
On Quality Attribute Based Software Engineering

Otto Preiss Alain Wegmann Jason Wong
Department of Information Department of Computer Department of Information

Technologies Science Technologies
Swiss Federal Institute of ABB Corporate Research Ltd

5405 Dattwil, Switzerland Technology 5405 Dattwil, Switzerland
101 5 Lausanne, Switzerland jason. vvong @ ch.abb.com

alain.wegmann @epjl.ch

ABB Corporate Research Ltd

otto. preiss @ ch.abb. corn

Abstract

S o f i a r e components are an incarnation of
architectural means to better cope with the varieh of
quality aspects of software systems. Unfortunately,
architecriiral artifacts appear somewhat magically
sometimes, and so do components. Components are not a
major extension to 00 in the programming language or
ficnctional modeling sense, but a basis to address many of
the quality requirements, be they discernable or non-
discernable at system runtime. CBSE, being the discipline
of engineering with components, is a promising basis to
more explicitly and systematically design with and ,for
quality attributes. After defining the context and
classining quali9 attributes, we first illustrate the
important relationship of quality attributes to use case
realizcttioris. Second, we argue f o r components as the
fulcriim point for the realization of jittictional and extra-
fiinctional roles. Third, we identifi otigoing research
directions that we consider conducive towards a software
engineering process that supports the design for
jitncrional and extra-functional requirements.

1. Introduction

There is hardly any software development process with
its set of design methods and in particular modeling
techniques that addresses the design with and for quality
attributes, i.e. that explicitly focuses on the traceability of
quality requirements. Consequently, the prediction of the
quality properties of the software system and the degree
with which the requirements are going to he met is almost
impossible. By quality attributes we mean the large group
of properties, sometimes referred to as "Ilities" [11, which
are either discernable at runtime (such as dependability,
usability, safety, security, consistency) or observable over
the product lifecycle (such as extendibility, evolvability,
reusability, etc.). As discussed later, we refer to the former
category as QoS attributes.

The intention of a software process model is to guide
you from use case to code effectively and quickly in a
preferably mechanic and prescriptive way. Although
current approaches increasingly support capturing of
functional as well as extra-functional requirements, they
still support designing for the former, but less so for the
latter. How then are these extra-functional qualities
introduced into today's software systems'? The key word is
(software) architecture. Almost any quality attribute is
dependent on architectural means. In fact, the aspects of
architecture are about quality attributes. The results of
architectural decisions often manifest themselves in
architectural styles, which in turn lead to the realized or
chosen hard- and software infrastructure (e.g. frameworks,
middleware). Because they are largely independent of the
application logic, architectural artifacts hardly fall out of a
functional decomposition approach. Similarly, if one
follows an 00-based approach to analysis, design and
programming, a component is not a natural concept that
would obtrude upon a designer during the functional
decomposition. In other words, an orderly design of the
system's behavior and static organization according to the
best principles of 00 does not call for any new
abstraction. For that matter, components cannot do more
than classes and objects can 1:2]. However, if we look at
all the promises of CBSE (classified according to different
viewpoints in [3]) , it is evident that software components
are here to support the different quality-related aspects of
a software system'. Software components thus represent
the incarnation of architectural decisions and constitute
architectural abstractions. Because an emphasis on quality
attributes, and consequently on (software) architecture, is

' For instance, the first commercial components (Visual Basic
components) were intended to support quality attributes that are
observable over a product or product family lifecycle, predominantly
reusability and deployability. Current commercial component
technologies (COM+/.NET, EJB) and their frameworks also address
quality attributes that are discernable at runtime (as an example see
Table 2)

114 1089-0503/01$10.00 0 2001 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 01,2020 at 13:29:15 UTC from IEEE Xplore. Restrictions apply.

http://ch.abb.com
http://COM+/.NET

relevant only for systems starting at a certain size and/or
complexity, components do not obtrude upon us when we
try to develop or analyze toy examples or very small
software systems. Extendibility or data integrity across
machine boundary (to name a few) is hardly an issue
there, which is also why components would be overkill for
such toy examples.

Today’s industrial practice largely separates the design
for functional and extra-functional requirements. While
the functional design transforms functional requirements
into a logical model that consists of objects and idealized
interactions, the extra-functional design (the
“architecture”) transforms extra-functional requirements
into an architectural model that consists of components
and possibly frameworks. Merging both design paths
yields the final system. However, the fundamental
concepts and methodologies for both activities are not
considered to be the same, documented in the fact that we
still have the co-existing disciplines of OOA/D and
software architecture.

This paper represents a plea to more systematically
handle quality requirements in software engineering. It
argues for the importance of collaborations as first-class
design artifacts and introduces the notion of extra-
functional roles as the basis for a role-based modeling
approach to cope with extra-functional, behavior related,
properties. Furthermore, it argues for a number of
research directions as well as mainstream architectural
approaches related to CBSE, which we consider
supportive to systematically dealing with extra-functional
properties.

The rest of the document is structured as follows.
Section 2 categorizes the various quality attributes and
introduces the reification-based, architectural approach to
dealing with them. Section 3 shows the relationship of
quality attributes to use cases, roles, collaborations, and
components. Section 4 concludes with the specific
research directions that we believe to be amenable to
advance in the area of quality attribute based software
engineering.

2. Quality Attributes

The quality of a software system can be assessed by a
number of quality attributes. Many of these quality
attributes are considered to be systemic, i.e., they are
applicable to the entire software system or they are
spanning across parts of it. What constitutes the important
set of quality attributes is dependent on the stakeholder
perspective. For instance, while an end-user may desire
performance and usability, the development management
may want a high degree of maintainability and reusability.

Many classification structures for quality attributes
have been proposed, including elaborate facetted

115

classifications that contain stakeholder, life-cycle and
domain dimensions. Hochmiiller [SI provides further
details and also references to ISO/IEC standards (e.g.,
IS0 9126) that define many of the “ility”-terms frequently
found. For this paper we adopt a simple classification
derived and extended from [4].

Quality attributes fall into two classes. The first one
refers to quality attributes that are discernable at system
execution time. They can be observed by investigating the
system behavior during execution. Since these attributes
relate to the system behavior they must be part of the
behavioral specifications, not at last because they need to
be considered in behavior-related design decisions. The
second class of qualities cannot be observed at runtime.
They usually show during the product life cycle (e.g.
maintainability). Although these qualities cannot be
observed during runtime, they still need to be considered
during the design of a system. Table 1 lists the quality
attributes that are frequently found to describe the
qualities of a software system’. We tried to define a main
and a subcategory of attributes, which simplifies the
reference to a set of related attributes. Other
classifications are of course conceivable (for example,
depending on the viewpoint dynamic extensibility could
be classified as a quality that is discernable at runtime).
Note. the assessment of the achieved level of quality is
context dependent and often subjective because
established metrics are still rare. Furthermore, some terms
are almost synonyms to each other, with distinct meanings
for special communities.

2.1. Definition of QoS

Although the term QoS was keyed in the
telecommunications area and originally referred to
performance related issues on network layers only, i t is
increasingly being used to refer to other Ilities too (such
as listed in Table 1). Manola [I] acknowledges this fact in
that he introduces the term IQoS as being the combination
of the traditional QoS with the other Ilities. In our
terminology and with respect to the above-mentioned
classification of quality attributes, we informally define
QoS as follows:

QoS attributes refer to the set of extra-functional
quality attributes that are discernable at run time arid can
be tied to a particular use case.

In that context they represent “qualities of behavior”,
which reconciles with RM-ODP’s [6] definition of QoS:
“A set of qualities related to the collective behavior of one
or more objects”. We therefore prefer to use the term
quality attributes to refer to all of the Ilities and QoS to

’ It does not cover the business pzrspecrive on qualities, leading to
attributes such as costs, time to market, etc.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 01,2020 at 13:29:15 UTC from IEEE Xplore. Restrictions apply.

refer to the quality attributes, which are discernable at
runtime. Many places in literature (including the OMG in
[7]) refer to quality attributes or QoS as the non-
functional features of a system. However, we continue
using the term extra-functional because we agree with the
opinion expressed in [4], where non-functional is
considered a misleading and even dysfunctional term.
Extra-functional also emphasizes the fact that a system’s
quality requirement at a certain level of abstraction is
likely to turn into a functional requirement on a system’s
component at a certain point in the realization phase.

Table 1. Working classification of quality
attributes

Main
Cate-
gory
Use-
ability

Depend-
ability

Not observable at runtime,
but over oroduct life-cvcle

Subcategory

Accessibility

\dministrability
Understand-

ability
Availability

Degradability

Main
Category 1 E::iory

Testabiliu

Porlabilte

Integra-
bilit]v

Accoun-
ability

Mobility
Nornadicity

Cornpose-
ability

Interoper-
ability

Adaptability
0 o e n n e s s

Deploy-
abilio

QoS requirement on ...
Performance
(responsiveness,
throughput)
Performance (scalability,
responsiveness) and
dependability (fault-
tolerance)
Dependability (fault-
tolerance)
Performance (integrity,
coherency)
Security

Deploy ability
(configurability) and
usability (administrability)

Modifiabilitv

COM+ Service
In-memory database
service;
Object pooling
Dynamic load-balancing
service

Queued components
(message queuing)
Transaction services

Role based security
services
Administration services

Upgradability

Distribute-

ability

1 Durability
1 Reliabilitv

Stability

1 Timeliness
I Integrity

As an example, a transaction service is not a quality
requirement of a software system as stated by the user or
customer, but it can be a viable means to support the
reliability and integrity requirements of the system. A
certain quality attribute is likely systemic when viewed
from the realization standpoint, but it might well belong to
one single use case (or system operation) only.

The rest of the paper is concerned with the quality
attributes that are observable at runtime, i.e. according to
our definition with QoS.

2.2. Reification-Based Arclhitectural Solutions

Note, we believe that the separation of quality
requirements from the means to address them is important.

116

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 01,2020 at 13:29:15 UTC from IEEE Xplore. Restrictions apply.

Section 3.1 will show that reification-
based solutions can result from a
systematic modeling and synthesis
approach of functional and extra-
functional roles.

Reification is the currently prevailing
concept in the commercial software world.
It is also the basic approach of the OMG to
support QoS in their architecture [7]. In
general, frameworks such as CORBA,
COM+ or EJB provide application meta-
services (reifications) and require some
architectural support from their
components to address some of the
commonly required QoS requirements (as
an example see Table 2).

3. Qualities Related to
Collaborations of Components

Object1 Object2 Object3

1 I I I

Figure 1. QoSb as a Cross-Cutting Concern of
Collaborations

In order to meet quality related user requirements, one
must involve actions in the (software) system to be
developed. This requires the mapping of such
requirements to requirements on the specific realization
approach and its technologies (as discussed in detail in
[SI).

Functional and extra-functional, but behavior related,
requirements are applicable to high-level system
operations. If we assume an object-oriented approach they

pertain to use cases. Use cases are realized by
collaborations of computational objects, as shown in
Figure 1 (ignoring the QoS ellipses for now). More
specifically, the collaboration is composed of (a) roles,
which arc played by objects, and (b) the interactions
among roles. A certain object may of course play different
roles in different collaborations.

The implementation of the object roles and the
implementation of their interactions realize these
collaborations. QoS requirements must therefore be met
by the realization of collaborations, i.e. by the realization
of the roles and their connectors. Conceptually, this
relationship can be modeled as depicted in Figure 2 . The

{subjective QoS

I

Contract 1 I
I

Realization

U I

Realization

Figure 2. From use case QoS to the realization of its collaboration

117

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 01,2020 at 13:29:15 UTC from IEEE Xplore. Restrictions apply.

notion of a contract is used as the association class of the
realization relationship, as introduced by Selic [9] for
resource modeling. It represents the commitment of the
higher-level concept (e.g. the use case) to these and only
these QoS requirements and the commitment of the
realizing concept to fulfill the requirements. This departs
from the more traditional usage of contract [I O] for at
least two reasons. First, the contract is a binding element
between abstraction levels or different models. Second, a
contract is not a “per component” (or even per interface)
issue, but rather a self-standing concept realized by the
collaboration of entities.

It should be noted that Figure 2 is compatible with the
ISOIITU meta-standard for open distributed processing
(RM-ODP [1 I]) . The collaboration (dotted ellipse in
Figure 2), which realizes the use case, essentially
represents the computational viewpoint and its objects.
The roles correspond to ODP interfaces, and the
connectors to binding objects. The realization contracts
(e.g. “QoS contract 2”) represent RM-ODP’s
environmental contracts that are attached to objects of the
computation model. The realizations of the latter with
adherence to these contracts correspond to the engineering
viewpoint.

3.1. From Computational Object to Software
Component

The essence of Figure 1 can be redrawn as depicted in
Figure 3. Each of the computational objects plays two
roles: one to realize the functional aspect of the use case
(Figure 3b, Role21), and another one to realize the quality
aspect of it (Figure 3b, QoSb21). In general, the
assignment of concrete responsibilities to computational
objects (“who does what”) is the next natural step to make
the joined collaborations more concrete. This design
decision is treated as an explicit task in the Catalysis [121
software engineering process. Actions, an exact
representation of something that happens between a set of
participants, need to be refined into directed or localized
actions, i.e. responsibilities assigned to the participating
objects. This entails the decision of who is initializing
what action, and thus defines the sequence of actions (or
in Catalysis words, renders an action to a dialog). In our
example, this also requires that the QoSb collaboration be
broken down and responsibilities distributed among the
computational objects. But what computational object
would be the natural place to put the bulk of the
responsibility to? To make matters more complicated:
based on Figure 1 we know that also our “collaboration I ”
is required to meet QoSb. Moreover, the fact that we have
“Comp.Object3” involved in collaboration 1, which is not
part of collaboration 2, could yield two different design
approaches to meet QoSb. The resolution is to adhere to

the rules of good design, i.e. design for change. This
mandates, firstly, to encapsulate functionality in only a
few (well encapsulated and loosely coupled) places, and
secondly, if it needs to be distributed, to do it in such a
way that later changes can be carried out in a uniform
way. These rules lead us to the introduction of a new role,
namely that of the “QoSb manager” (see Figure 4). It shall
take over the bulk of the responsibility so that the other
computational objects are relieved to a hopefully uniform
minimal responsibility. The synthesis of the functional
with the extra-functional collaboration should thus be the
basis for the implementation of a system that meets both
the functional and extra-functional requirements that were
originally specified for a certain use case. Packaging the
realization of both (and usually more) types of roles of a
computational object into a single entity yields the
application dependent software components (Figure 4).
They behave according to the specified functionality and
support a well-specified QoS management. The “QoSb
manager” would typically become part of a component
infrastructure framework.

Note, the integration of the functional with the extra-
functional roles results in application components with
different degrees of structural dependency

f+? (must satisfy 00s)

c
-->------A--- --- ._
,‘ --. $, - - - - 1- ~

;’kollaboration”\,
(QoSb Collaboration 1 ‘., 2 ,,’ -_ -_____- - -

Figure 3. Collaboration 2 with the constraint to
fulfill QoSb (a) is broken into two collaborations
(b)

1 1 8

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 01,2020 at 13:29:15 UTC from IEEE Xplore. Restrictions apply.

I *, I I , G C E , J
QoSb211, \,Role21 Role22; ,'QoSb22

Figure 4. Distributing responsibilities yields a
new role

4. Conclusion and Discussion

It was argued, that quality requirements that can be
observed during runtime originate at the level of use cases
and impact the collaboration by which uses cases are
realized. This justifies the need for explicitly capturing (a)
the concept of collaboration, (b) the realization of
component roles, and (c) the realization of connectors in
the realization media. Those needs are currently addressed
as follows:

(a) AOP[131 and APPC[141 make collaboration
relationships explicit in their programming paradigm. An
APPC (Adaptive Plug and Play Component) is even
considered a linguistic counterpart of a collaboration
diagram for high-level system operations. For QoS
considerations, however, these programming approaches
fail to acknowledge the explicit visibility and design of
connectors. In addition, if an aspect represented a
collaboration of roles, crosscutting concerns of aspects
would be needed to deal with common quality
requirements among different aspects.

(b) Traditional 00 design and modeling methods and
their functional decomposition techniques cover the
realization of roles. Note, since almost all QoS
requirements at use case level turn into functional
requirements on the architectural artifacts to be realized,
the extra-functional roles can be designed with the same
00 design methods. Two software engineering methods
are of particular interest for our discussion: Catalysis [121
and OOram [151. The former treats interactions ("actions"
in Catalysis terms) and collaborations as first-class units
of design work. The latter is specialized on role modeling
and role model synthesis and has the advantage of being
formally specified.

(c) Treating a connector first-class is not new, although
mainly used in the software architecture community [161
[17]. Connectors are key in works around ADL 1181 [19].
00-based functional design methods usually model a
connector as an idealized method invocation. We believe

that connectors must be handled as self-standing semantic
entities because their realizations not only influence but
also depend on QoS characteristics. Note, frameworks
may well be considered connectors with rather rich
protocol semantics. Again, as mentioned in (b), Catalysis
with its notion and refinement of abstract connectors
seems to be the most promising software design approach.

Software component abstractions are the currently most
promising approach for the realization of the combination
of application functionality with quality requirements,
because they are the tangible interface between software
architecture and design of application logic. A role-based
approach to coping with extra-functional requirements can
be viewed as the underlying model for the currently
prevailing, reification-based, architectural solutions.
However, since the design for and with extra-functional
requirements is not an integral part of current software
design approaches, architectural artifacts and their impact
on programming seem to appear somewhat magically
during implementation or even deployment, i.e. in late
phases of a development project.

In order to design with and reason about extra-
functional qualities of a software system, as well as to
advance in the field of systematically traceable and
predictable engineering for quality properties we suggest
to discuss the following working areas of research:

(1) Merger of software engineering methods/processes
with software architecture so that the design for functional
and extra-functional requirements is isomorphic. i.e. the
same basic concepts and principles, the same modeling
techniques and notation, etc.

(2) Software engineering methods with their
decomposition and programming approaches, which,
firstly, treat collaborations first-class and thus keep
collaboration relationships identifiable down to the
program code, and secondly, explicitly allow the modeling
of connectors and therefore simplify the mapping of
object interactions to architectural connectors.

(3) Specification models that capture both the extra-
functional requirernents/properties and the notion of
collaborations and their involved artifacts in order to be
able to express the structural dependency of a software
component and the possible interdependencies. For
example, the Reusable Asset Specification [20]. which
defines a set of guidelines and recommendations about the
structure, content, and descriptions of reusable software
assets, allows for the definition of a reusable asset as the
set of entities realizing an entire collaboration through
their notion of "asset package".

(4) Formal techniques for merging functional with
extra-functional roles.

(5) More rigorous employment of the notion of
contracts not only as refinement or realization contracts in
functional and architectural models (e.g. framework and

119

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 01,2020 at 13:29:15 UTC from IEEE Xplore. Restrictions apply.

framework service contracts) but also as concepts realized
by multiple components with multiple interfaces.

References

[I] F. Manola, “Providing Systemic Properties (Ilities) and
Quality of Service in Component-Based Systems,” Object
Services and Consulting, Inc., Technical Report 1999.
[2] B. Meyer, “The Significance of Components,” Software
Developinent Online, November, 1999.
[3] D. A. d. Maur, 0. Preiss, T. Siegrist, and A. Wegmann,
“CBSE and embedded systems - Do they match?,” presented at
the ECOOP workshop on Pervasive Component Systems, Nice,
France, 2000.
[4] L. Bass, P. Clements, and R. Kazman, Soffware
Architecture in Practice, 6 ed: Addison-Wesley, 1999.
[SI E. Hochmiiller, “Towards the Proper Integration of Extra-
Functional Requirements,” The Australian Journal of
Infornzatiorz Systems, vol. 7, Special Edition 1999 -
Requirements Engineering, 1999.
[6] ISO/IEC-JTCI/SC21, “Working Draft for Open Distributed
Processing - Reference Model - Quality of Service,” ISO/IEC
JTCI/SC21 N QoSI, July 1997.
[7] C. Sluman, J. Tucker, J. P. LeBlanc, and B. Wood, “Quality
of Service (QoS) OMG Green Paper,’’ Object Management
Group, OMG Green Paper Version 0.4a, June 12 1997.
[8] J. 0. Aagedal and A.-J. Berre, “ODP-based QoS-support in
UML,” IEEESofrlvare, vol. 8, 1997, pp. 310 - 321.
[9] B. Selic, “A Generic Framework for Modeling Resources
with UML,” IEEE Coinputer, vol. 33, 2000, pp. 64 - 69.
[I O] A. Beugnard, J.-M. Jezeguel, N. Plouzeau, and D.
Watkins, “Making Components Contract Aware,” IEEE
Cornpirfer, vol. 32, 1‘999, pp. 38 - 45

[1 I] ITU-T, “Open Distributed Processing - Reference Model,”
ITU-T Recommendation X.905 I ISOIIEC 10746, 1996.
[121 D. F. D’Souza and A. C. Wills, Objects, Components, and
Frameworks with UML : The Catalysis Approach: Addison
Wesley, 1998.
[I31 G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier, C. V.
Lopes, C. Maeda, and A. Mendhekar, “Aspect-Oriented
Programming,” ACM Computing Survey, vol. 28, Article 154,
1996.
[141 M . Mezini and K. Lieberherr, “Adaptive plug-and-play
components for evolutionary software development,” presented
at Conference on Object Oriented Programming Systems
Languages and Applications, Vancouver, Canada, 1998.
1151 T. Reenskaug, Working with Objects - The OOram
Sofware Engineering Method. Greenwich: Manning
Publication, 1996.
[I61 M. Shaw, R. DeLine, and (2. Zelesnik, “Abstractions and
Implementations for Architectural Connections,” presented at
Third International Conference on Configurable Distributed
Systems, Annapolis, Maryland, USA, 1996.
[I71 K. J. Sullivan, I. J. Kalet, and D. Notkin, “Evaluating The
Mediator Method: Prism as a Case Study,” IEEE Transactions
on Sofmare Engineering, vol. 22, 1996, pp. 563 - 579.
[I81 D. Garlan, R. Monroe, and D. Wile, “Acme: An
Architecture Description Language,” presented at CASCON’97,
Toronto, Ontario, 1997.
[I91 R. Allan and D. Garlan, “A Formal Basis for Architectural
Connection,” ACM Transactions of Sofhvare Engineering and
Methodology, vol. 6, pp. 213 - 249, 1997.
[20] Rational Software Corporation and Catapulse Inc., “RAS -
Reusable Asset Specification,” Draft Recommendation, Nov. 03,
2000.

120

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 01,2020 at 13:29:15 UTC from IEEE Xplore. Restrictions apply.

