. Con-
figuration data such as the disk block size and the number
of blocks per U 0 request can be varied to suit performance.

Once finished the device will set its corresponding inter-
rupt line on the PCI bus. To clear this, the CPU streaming
process must read then write to the disk objects internal in-
terrupt register.

Mechanical disk latencies have been modelled in the disk
object. The rotational latency of the disk is modelled by a

7

random number generator [SI that varies between zero and
the full disk rotation time. Seek time is dependant upon
mechanical properties and disc access patterns [7] and is
less easy to model. Therefore, seek-time is modelled us-
ing a random Poisson distribution based upon the average
seek-time. The average seek-time is determined by using a
simple elevator-based disk-scheduling algorithm. This al-
gorithm services stream requests as the disk ann sweeps
across the surface of the disk (figure 8). Assuming that all
streams are of equal data-rate, and the distance between the
two furthest stream requests is equal to the maximum seek
time, the total quantity of stream requests, S, are serviced in
twice the maximum seek-time, Tseek,,, . The mean seek-
time, Tseek,,,,; is therefore quantified in equation 1.

Diek Surfass \ strems

Figure 8. Elevator disk-scheduling algorithm

Each word of the media stream contains time-stamped
information in order to provide QoS performance data on
the server and its components. With possibly hundreds of 5-
-10 Mbps data streams, this will produce a massive amount
of performance data as well as requiring vast amounts of
simulation memory. Therefore, in order to reduce this data
overload problem, certain streams can be monitored as they
are transferred through the server U 0 subsystem.

4.4.5 PCI-based ATM Network Interface

Similar in concept to the disk object. The interface consist-
s of a state machine with bus mastering capability, internal
registers, internal data queues, PCI master and slave inter-
faces, and input and output physical interfaces. Its operation
is based upon that of the IDT 77201 NICStAR [2] device.

4.4.6 Streaming Memory Object

This object has dual-PCI slave interfaces, so that it can be
accessed by master devices on either downstream subordi-
nate bus. The memory object simulates the operation of
streaming memory buffer and its controller. To increase
bus efficiency, PCI READ and WRITE operations can be
simultaneously performed from both subordinate buses. To

minimise bottlenecks at the memory interface, it operates at
twice the PCI, bus frequency.

5 Results of Simulation

The results from the mathematical model [9] describing
the proposed architecture gave a streaming performance of
eighty two streams. Performance was constrained by the
bandwidth of the network subordinate bus. Batch retrieval
of ATM cells from memory by the ATM adaptor has in-
creased maximum streaming performance to approximately
100 streams. It remains the limiting factor of the server, but
as shown in figure 9, it closely matches the performance of
the storage bus.

No. of 10 Mbps streams

Figure 9. Subordinate PCI bus utilisation

A continuous-media server must also supply a specific
QoS to the client. To give an indication of QoS, the delay
when issuing network I/O requests has been recorded. This
delay is plotted in figure 10 as a percentage of the overall
network I/O request period. By assuming that the client's
end system has adequate buffering capability, an arbitrary
maximum threshold has been set at 1 % of the mean network
request rate. With this upper limit, maximum streaming per-
formance is quantified at 98 streams. At this performance
level, bus utilisation is high at approximately 94% and 96%
respectively for the storage and network buses.

6 Conclusions

The simulator has been shown to meet our requirements
for a fast and flexible environment. It has provided more re-
alistic performance metrics regarding our proposed system
design, in a short period of time. The simulation is cur-
rently being used to simulate multiple I/O modules in an
independent-proxy media server configuration [3], whilst
running a distributed streaming application (figure 1 I). The

8

\uontcasedelay +
maan-++

20 40 60 80
No. of 10 Mbps-streams

Figure 10. Network VO request delay as a per-
centage of the network VO-request rate

simulator infrastructure has also proven flexible enough to
be used by the author in separate unrelated projects.

Figure 11. VO modules in an Independent-
Proxy Media Server

The execution time for a two second observation period
depends upon stream loading. The execution time for a 100
stream scenario requires approximately 8 hours processing
time3, or 6.4ms of simulated time per stream per second.
Since we have no comparison to compare with, and consid-
ering the complexity, and large volumes of data processed
by the simulation, this performance appears reasonable.

The simulator was coded in: oEdkr to be architecture and
operating system neutral. To1 &e, the simulator compiles
and executes successfully, without modification, on systems
using the GNU g++ compiler om both Linux (x86), and So-
laris (UltraSparc-11) systems. It would be useful to port the
simulator to other architectures, such as Windows NT.

Automatic object documentation has proven useful when

38 hours on a 250 MHz Solaris UltraSparc-I1 server under light loading

constructing new simulation scenarios, as has object ver-
bosity. Currently, verbosity levels are set haphazardly be-
tween differing entities and their components. A more con-
sistent approach to verbosity levels throughout the simula-
tion\ dl lead PO reduced debugging time.

F i r modifications are under development to improve
the simdhfm Currently, the simulator uses compile-time
entity declkation~. Dynamic run-time entity declaration
would remsve:thc need for re-compilation of the scheduler
under varyiirg scenarios and allow batching. This would
also maximise processing time, and minimise supervision.
Configuration data initialised via text-based files has been
re-organised. A separate object has been created for con-
taining popular variables. Similarly, a separate object has
been created for collating data for reporting purposes. The
development of a graphical user interface, possibly using
tcYtk, would be useful for removing configuration errors.
Also graphical tools are under consideration for displaying
data, such as a waveform viewer to create state level dia-
grams.

References

K. Annamalai. Multi-ported PCI-to-PCI bridge chip. In
Wescon ’97 Conference Proceedings, Santa Clara, CA, pages
426-433. IEEE, Nov. 1997.
Integrated Device Technology, Inc. ID777201 NICStAR User
Manual Version 2 . Santa Clara, CA, USA, Nov. 1995.
J. Y. B. Lee. Parallel video servers - a tutorial. IEEE Multi-
Media, 5(2):20-28, Apr.-June 1998.
M. Little and D. L. McCue. Construction and use of a simu-
lation package in c++. Technical Report 437, Computing Sci-
ence Technical Report, University of Newcastle upon Qne,
July 1993.
W. H. Press, S. A. Teukolsky, W. T.Vetterling, and
B. P.Flannery. Numerical Recipes in C: The Art of Scien-
tific Computing. Cambridge University Press, second edition,
1992.
S . Robinson. Successful Simulation: A Practical Approach to
Simulation Projects. McGraw Hill Publishing, 1994.
E. Ruemmler and J. Wilkes. An introduction to disk drive
modelling. IEEE Computer, X(X): 17-28, Mar. 1994.
Symbios Logic, Inc. SYM6SC87SA PCI-SCSI I/O Processor
Data Manual Revision 3.0, Mar. 1996.
M. Weeks, H. Batatia, and M. Maierhofer. Autonomous
streaming architectures for continuous media. In 2nd Intema-
tional Conference on Information, Communications and Sig-
nal Processing, Singapore, Dec. 1999.

