
1

XEDU, a Framework for Developing XML-based Didactic Resources

F.Buendia, P.Diaz*, J.Sahuquillo, J.V. Benlloch, J.A Gil, M.Agustí
Dpto. de Informática de Sistemas y Computadores

Universidad Politécnica de Valencia
*Departamento de informática

Universidad Carlos III de Madrid
Email: fbuendia@disca.upv.es, pdp@inf.uc3m.es

Abstract

Recent educational software applications use Web
technologies like XML to improve teaching methods in
distance learning environments. Though XML has been
already used to implement a high number of didactic
resources, specification methodologies to develop these
resources are rarely applied. As a consequence, the reuse
and maintenance of those resources become a difficult
task. This paper emphasises the use of hypermedia models
to deal with this problem. Hypermedia models have long
considered to have a great potential to represent
educational applications. The current work proposes the
XEDU framework that works over the Labyrinth
hypermedia model, to manage and organise didactic
resources. The proposed framework provides a set of
abstract didactic structures and the interface to associate
them either to XML-based contents and other complex
didactic resources.

1. Introduction

Recent educational applications use Web technologies
to improve teaching methods in distance learning
environments. This circumstance has determined the
development of multiple courses teaching different
subjects using the Web as a delivery medium.
Nevertheless, most of these didactic proposals use
proprietary tools or are based on rigid formats like HTML
dropping their effectiveness. XML [1] and related
technologies are opening new educational possibilities
and, in fact, they have been applied to implement a high
number of didactic resources. Campos et al [2] use SGML
(the XML ancestor) to define teaching material patterns,
e.g., questionnaires. The Nederland Open University
proposes EML [3] to represent educational resources.
Bourda and Hélier [4] use XML to implement IEEE
learning objects. Organisations like IMS [5] propose the
use of XML for describing didactic resources.

However, specification methodologies to develop these
resources are rarely applied; thus, the resultant
educational application is hard either to maintain and to

be reused. What we propose in this paper is the use of
hypermedia models to deal with this problem.
Hypermedia models have long considered to have a great
potential to represent educational applications. One of
their advantages is the use of an abstract notation which
supports advanced structure and navigation issues. On the
other hand, XML is an adequate notation to represent
different contents and publish them in a Web
environment. Linking both aspects is one of the main
purposes of the current work.

This paper presents XEDU, a framework to represent
XML-based didactic resources and to organise them and
their multiple relationships by means of a hypermedia
model. In this case, we have selected Labyrinth [6] as the
hypermedia model, since it provides elements to model
interactive contents, virtual objects created at runtime,
multimedia presentations where contents can be aligned
and synchronised, personal views and user’s access
control mechanisms; features all of which can be used to
increase the usefulness of educational hypermedia
environments. XEDU provides a set of abstract didactic
structures and the interface to associate them either to
XML-based contents and other complex didactic
resources such as simulators.

The remainder of the paper is organised as follows.
Section 2 describes some works related to the application
of hypermedia environments in educational applications.
Section 3 shows the main concepts of the Labyrinth
model and section 4 describes the XEDU framework and
how it is based on the Labyrinth entities. Section 5
describes the XEDU authoring and publishing
mechanisms and section 6 shows an example. Finally,
section 7 presents some remarking conclusions.

2. Related work

While conventional data-oriented environments allow
the management of information, hypermedia
environments add the ability to manipulate structures
among this information. Nürnberg and Tochtermann [7]

2

classify hypermedia architectures for educational
applications in closed and open hypermedia systems.

Closed hypermedia systems are divided into two parts:
the hypermedia engine and the data store engine. The
hypermedia engine implements in a unique process the
front-end part, the link service and the storage mapping.
The data store engine may be any kind of process that
serves data (e.g. a file system, a database, an HTTP
daemon, or a ftp daemon). Current WWW browsers are
examples of closed hypermedia systems and there are
multiple educational proposals based on such systems
[8][9]. They are simple to build, using HTML documents,
and their access via WWW browsers is easy and very
popular. However, such systems do not separate the
document structure from its content and this hinders a
convenient navigable structure that would help users to
construct a coherent mental representation of the
educational information. Moreover, closed hypermedia
systems are difficult to maintain and reuse.

On the other hand, open hypermedia systems (OHS)
split the hypermedia engine into several independent
parts: clients that would correspond to the front-end part
in closed systems, structure servers representing the link
services and hyperbases that correspond to the storage
mapping part. The key difference is that there can be a set
of structure servers, each one with a different
functionality and representing several client views of the
educational information. There are few WWW-based
environments for authoring and publishing educational
applications using OHS concepts. Gentle [10] is the most
representative environment example which is based on
the Hyperwave server. Hyperwave is a sophisticated
hypermedia server that provides features such as access
control on a document-by-document basis and link
independence from documents. It comes from an early
hypermedia model called HyperG.

Many other hypermedia models have been developed
but few of them have been implemented on WWW
educational environments which are close to the OHS
features [11][12]. WebCosm [13] intends to integrate link
services into the document delivery service but they are
not specific to educational topics. Helic [14] uses
concepts as hypermedia composites to define different
classes of educational applications. Each class has the
predefined navigational structure and the visualisation
that best match the application requirements, although the
data contents are also stored as HTML documents.
Another approach for applying OHS for educational
purposes is based on the use of adaptive hypermedia
systems [15] as a way to adapt the content and the links of
hypermedia pages to the user requirements.

The current work aims at using hypermedia models
which enable OHS features such as separation between
structure and contents, and open link services. Next

section describes Labyrinth as the hypermedia model we
have selected in this paper.

3. The Labyrinth model

The Labyrinth model [16][17] provides formal
elements to describe the static structure and dynamic
behaviour of this kind of non-linear, multimedia and
interactive applications. Labyrinth represents a
hypermedia application or hyperdocument by means of a
Basic Hyperdocument which includes the elements that
can be accessed by all users. The access to this
hyperdocument is controlled by means of a security
mechanism aimed at safeguarding the information
confidentiality, by means of access control lists, as well as
integrity by means of context-dependent user abilities
[18]. For example, a student can maintain private data
within the hyperdocument by denying access to the rest of
users. Moreover, users are granted access capabilities for
the hyperdocument elements in such a way that the same
instructor can be allowed to modify only his lessons. In
addition, each user or group can have a Personalised
Hyperdocument in which the components of the Basic
Hyperdocument are modified, deleted or created to fulfil
the user requirements. For example, an educational
hyperdocument can be adapted to the student's knowledge
in order to support an individualised learning process
using personalised hyperdocuments whether for
individual users or groups representing a specific learning
style.

A Labyrinth hyperdocument is composed by the
following elements: users, nodes, contents, anchors, links,
attributes and events. The user set includes the possible
users (e.g. instructors and students in an educational
application), as well as the groups that can be identified
(e.g. courses, students profiles). A node is defined as an
information container which structures the set of didactic
resources and a content is the entity that represents a piece
of information. Contents can be placed in the nodes but
they are maintained as separated entities. This separation
between structure and content permits sharing contents
among nodes teaching different subjects as well as having
nodes related to the same subject but which differ in the
number or the depth of their contents. Labyrinth also
provides composition mechanisms to model complex
structures. For example, aggregation allows different
elements to be referred to by means of a single composite
element and generalisation defines a composite element
whose components inherit all its properties. Other key
concepts in a hypermedia system are anchors and links.
An anchor in Labyrinth determines a reference locus into
a node or a content. A link is a uni or bi-directional
labelled connection between two sets of anchors, sources
and targets. Four types of links are defined in Labyrinth:
referential, aggregation, generalisation and version. The
referential type is used to represent arbitrary connections

3

between elements (nodes or contents) while the other ones
are used to create composite objects from the primitive
nodes or contents (e.g. to aggregate related nodes such as
those that describe the problems of a certain topic or to
group the temporal versions of a program content).
Version links can be very useful in educational
applications, particularly to support co-operative work.
Labyrinth attributes are properties that are associated to
users, nodes, contents and links in order to increase their
semantics. There are no restrictions in the number of
attributes for each element of the model, although some of
them have mandatory attributes. For example, useful
attributes in an educational hyperdocument can be the
subject a node deals with or its educational category, and
the level of difficulty of a question. Finally, any Labyrinth
element can be associated with a given action when such
element is accessed and certain conditions occur. This
dynamic behaviour is modelled by means of events which
can be used to define interaction mechanisms as in [17],
where a crossword exercise in the Now-Graduado
educational application was implemented using
Labyrinth. Moreover, events set the basis for the
definition of virtual objects created at runtime. For
example, adaptive links which are presented only when
the student has acquired a certain level of knowledge as in
Interbook or elm-art [15], can be modelled by means of
an event tied to the node where the link has to be
embedded.

The Labyrinth model was selected to develop XEDU
for several reasons. On the one hand, this model, that has
been successfully applied in some educational examples
[19][20], makes a clear distinction between structure and
content that does not appear in reference hypermedia
models like Dexter [21]; a separation which, underlying
the development of XML, is easy to implement using this
markup language. On the other hand, there are several
features of this model which can help to create useful
educational environments, including:

1. The use of personal views to support individual and
cooperative work spaces.

2. The separation between contents and links, which
makes the hyperdocument easier to maintain.

3. The possibility of creating links anchored in any kind
of content.

4. The inclusion of mechanisms to create multimedia
presentations in which elements can be organised in
the space and time.

5. The possibility of including properties to categorise
the different elements.

6. The use of events to define interactive behaviours
and virtual objects.

7. The ability to establish a security policy where the
rules to access the hyperdocument are defined.

4. The Xedu framework

The XEDU framework is based on an OHS model
whose internal structure is shown in Figure 1. The three
main parts of this model are: Client Interface, Structure
Server and Data Mapping.

4.1 Didactic structures

The Client Interface level allows users to access the
XEDU services and it offers two kinds of services:
authoring and publishing didactic structures. Didactic
structures are hypermedia composites used to gather
educational resources. They represent the higher
abstraction level in the design of an educational
application and they can be assigned to different
navigational modes (sequential, hierarchical, relational, or
adaptive [15]), as well as distinct presentation styles.

Instructor user

authoring

Student user

publishing

Client
Interface

Data
Mapping

Structure
Server

Didactic structures

Electronic book Questionnaire Curricula
Interactive

lesson

XML-based Labyrinth entities

XML-based contents

Node

Content

Anchor

Link

Glossary
Animation

Form
Simulation

Question

Figure 1.- XEDU internal structure.

Didactic structures can be used by instructors and
teachers to organise their educational material and to
develop new resources. They mainly differ from the
entities proposed by Helic [14] in the higher abstraction
level hiding the underlying hypermedia model, and the
fact that XML is used either to implement the own
didactic structures and the final contents, instead of
HTML documents. These XML-based contents are
managed in the lower XEDU level (Data Mapping). The
relationship between didactic structures and XML-based
contents is defined in the Structure Server level.

The Client Interface level includes several examples of
didactic structures which can be divided into two
categories. "Standard" didactic structures such as
electronic books and questionnaires represent the first
category and they are based on proposals coming from

4

institutions or consortiums [5], [22]. The second category
is represented by "ad hoc" didactic structures which can
be developed by the own instructor for a particular
purpose. For example, the curricula organisation on a
given topic or an interactive lesson to check the student
knowledge about this topic.

4.2. Implementing didactic structures

Didactic structures are implemented in the XEDU
Structure Server level using a XML-based version of the
Labyrinth hypermedia model. A didactic structure is
represented by means of a Labyrinth node. The
aggregation node property is used to define the full
hierarchy of this structure. The navigational mode
assigned to the structure is based on Labyrinth entities
such as anchors, links and events. As an example, Figure
2 shows the structure of a curricula organisation defined
in the Client Interface level as a Curricula node [23].

Curricula

Description

Unit 1

Unit N

...

Questionnaire

Glossary

References

Content 1

Content M

...

Content M'

...

Lesson

Description

Question A

Question B

...

Figure 2.- Didactic structure example
In this example, the Curricula node aggregates the

Description, Unit (1..N), Questionnaire, Glossary and
References nodes which can also contain other nodes
making a complex hierarchy. For example, a Unit can
aggregate Content nodes. Down arrows represent these
aggregation links which provide the structural view of the
didactic resource. A node can be also generalised to
define a composite element whose components will
inherit all its properties. For example, several Units can
be instantiated from a common Unit template.

There is another didactic structure (Lesson) involved in
the example. The Lesson node forms an aggregation with
a single component (Description). It also has a set of

referential links (left arrows) which represents the
navigational mode. The mode selected in the example is
based on navigating through certain Content and Question
nodes in a sequential way. Such navigation is addressed to
evaluate a given competence about a topic. It means that
there is a precedence relationship between the component
nodes in such a way a node cannot be accessed before the
previous one. If a different navigational mode is required,
for example a free access to these nodes, a new referential
link path has to be configured.

4.3 Managing contents

The interface between the XEDU didactic structures
and the XEDU contents is based on the Labyrinth content
concept. Labyrinth permits representing several types of
multimedia contents such as text, images, or audio, as
well as the possibility of defining as many representation
spaces as needed for each content. This feature allows us
to obtain different views for the same educational content.
For example, if the content of a unit section is organised
in paragraphs, the first paragraph can be used to prepare a
slide presentation.

XEDU integrates content types which are not
considered in the original Labyrinth model. That is the
case of XML-based contents and other complex didactic
resources such as simulators or animations. Content
management in Labyrinth is based on defining anchors
using predefined units depending on the content type (e.g.
seconds and frames for a video, or characters and
sentences for a text). Supporting these new content types
requires other ways to specify anchors in a content. For
example, a question content which is a component of one
or more questionnaire didactic structures. It can be
implemented in a XML document with a certain type
definition. This definition can include several versions of
the same question depending on the difficulty level.
Publishing such question requires locating the appropriate
version according to the desired difficulty.

The Labyrinth unit concept is not enough to locate
anchors in content types which have their own inherent
structure. The XEDU alternative is to adapt the Labyrinth
model to allow the management of these contents,
preserving their own format. The Labyrinth XML-based
version permits to define anchors on every content
element even for those which are a component of a XML-
based content. Anchors can also be defined as program
components representing data structures and functions
visible to other contents. This feature is useful to specify
active contents in XEDU such as simulations or
animations [24].

There is also a dynamic view in the Structure Server
level, related to the event management which is also
based on the Labyrinth model. Presentation, navigation
issues and interactive behaviours can be event-driven in
Labyrinth. Events are typically used in XEDU to select

5

the paths that a user can choose to navigate through a
didactic structure or to allow this user to answer a
question content. The actions triggered by a given event,
are operations which are performed on XEDU entities,
e.g. accessing to a certain anchor or “playing” a certain
content. They can be implemented by assigning values to
the entity attributes or by invoking processing functions
which act on these attributes.

The lower level is the Data Mapping which manages
the XEDU contents. They are based on XML documents
that can be stored on conventional databases and managed
via XML Query procedures [25].

5. Authoring and publishing Xedu entities

Section 4 introduces the framework that underlies the
services provided to the XEDU users. Authoring services
are divided into two categories: those addressed to
manage XEDU didactic structures and those services
oriented towards the management of educational contents.
Didactic structures are the basic entities for reusing
educational resources. Therefore, a first authoring step
consists in the generation of the fundamental didactic
structures which can be used to create new structures. For
example, a curricula structure can represent a hierarchy
of theoretical notions, practices and questions which form
the knowledge pool on a given topic. Using this pool, the
instructor can define structures such as an interactive
lesson described before, an exploratory tutorial which
navigates the unit nodes in a free way or a slide
presentation to be used in a “traditional” classroom. Once
the structure aspects have been modelled, the next steps
will configure the dynamic issues such as the user’s
interaction, the process definition, or the event control.

On the other hand, the management of educational
contents assumes that these contents have been
implemented and they only have to be adapted to the
XEDU requirements. This adaptation process is
straightforward when using XML-based contents, since
they have a given structure. This structure definition can
be used to locate anchors and define links in high-level
entities such as the didactic structures. Several XML-
based languages such as MathML [26], SVG [27] or
SMIL [28] allow to implement different types of contents.
Moreover, standard educational resources such as
questionnaires [5][29] have predefined DTD's. Otherwise,
XML formats can be developed for specific purposes.
XEDU also considers other educational resources such as
simulators which can be implemented using design
methodologies like object-oriented method [30]. In this
case, the adaptation process is straightforward too.

Publishing XEDU entities is a service that allows
students or teachers the access to didactic resources. The
service implementation is only a function of the delivery
media. The platform independence property is one of the

advantages of using hypermedia structures and XML-
based contents. Figure 3 shows an implementation based
on a Web medium. It implements authoring and
publishing services using Java "servlets". These servlets
are based on libraries specialised in processing XML
documents [31] and they run on a standard Web server
like Apache [32]. The inputXEDU servlet receives XEDU
documents which are sent by instructors or course
managers using a Web browser. On the other hand, the
XEDU rendering can be based on specialised servlets
(viewXEDU) or standard XML-processing servlets.

XEDU
databaseWeb Server

XEDU
processing

XEDU
authoring

XEDU
publishing

HTML

PDF

WML

...

Servlet
inputXEDU

Servlet
viewXEDU

Servlet
Cocoon

XEDU tools (DTDs, XSL
scripts, Java programs)

Figure 3.- XEDU management system.

Servlets are connected to the XEDU processing
section. Figure 3 shows that this section processes either
the input and the output XEDU documents. The input
XEDU documents can be validated using DTD elements
or stored in the XEDU database. The output XEDU
documents can be formatted using XSL scripts or through
Java programs which process the XEDU entities using
XML parsers.

6. Application example.

In this section we present an example based on a
common topic in computer teaching: the main memory.
Among the different points of view this topic can be
described (such as hierarchy, physical access, or operating
system) we have selected the operating system. Figure 4
shows a block diagram of an interactive lesson structure
associated to the example. The lesson includes text
definitions, images, animations, input forms, simulation
programs, questions, glossary, and references, but only
some of these contents are shown. They are grouped into
node structures using location functions which are
represented by means of dotted lines and right arrows. For
example, the Introduction node has contents such as Basic
Concepts, or Memory definitions. Aggregation links
(down arrows) are used to set up the node hierarchy and
referential links (left arrows) represent concept
relationships which can be navigated through. All these
hypermedia elements have been implemented by means
of XML documents in the XEDU framework as explained
below.

6

Memory
management

Introduction

Known
 problems

Basic techniques

Memory image
animation

Memory
parameter input

Address
binding

Protection
problem

Space
problem

Contiguous
allocation

Disperse
allocation

Description

Simulator

Basic
concepts

Memory
definitions

Figure 4.- XEDU Memory Management specification.

6.1. Implementing the didactic structure

The Memory Management node is the hub node in the
specification. It aggregates a set of nodes describing basic
issues about the memory management topic such as
Introduction, Known Problems or Basic Techniques.
<Node> id="GM-intro" category="browsing"

<label>Memory Introduction</Label>
</Node>

a) Node XML document

<Content>
id="GM-BasCon"
category="browsing"
type="text"
units="paragraphs"
target="Introduction/MemoryBasicConcepts">

<label> Memory basic concepts</Label>
<author>Félix Buendía García</Author>

</Content>

b) Content XML document

<Location Node="GM-Intro">
<content target="GM-BasCon">

<position coordinate ="…" />
<time start="…" duration="…" />

</content>
<content target="GM-DefMem"

<position coordinate ="…" />
<time start="…" duration="…" />

</content>
<content target="GM-MemPar"

<position coordinate ="…" />
<time start="…" duration="…" />

</content>
</Location>

c) Location function XML document

Figure 5.- Didactic structure specification.

Each one of these nodes can aggregate other nodes or
they can have multiple contents. Figure 5a shows an
example of XML document associated to the
Introduction node. It groups a set of contents to
illustrate the model implementation. The node XML file
has two attribute values: GM-intro that is the node
identifier (id) and a browsing category that represents
how the node is accessed. An additional label element is
used to supply a short description.

An example of content specification is represented in
Figure 5b. It is identified as GM-BasCon and its category
is defined as browsing. The type attribute represents the
kind of information the content stores. The example uses
a text format that is organised into paragraph units.
The target attribute locates the content data using a XPath
expression [33], providing a unique location for any
XML-based didactic resource. Additional elements are
the label that provides a short description and the
content author.

Nodes and contents are related using the Labyrinth
location function. Figure 5c shows the location function
associated to the Introduction node. For each content,
there is a target attribute that identifies it. The position
and time elements define its space and temporal co-
ordinates inside the node.

6.2 Implementing the navigational structure

As stated above, the anchor specification depend on the
content type. In the case of a text content such as the one
specified in Figure 5a, the anchor is located using the
paragraph unit or whatever other unit implicit to this kind
of content. If the content has an explicit XML structure,
the anchor location is based on Xpointer mechanisms[33].
This is the case shown in Figure 6a, which represents the
data of an input form content identified as GM-MemPar
(see Figure 5c). It has two elements: an input field
identified as i1 and a control item identified as c1.
<Form>

<input id="i1" type="text" name="Memory size">
<control id="c1" type="button" name="Update">

</Form>

a) Form content XML document
<Anchor id="Fm-i1" >

<content target="GM-MemPar">
<position value= "i1">

</Anchor>
b) Anchor definition XML document

<Link
id="Tx-Fm"
type="referential">

<source id="Tx-p1">
<target id="Fm-i1">

</Link>

c) Link definition XML document

Figure 6.- Navigation structure specification.

The i1 element has a text type that enables it to enter
text data and a Memory size name that describes the

7

input content. Analogously, the c1 element has a button
type that enables it to receive click events and a update
name that is associated to this button. This input field is
used to assign a memory parameter such as its size, using
different measure units (e.g. bytes, Kbytes, Mbytes) and
the control item adds the possibility to submit the
introduced value to other content (e.g. the Memory
image animation content). This form content can also
be adapted to other memory parameters, by defining a
general content which can be instantiated through the
Labyrinth generalisation property.

Figure 6b shows a document in which the Fm-i1
anchor points to the input field identified as i1 in Figure
5a. The attribute target points to the GM-MemPar content.
The exact anchor position within this content is given by
the value attribute.

Links are used to connect nodes, contents or both of
them. Figure 6c presents an example of link specification.
In this example, a link is set up between the Tx-p1
paragraph located in the Memory definition content as
source anchor and the Fm-i1 text input box defined as
target anchor. The type attribute identifies the link
category which corresponds to a referential type in the
example. It refers a bi-directional link associated to the
memory size concept. It means that such link is triggered
if any source or target anchors is accessed. The link
purpose is to relate a theoretical notion with a more
practical view of this notion, or vice versa.

Another link example is shown in Figure 7. In this
case, an uni-directional referential link is used to
represent the relationship between the Memory
parameter input and the Memory image
animation contents. This relationship is addressed to
display a memory area image whose size is a function of
the Memory size input field value. It also determines the
physical address range. This dynamic interaction is
specified using Labyrinth events. When the Update
button is pushed, a click event triggers the link behaviour
causing the access to the set_size anchor defined in the
Memory image animation content. As a consequence,
the set_size() function is executed.

The set_size() function is an interface component
associated to the data pointed by the content. These
content data are implemented as a SVG [27] document
that is written in XML. Using SVG, graphics can be
coded directly into an XML document. SVG works by
assigning attributes to SVG elements. For example, the
element identified as Range has a Data attribute and its
value is assigned using the Memory size input
parameter (see Figure 7).

Node GM_Intro

The memory size
determines the

GM_MemPar
Memory size

Update

GM_MemAnim

set_address

set_size

GM_DefMem

Memory is a large
array of words ...

...

GM_BasCon

Main Memory is a
central computer
component ...

computer
memory
situation

Figure 7.- GM view.

Figure 8 shows the Javascript code of the set_size()
function. It acceses DOM (Document Object Model)
elements that are part of the published HTML document.
Details about the publishing process are described below.
The DOM elements in the example are Memory and
Transf. Memory element represents the SVG document
whose Range component will be updated using the
setData function. The update input value comes from
the Transf element.
function set_size()
{

var svgobj;
var svgdoc = document.memory.getSVGDocument();
svgobj = svgdoc.getElementById('Range');
svgobj = svgobj.getFirstChild();
number = document.transf.size.value;
svgobj.setData (number-1);
set_init_address ();

}

Figure 8.- Document access using a Javascript
function.

6.3 Publishing the application example

Once the XEDU didactic resources have been coded as
XML documents, the next step is publishing them. This
process is explained taking the Introduction node as
reference and using a XSL template that allows the access
to the content components.

The system invokes the xlaby2html-simple-

content template that works as a function with an input
parameter that represents the target XML document.
Other parameters such as position and time are included
to define the content presentation. The template is
responsible for processing the content data depending on
its type. In such a way, a XEDU text content can be
converted to an HTML document. For example, the
content label and Author elements are formatted as
HTML headings while the content data are displayed as
HTML paragraphs.

8

7. Conclusions

The paper has presented XEDU as a framework based
on a three level OHS architecture, addressed to develop
XML-based didactic resources. An important aspect is the
use of a hypermedia model like Labyrinth as a
specification notation that underlies the XEDU
framework. This feature is currently applied to define
abstract didactic structures helping the instructor in
authoring tasks. The main advantage is the possibility to
reuse these structures into new ones. Another contribution
of the paper is the revision of the Labyrinth model in
order to make possible the access to XML-based contents.
This allows the instructor to take advantage of multiple
didactic resources already implemented.

The paper also proposes a system for authoring and
publishing XEDU resources based on standard Web
servers like Apache and Java servlets. The XEDU
framework is being applied in several university projects.
The Theiere project involves 80 European University
institutions aiming at harmonising the curricula in EIE
(Electrical and Information Engineering) throughout
Europe. The experience in this project will evaluate the
benefits of using XEDU-based didactic resources. Further
works are addressed to analyse Web performance issues
related to the XEDU application in education
environments, as well as, to check sophisticated
navigational modes like adaptive schemes.

8. References
[1] XML Extensible Markup Language, http://www.w3.org/XML/
[2] M. Campos, J.Benedito, and R. Pontin. "Tools for authoring and

presenting structured teaching material in the WWW," Proc. of the
Webnet98, Orlando, Nov. 1998 http://www.icmc.sc.usp.br/~mgp/
webnet98/

[3] EML (Educational Modelling Language), http://eml.ou.nl/
introduction/

[4] Y. Bourda, and M. Hélier, "Applying IEEE Learning Object
Metadata to Publishing Teaching Programs," Proc. of the World
Conference on Educational Multimedia and Hypermedia ED-MEDIA
99, http://wwwsi.supelec.fr/yb/publis/edmedia99.html

[5] IMS Global Learning Consortium, http://www.imsproject.org/
[6] P.Díaz, I. Aedo, and F. Panetsos, "Labyrinth, an abstract model

for hypermedia applications. Description of its static components,"
Information Systems. Vol.22 , No.8, pp. 447-464, 1997.

[7] P. J., Nürnberg, and K.A Tochtermann, "Comparison of
hypermedia architectures for educational applications," Proc. of the
World Conference on Educational Multimedia and Hypermedia
EDMEDIA 98, Freiburg, Germany, Jun. 1998.

[8] C. Steed. Web-based training. Ed. Hampshire, 1999.
[9] T. Ebner, and C. Magele, “Design and Implementation of

Interactive, Web Based Courses,” Proc. of the WebNet99, AACE,
Charlottesville, VA, USA, 1999.

[10] H. Maurer, Th. Dietinger, “How Modern WWW Systems
Support Teaching and Learning,” Proc of the ICCE 97 (Ed. Z. Halim,
T. Ottmann, Z. Razak), Kuching, Sarawak Malaysia, December, 1997,
pp 37–51.

[11] H. Davis, G. Hutchings, and W. Hall, “Microcosm: A
Hypermedia Platform for the Delivery of Learning Materials,”
http://www.bib.ecs.soton.ac.uk/data/1332/html/html

[12] E. Duval, H. Olivié, and N. Scherbakov, “Contained
hypermedia,” The Journal of Universal Computer Science, Vol.1, no.
10, pp. 687-705.

[13] L. Carr, D. De Roure, and G. Hill, Ongoing Development of
an Open Link Service for the World-Wide Web,
http://www.ecs.soton.ac.uk/~lac/tr1/tr1.html

[14] D. Helic, “Authoring and Maintaining of Educational
Applications on the Web,” Proc. of the World Conference on
Educational Multimedia and Hypermedia ED-MEDIA 99.

[15] P. Brusilovsky, “Adaptive Educational Systems on the World-
Wide-Web: A Review of Available Technologies,” Proceedings of
Workshop WWW-Based Tutoring at 4th International Conference on
Intelligent Tutoring Systems (ITS'98), San Antonio, TX, August,
1998.

[16] P.Díaz, I. Aedo and F. Panetsos, Labyrinth, an abstract model
for hypermedia applications.Description of its static components.
Information Systems. Vol.22, No.8, 1997, pp. 447-464.

[17] P.Díaz, I. Aedo and F. Panetsos, “Modelling the dynamic
behaviour of hypermedia applications,” IEEE Transactions on
Software Engineering , vol 27 (6), June 2001, pp. 550-572.

[18] P.Díaz, I. Aedo and F. Panetsos, Definition of integrity
policies for hypermedia systems. "Integrity and Internal Control in
Information Systems Strategic Views on the Need for Control". Eds.
Margaret E. van Biene-Hershey y Leon A.M. Strous. Kluwer
Academic Publishers. 2000..85-98.

[19] P.Díaz, I. Aedo and F. Panetsos, “Design of an Educational
Hypermedia Application using the Labyrinth formal model,” Proc. of
EDMEDIA/EDTELECOM 97, 1997.

[20] A. López-Rey, F.Panetsos, M. Castro, and J. Peire. Utilización
del modelo Labyrinth en el diseño de la aplicación Now-meta.
Congreso Nacional de Informática Educativa (CONIED'99)",,
Puertollano, Spain, Nov. 1999

[21] F. G. ,Halasz, and M. Schwartz, “The Dexter Hypertext
Reference Model,” Proc. of World Conference of Hypertext, 1990, pp.
95-133.

[22] DocBook, http://www.oasis-open.org/docbook/
[23] F. Buendía, J.V. Benlloch, J.A. Gil, M. Agustí. XEDU, a

XML-based framework for developing didactic resources. EAEEIE’
01 Annual Conference on Education in Electrical and Information
Engineering. May 2001 Nancy.

[24] F. Buendía, J.V. Benlloch, and J.M. Soriano. Development of
didactic resources for distance learning based on simulation.
Computers and education: towards an interconnected society. Editors
M.Ortega and J. Bravo, Kluwer Academic Publishers 2001 (in press).

[25] XML Query, http://www.w3.org/XML/Query
[26] MathML Mathematical Markup Language,

http://www.w3.org/Math/
[27] SVG Scalable Vector Graphics, http://www.w3.org/Graphics/

SVG/Overview.htm8
[28] SMIL Synchronized Multimedia Integration Language,

http://www.w3.org/AudioVideo/
[29] T. Ferrandez. Development and testing of a standardized

format for Distributed learning assessment and evaluation using XML.
Phd Thesis http://cran.mit.edu/~vernier/teresa/Thesis.html

[30] F. Buendía, M. López, I. Blesa, and J.V. Benlloch. Using
Hypermedia Techniques for Developing Object-Oriented CourseWare
about Computer Systems. EAEEIE’ 97 Annual Conference on
Education in Electrical and Information Engineering. Jun. 1997
Edinburgh.

[31] H. Maruyama, K. Tamura, and N. Uramoto. XML and Java.
Developing Web Applications. Ed. Addison Wesley, 2000.

[32] Apache XML Project, http://xml.apache.org/
[33] XML Pointer, XML Base and XML Linking,

http://www.w3.org/XML/Linking

