
Handling Backtracking in Web Applications

Bettina Biel, Matthias Book, Volker Gruhn, Dirk Peters, Clemens Schäfer
Chair of Applied Telematics/e-Business, Dept. of Computer Science, University of Leipzig

Klostergasse 3, 04109 Leipzig, Germany
{biel, book, gruhn, peters, schaefer}@ebus.informatik.uni-leipzig.de

Abstract

A common challenge in the development of web appli-
cations today lies in the handling of unforeseen navigation
steps initiated by the user through the browser’s Back, For-
ward and Reload buttons. These operations break the syn-
chrony of dialog states on the server and the client, provok-
ing non-intuitive and possibly destructive application be-
haviour if not properly handled. We therefore present an ap-
proach to handling Back and Forward navigation that real-
izes undo/redo semantics and illustrate its implementation
using the example of a web-based conference management
system. The presented approach is subsequently discussed
with regard to its general applicability and alternative han-
dling semantics.

1. Introduction

Web-based user interfaces (UIs) have become increas-
ingly popular for client-server applications since they avoid
a number of issues that window-based graphical UIs face in
this sector: Web-based interfaces can be easily implemented
in such a way that they can be displayed on a wide variety
of hardware and operating system platforms, and they do
not require any code to be executed on the client besides a
web browser. The latter characteristic is probably the most
important benefit, since it relieves users from the need to
download and install any additional software on their sys-
tem, which they may be reluctant or unable to do because
of insufficient skills or security considerations. Web-based
UIs are also attractive out of technical considerations, since
they allow the construction of ideal thin clients that only
render a user interface from a given description, but rely on
the server to run the actual application and host all logic.

This is an important difference between client-server ap-
plications and window- or web-based UIs: While window-
based applications still require some presentation logic on
the client that reacts to events and handles them using call-
backs to the server-side business logic, a web-based applica-

tion runs completely on the server. The UI displayed on the
client merely consists of pages rendered according to spec-
ifications (e.g. in Hypertext Markup Language (HTML))
generated by the server-side presentation logic. Due to the
stateless nature of the Hypertext Transfer Protocol (HTTP)
that is responsible for communicating data between the pre-
sentation logic and the browser rendering the user interface,
their separation goes so deep that all user activities would
seem like unrelated events to the presentation logic if de-
velopers did not implement additional measures to estab-
lish a session context spanning multiple pages and process-
ing steps.

In the following subsections, we first show how the de-
coupling of UI generation and rendering can introduce di-
alog synchronization issues that lead to challenges when
handling backtracking, and give an overview of related ap-
proaches to this problem. In section 2, we then present our
approach to the identification of backtracking and reestab-
lishment of dialog state synchrony, using the concrete ex-
ample of the Paperdyne Conference Management System.
In section 3, we will discuss generalizations and limitations
of this approach, and present an overview of other ways to
handle backtracking in web applications.

1.1. Dialog Synchronization Issues

The decoupling of UI generation and UI rendering would
not be a problem if all possible ways of interacting with the
UI could be specified at the time of page generation, i.e.
if the links and buttons on a page would be the only wid-
gets through which the user can interact with an appliction.
On the web, however, this is not the case, since browsers of-
ten provide a number of additional widgets that enable users
to interact with the application’s user interface in uncontrol-
lable ways. Typical features offered by browsers are:

1. Closing the browser window or requesting an external
page1

1 We define anexternal pageas any page not generated by the applica-
tion’s presentation logic.

2. Requesting a page through a previously set bookmark
or a link from an external page

3. Cloning the browser window to obtain two user inter-
faces for the same session

4. Clicking the Reload button

5. Clicking the Back or Forward buttons

This way, the user can effectively perform the following
operations that the presentation logic can neither allow nor
forbid:

1. Leaving the application

2. Jumping to a certain page out of context

3. Performing parallel operations in different contexts

4. Repeating the request for the current page

5. Recalling previously rendered pages

These operations may cause serious problems for the
application—not so much because they are unpredictable
and uncontrollable, but rather because they break the syn-
chrony between the server- and client-side state of the di-
alog system.2 Usually, the client-side dialog state is deter-
mined by the server-side dialog state through the presenta-
tion logic’s generation of pages to be rendered. Thus, the
presentation logic always knows which state transitions it
can currently expect to come in from the client. The above
operations, however, change the client-side dialog state in a
way that either cannot be detected or is not expected by the
presentation logic (with undetected changes leading to un-
expected changes sooner or later) [7].

Since these operations are not uncommon (clicking the
Back button, for example, is the second-most frequent user
activity after clicking on a link [3]), they cannot be dis-
regarded as special cases, but should be treated as prop-
erly as regular clicks on links. They should at least be han-
dled gracefully, i.e. in a way that does not break the system,
but leads it to a well-defined error or fall-back state. While
not really satisfactory from the user’s perspective (since the
page he intended to reach is not displayed), this mecha-
nism is implemented in most applications today. However, it
would be even better if backtracking could not only be han-
dled gracefully, but actuallysensiblyin the current appli-
cation context (where the definition of “sensible” depends
on the reaction that the user would intuitively expect from
the system; usually displaying the previous page). While a
graceful handling should be feasible on a purely technical
level, a sensible handling poses more of a challenge since it
must take the application semantics into account.

2 We define thedialog stateas the currently displayed page and the set
of possible transitions to other dialog pages.

Of the uncontrollable operations listed above, only the
first one is uncritical: Even when the application logic can-
not detect right away that a user left the application, a time-
out mechanism can sooner or later trigger all necessary
steps to terminate his session. A graceful handling of the
second case (jumping to a page out of context) can be ac-
complished by redirecting the user to a well-defined starting
point, such as the application’s home page. Alternatively,
for a semantics-aware handling, the system needs to decide
if the requested page can serve as a valid entry point into
the application, and possibly allow the direct jump.

Parallel operations in cloned windows (case 3) pose both
a technical and a semantic challenge: Firstly, even if the pre-
sentation logic is capable of distinguishing user activities in
the different window instances (i.e. if it can manage mul-
tiple client-side dialog states in the same session), it still
needs to deal with potential semantic conflicts (e.g. when
the user is assuming different roles with different privileges
in different windows). We are still examining the implica-
tions of this scenario and are working on dialog control al-
gorithms for managing it.

1.2. Challenges when Handling Backtracking

In this paper, we will focus on the handling of cases
4 and 5—repeating recent requests for the same or previ-
ous pages through use of the Back, Forward and Reload
buttons. While these operations break the synchrony be-
tween client- and server-side dialog state, they do so ac-
cording to the known semantics of stacks, which enables
the presentation logic to use the same semantics for solv-
ing the two-fold problem of identifying their occurence and
re-synchronizing the dialog states.

However, the problem is exacerbated by the fact that
backtracking may occur in two ways, one of which is un-
detectable by the server: When the user clicks the Back but-
ton, the browser may either resend the previous request to
the server, where it can be handled by the presentation logic;
or the browser may simply retrieve the previously displayed
page from its local cache without contacting the server. The
decision whether to resend the request or just redisplay the
cached page depends on a number of factors such as the
HTTP method (GET or POST) used to send the request, any
caching directives contained in the page’s header, and the
user’s configuration of the browser’s cache size and caching
strategy [4]. There does not seem to be a way that eliminates
caching altogether and reduces the backtracking problem to
the simpler case of resent requests. With local caching, how-
ever, the user may backtrack a number of steps before the
server becomes aware of it, so the unsynchronized dialog
states may diverge by a number of steps before the server
has the opportunity to fix the problem.

Note that even when the browser resends requests during

backtracking (so that the presentation logic becomes aware
of it right away), handling the repeated requests is still not
trivial, since they may not simply lead to a page that dis-
plays information, but might also trigger the re-execution
of certain application logic operations that could cause side
effects by changing the data model. In order to avoid po-
tentially destructive re-executions of certain operations (e.g.
duplicating transactions), the presentation logic may need
to intercept resent requests, skip all application logic oper-
ations and only display the page that ultimately ends the di-
alog step.

A
i == 0

B
(i == 1)

C

D

b1 c

d

Back

1
(i++)

b2

A
(i == 0)

B
(i == 1)

C
b1 c1

(i++)

b2

B
(i == 2)

D
d1

(i++)

b2

Back

 b1

Backtracking in Cache

Backtracking on Server

Figure 1. Backtracking in Cache vs. on
Server.

Figure 1 shows both the case of backtracking in the cache
and on the server in the Dialog Flow Notation (DFN) [2],
using solid arrows for requests and dashed lines for clicks
on the Back button. To illustrate the breaking of the dia-
log sequence caused by backtracking, the sequence contin-
ues on a new timeline in those instances. If we assume that
the contents of a variablei are displayed on pagesA andB
and incremented in operation1 in between, backtracking in
the cache fromC will renderB with the same value ofi as
before. However, if backtracking fromC repeats the previ-
ous request, the server-side operation incrementingi is re-
peated, leading to a pageB with a different value fori.

1.3. Related Work

Back navigation on the web is discussed in many pub-
lications, however mainly describing user behavior when
browsing and searching the web, and proposing new im-
plementations of browsers’ Back and history functionality.

Shubin and Perkins [8] analysed conflicts within the con-
ceptual model developed by users working with the desktop
instead of the web, and their resulting impression of back-
tracking. As Tauscher and Greenberg have found [9], 30
percent of web navigation activities are Back button clicks.
This reflects the results of Catledge and Pitkow [3], under-
lining the importance of the problem.

From the browser’s point of view, Cockburn and Jones
[4] analysed navigation facilities provided by web browsers,
and described the resulting usability problems. They pro-
pose browser extensions such as dynamically adapting to
the users’ browsing actions. Cockburn and Greenberg [5]
propose several recency-based behaviors as alternate imple-
mentations for backtracking.

Regarding backtracking from the server’s point of view,
Baresi et al. [1] use assertions to specify the navigation
problems resulting from the use of the Back button. At
amazon.com, for example, a user who adds a product to
a shopping cart and then goes back might accidently add
another product. They present a solution to this problem
using assertions that specify web operations: By defining
low-level (atomic) pre- and post-conditions and high-level
(non-atomic) property descriptions, designers should decide
whether a parameter of an operation is set by the current
web page, the current internal state of the application, or
whether both states have to be identical to start an oper-
ation. After illustrating their idea using an OCL example
for the Back button problem, four implementations are pro-
posed. They range from the inspection of the content of a
page to determine if it has become stale, via the prohibi-
tion of browser stacks, to exact definition of pre- and post-
conditions for an operation, and finally to a decision that
the actually shown information is always correct and there-
fore controls the application.

Motivated by an explicit user-centered perspective, our
approach corresponds with the latter idea. It differs in that
we have not used assertions, as Baresi et al. did, but mir-
ror the stack on the server. This way, our approach is able to
return to the old state and its stored data.

2. Handling Backtracking in Paperdyne

In this section, we present how web navigation with
Back and Forward buttons is enabled in a wizard-style di-
alog used to send e-mails with customized form letters by
the conference management systemPaperdyne[6].

2.1. Sending E-Mails in Paperdyne

Paperdyne is a web-based system supporting the orga-
nization of the technical program of scientific conferences.
Paperdyne is used by authors to submit scientific papers, by
referees to download these papers and to write reviews, and

 To: All Authors of Contribution
 Ctr: All Accepted Contributions

Subject: <acronym/>:Notification
Body:
Dear <firstname/>!
Your paper was accepted to be...

 To: All Authors of Contribution
 Ctr: All Accepted Contributions
Add Contributions:

Subject: EurMic04: Notification
Body:
Dear <firstname/>!
Your paper was accepted to be...

C15;C17

General Mail Template

General Mail Form

Question Form
Individual Mail Form

√

 To: All Authors of Contribution
 Ctr: All Accepted Contributions

Subject:
Body:

√

EurMic04: Notification

Dear <firstname/>!
Your paper was accepted to be...

 To: Gottfried Leibnitz
 Ctr: C4

Subject:
Body:

√

Demo04: Notification

Dear Gottfried!
Your paper was accepted to be...

 To: Leonardo Fibonacci
 Ctr: C7

Subject:
Body:

√

Demo04: Notification

Dear Gottfried!
Your paper was accepted to be...

 To: Gottfried Leibnitz
 Ctr: C4

Subject:
Body:

√

Demo04: Notification

Dear Gottfried!
Your paper was accepted to be...

 To: Leonardo Fibonacci
 Ctr: C7

Subject:
Body:

√

Demo04: Notification

Dear Gottfried!
Your paper was accepted to be...

 To: Gottfried Leibniz
 Ctr: C4

Subject:
Body:

√

EurMic04: Notification

Dear Gottfried!
Your paper was accepted to be...

 To: Leonardo Fibonacci
 Ctr: C7

Subject:
Body:

EurMic04: Notification

Dear Leonardo!
Your paper was accepted to be...

All 26
mails
sent

Figure 2. Paperdyne Mail Process.

by the program committee chair (PCC) to organize the sub-
mission and reviewing process.

A major task of the PCC is to communicate with au-
thors and referees in different situations and distribute in-
formation. In order to assist the PCC with these commu-
nication tasks, Paperdyne offers a variety of e-mail tem-
plates for standard situations. For example, it is the job of
the PCC to notify authors of accepted papers and include
the review comments in this e-mail. Although this is a stan-
dard e-mail, the PCC might want to add conference-specific
details about preparing a camera-ready copy, as well as in-
dividual comments for authors he knows personally.

This process of sending standard e-mails is basi-
cally simple: A general mail templateis transformed
into a conference-specificgeneral mail form, where
global tags (such as the conference acronym), are re-
placed (see Figure 2). In this general mail form, the PCC
can make global changes. In a second step, each indi-
vidual mail can be edited in theindividual mail form.
Here, individual tags such as the authors’ names are al-
ready replaced. Within the individual mail form, the num-
ber of e-mails might be too large to be all displayed on one
page. An additional navigation mechanism is therefore nec-
essary to browse between the e-mail pages.

The process becomes more complex if the PCC decides
to add or remove recipients in any step. Paperdyne allows to
add users (or referred papers) in thequestion form(see Fig-
ure 2). Thus, the number of steps in the process of send-
ing e-mails is not limited. Since users are likely to click the
Back button sometime while completing it, the system must
provide special mechanisms to handle it.

In the architecture that was designed to solve this prob-
lem, we have two major components. The front-endGUI
and request-handling componentgenerates the web inter-
face and handles and evaluates requests, while the back-end
process componentperforms all necessary mail transforma-

tions. We will describe both components in detail in the fol-
lowing sections.

2.2. The Process Component

The process component’s purpose is to perform transfor-
mations of e-mail contents during the process of sending
e-mails. This component relies on an XML document that
includes mail content and process information.

Initially, the process component receives a general e-
mail template (see Figure 2) and performs a first transforma-
tion to one of the other three template types, depending on
the process information. All other transformations are initi-
ated by the front-end. The type of transformation is based
on the transition, defined by a user interaction and the pro-
cess definition of the XML document. In the transforma-
tion, conference- and user-specific data is inserted into the
XML document, with general tags being replaced by con-
tent as early as possible (in Figure 2, for example, the con-
ference acronym can be inserted within the first transfor-
mation, but user names cannot be fetched before the user
is known). Thus, not only the process transformation is im-
plemented in this back-end component, but also the process
state and accessory template data management.

When clicks on the Back or Forward buttons are detected
by the front-end, the undo semantics of the Back button
affect the process state of the process component, so the
back-end is obviously not stateless anymore. Our solution
for handling backtracking in web applications is the intro-
duction ofback and forward stacks. Handling these stacks
must be a task of the front-end, because only the front-end
can identify and synchronize stack depths with the stack in
the user’s browser, but since back-end states are affected,
the stacks must be stored within the back-end. In our de-
sign, the complete state is held on the stacks in XML doc-
uments that contain process information. With these sim-

ple stacks, undo and redo functionality can be implemented
within the process component.

To realize the undo semantics, the intuitive behavior of
the e-mail component is to move the current state to the
forward stack and and replace it with the top-most state of
the back stack (the redo behavior works vice versa). Unfor-
tunately, client-side caching functionality can prevent the
application from recognizing right away that the Back or
Forward button was clicked. This makes it difficult to dis-
tinguish between reloading and submitting a request. For
the backend, the difference lies in the fact that the forward
cache needs to be deleted when the Submit button is clicked.

On the other hand, it is not really necessary to figure out
which of the buttons was pressed: As long as the user does
not change data in the web form, it is not dangerous to as-
sume that the Forward button was clicked, even if the event
was caused by clicking the Submit button. All the back-end
component needs to do is process the requested transforma-
tion, compare the result with the forward stack and delete
the whole forward stack if the transformation result is dif-
ferent from the top of the forward stack. Of course, with
this approach, the back-end may still keep the forward stack
although the forward cache is not available in the user’s
browser anymore. This is no problem, however, since the
forward stack on the server will be deleted upon the user’s
next submission of a page.

The back-end only provides the trivial functionality of
the two stacks that are used by the front-end, which is re-
sponsible for managing them according to the back and for-
ward stack semantics. After a brief discussion of the inter-
face between the back-end and front-end, we will explain
the front-end’s use of the two stacks in the following sub-
sections.

2.3. The Interface between the Process and GUI
Component

In the last subsection, we showed how transformations
within the e-mail process can be modeled in XML docu-
ments. The front-end needs some of the information in the
XML documents, too. An easy way of providing this infor-
mation would be to let the front-end component access the
XML document. However, this solution would have some
serious disadvantages.

While the XML document for the back-end contains pro-
cess information and mail content, the front-end does not
need the process information. Of course, this problem could
still be resolved by just passing a sub-document to the front-
end. However, doing this would cause unnecessary depen-
dencies between front-end and back-end: The Document
Type Definition (DTD) is designed to allow easy transfor-
mations within the process. Changes within this DTD must

1 1

1 0..*

1 0..*forward

back

1

0..*

1

1

1

1

1

1

1 0..*

1

0..*

1

0..*

1

1..*

1

1

1

To CC

0..*

MailXMLMailTemplate

MailForms

Message

interface

From

Subject Body

interface

User

interface

Contribution

MailForm

RecipientBlock

Figure 3. E-Mail Class Diagram.

be possible without having to adjust the front-end compo-
nent.

In Paperdyne, the front-end interface is therefore de-
signed as a tree of objects (see Figure 3), not as an XML
document. The advantages of XML are not needed here
since it is an internal interface. On the other hand, we need
features like event handling. When passing Java objects, it is
possible to send change events to the back-end and let it per-
form syntactical and semantical checks. Especially within
the general mail form, where XML tags are used as place-
holders, these checks are useful.

The main back-end class is calledMailTemplate ,
and the root class for the interface object tree is called
MailForms (see Figure 3). The necessary child ob-
jects, like Subject or Body , are associated with the
MailForms -Object with the same structure, as this infor-
mation is displayed in the front-end. The back- and for-
ward stacks are managed within theMailTemplate
class as XML documents. This class is able to generate
theMailForms tree with the content ofMailXML docu-
ments. Changed data is inserted into theMailForms tree
by the front-end, and the back-end is able to merge this in-
formation into XML documents, which are held by the
MailXML objects. With this structure, we are able to gen-
erate the necessary change events and semantical checks.

2.4. The GUI and Request-Handling Component

We previously discussed the implementation of the back-
end part of Paperdyne’s e-mail functionality. Now, we de-
scribe the front-end part in more detail. We depict how the

information provided by the back-end is used to render the
web pages and how the user’s interaction with these pages
is handled.

To generate a web page, we assume that we are given
an instance of theMailTemplate class, which represents
the content of one page. The associatedMailForms object
allows to iterate over all instances of theMailForm class
and to traverse the tree-like structure shown in Figure 3. The
different instances of theMailForm class represent sepa-
rate sections on the final web page and thus determine the
overall layout of this page. EveryMailForm object com-
prises a staticFrom field, which indicates the sender of the
actual mail. Additionally, aSubject and aBody object
have to be rendered as single or multi-line text input con-
trols. TheRecipientBlock consists of one or multiple
entities which refer to users (cf.User) or contributions (cf.
Contribution). These entities are either check boxes or
text input controls for receiving textual queries. During the
rendering process, all input controls are uniquely named in
order to make them identifiable for later operations. Addi-
tionally, the content of theMessage objects is added to the
web page as static content.

Depending on the state given by theMailTemplate
object, the user is allowed to invoke different actions.
Hence, the appropriate Submit buttons are added to the web
page.

So far, we showed how the data structure given by the
MailTemplate object is rendered as a web page. This
web page is presented to the user in the web browser, where
he can enter data using the form controls. When submit-
ting the form by pressing one of the Submit buttons on the
page, an HTTP request is sent to the application. Now, the
corresponding instance of theMailTemplate class has
to be identified, which is needed to process the request.
Therefore, every generated web page is given a hidden in-
put field at rendering time. This field contains a unique num-
ber, which can now be used to search for the corresponding
instance of theMailTemplate on the forward stack and
the back stack. After the correct instance has been found,
the stacks are re-arranged in such a way that the found in-
stance of theMailTemplate object becomes the top ele-
ment of the forward stack.

Once the correspondingMailTemplate object has
been identified, the same traversal through the object struc-
ture as for rendering the web page can be applied: The nam-
ing scheme used for the input controls at rendering time
can now be used to extract information from the HTTP re-
quest and to pass the extracted information to the elements
of theMailTemplate object by calling the respective set-
ter methods.

Finally, the type of action the user has invoked by press-
ing one of the Submit buttons can be determined by parsing
the request information, and the corresponding method of

theMailTemplate object can be executed. The outcome
of this operation (a newMailTemplate object) can be
compared to the current instance of theMailTemplate
on top of the forward stack. In case of equality, the request
results from a reload of the web page. In this case, the user
has pressed the browser’s Reload button. If the two objects
are not equal, the user has invoked a different operation.
Then the forward stack is cleared and the current mail tem-
plate is put on this stack. The new web page can now be
rendered again as described above.

A
(Tag: 1)

B
(Tag: 2)

C
(Tag: 3)

D
(Tag: 4)

BackReload

MT2

MT1 MT4

Back Stack Forward Stack

MT3

Figure 4. Back and Reload Example.

To clarify this behavior, we consider Figure 4. Here, the
user has executed an example dialog, visiting the masksA
to D. The forward and back stacks have been populated ac-
cordingly with the mail templates MT1 to MT4: the tem-
plates MT1 to MT3 are lying on the back stack with MT3 on
top, and MT4 is on the forward stack. Now, the user makes
use of the Back button of his browser. Hence, the maskC
is displayed to him (typically retrieved from the browser’s
cache). Next, the user reloads this page. The system recog-
nizes this situation and re-arranges the stacks in a way that
the mail template MT3 becomes top on the forward stack as
shown in Figure 4.

Continuing from this situation, we can imagine a situa-
tion where a user who has navigated to maskC and reloaded
this page, performs another back operation leading to mask
B. Then the user performs an action which leads him to
maskE. This behavior is depicted in Figure 5. As men-
tioned before, by performing the action which leads to mask
E, the mail template instances MT3 and MT4 are removed
from the forward stack. This behavior is correct since the
transition from maskB to maskE as accompanied by a
change of the data basis which makes backtracking to the
pagesC andD impossible.

3. Discussion

After discussing how backtracking is handled in Paper-
dyne, we now abstract from this concrete showcase in order
to generalize the approach presented in this paper.

A
(Tag: 1)

B
(Tag: 2)

C
(Tag: 3)

D
(Tag: 4)

E
(Tag: 5)

BackBack Reload

MT2

MT1 MT5

Back Stack Forward Stack

Figure 5. Navigation Example.

3.1. Generalization

Generalizing the type of data structures (in our case,
MailTemplate instances) on the stacks is trivial. The
only requirement for this is that all generated pages must
be tagged with unique identifiers and that these tags can be
associated with instances of the data entities on the stacks.

In our showcase, the transformation of the data structure
into a web page implies a correspondence between the ob-
ject structure and the structure of the rendered page. How-
ever, we can imagine other scenarios where this correspon-
dence is not given and the dialog data is structured in a dif-
ferent way than the web page. Nevertheless, the creation of
a web page should also be no problem in this case, even if
some more effort is required.

The stack mechanism used in Paperdyne is a crucial ele-
ment for establishing the backtracking functionality. There-
fore, a similar mechanism must also be provided in any gen-
eral solution. One problem that could make this approach
infeasible is memory consumption, hence scalability issues
must be considered. We have to be aware of the fact that for
every user logged into the system, we need at least one stack
per session for the handling of backtracking issues. On these
stacks, several instances of dialog objects have to be stored.
Fortunately, we can assume the number of these objects to
be limited, since usually the dialog flows which require han-
dling of backtracking will comprise a rather small number
of steps. Therefore, only few objects have to be stored on
the stacks for every user. Usually, these objects can also be
rather small, so that this approach—although it is memory
intensive—should be feasible in a more general setting as
well.

In Paperdyne, there is typically only one user (the PCC)
who is provided with the backtracking facility. In this as-
pect, Paperdyne stays behind the requirements for the gen-
eral solution, since the number of users needing the back-
tracking functionality is very limited. But on the other hand,

the objects which are stored on the stack in Paperdyne are
very large and memory-consuming (in certain cases, there
can be hundreds of mails, contained in plain text in the
structure). In typical applications (such as web shops etc.),
these objects will probably be significantly smaller com-
pared to Paperdyne, so that we are confident that the scala-
bility of our solution can be ensured for other types of appli-
cations as well. Nevertheless, further evaluation is needed to
prove this conclusion.

3.2. Backtracking vs. Undoing

In the approach presented in this paper, the application
data is stored on the stack together with the description
of the pages, and therefore changed consistently with the
user’s backtracking (as illustrated in the top half of Figure
6). This way, we actually implemented an undo/redo mech-
anism: By returning to a previous page, the user also returns
to a previous version of the entered data, from where he
may either initiate a new operation or go forward again us-
ing the browser’s Forward button (which restores the data of
the following step). This behaviour makes working with the
application very intuitive, since the user can rely on the fact
that the data displayed on the client is the same that is stored
on the server even when he is switching back and forth be-
tween pages.

Note, however, that not all operations are undoable: In
the Paperdyne example, we are employing a multi-step di-
alog “wizard” to collect all necessary data (message tem-
plate, recipient group, individual recipients, individual mes-
sages etc.) for the execution of a certain transaction (send-
ing a form letter by e-mail). While the preparatory data-
collection steps can be undone (in the top part of Figure 6,
for example, removal of the userb is undone by the first
backtracking event, anda is removed by the user instead)
the transmission of the e-mails obviously can not. The pre-
sentation logic must be aware of this “point of no return”
and disallow any backtracking beyond it, for example by
displaying an error page or leading the user to the wizard’s
initial page, from where he can start a new transaction.

In other applications, however, these undo semantics
may be undesired and actually counterintuitive. For exam-
ple, in an online shop, users may navigate between vari-
ous overview and detail pages to browse the shop’s inven-
tory. After putting an itema into the cart, which leads them
to the shopping cart page, they may return to the shop us-
ing the Back button. It would be counterintuitive to undo
the “add to cart” operation at this point—rather, the updated
cart contents should now be visible on all pages, even when
the user is backtracking (as illustrated in the bottom part of
Figure 6). Despite the different semantics for backtracking,
we also have a “point of no return” in this scenario: After
the user purchases the items in his cart, going back to pre-

Choose
Template

Edit
Template

Edit
Users
(a,b)

Edit
Users

(a)

Edit
Users

(b)

Send
e-mail

edit

show
indiv
mails

remove
user b

remove
user a

confirm

Back #1Back #2

Forward

Shop
Home

Item
List

Item
List

Cart
Items

(a)

Cart
Items
(a,b)

Purchase
Items

show
list

next
page

add a
to cart

add bto cart

confirm

Back #1Back #2

Forward

Undo Backtracking

View Backtracking

Figure 6. Undo vs. View Backtracking.

vious pages can neither undo the purchase nor display the
contents of the shopping cart—instead, the user can only be-
gin a new transaction with a clear cart.

Technically, the difference between this “undo back-
tracking” and “view backtracking” is determined by the
mechanism used to store and retrieve the displayed data: For
undo-backtracking, it needs to be stored on back and for-
ward stacks with associated page identifiers, and retrieved
from this stack according to a mechanism that mirrors the
browser’s backtracking logic. For view-backtracking, the
data needs to be stored in a way that allows updates to over-
write the previous values, so the presentation logic can al-
ways retrieve the most current value. The mechanism for de-
tecting backtracking and identifying the page that the user
reverted to remains the same for both approaches, since the
presentation logic needs to resynchronize its dialog state
with the client even when it is not undoing operations.

4. Conclusion

We identified a number of challenges induced by the
fact that web applications cannot only be navigated by the
means provided by themselves, but also by navigational aids
provided by web browsers—namely, the Back, Forward and
Reload buttons. To fix the breach of synchrony between
client and server dialog states they may cause, we presented
an approach that holds past dialog states in so-called back
and forward stacks on the server, so the server can revert
to previous states according to navigation on the client. Our
discussion of this approach showed that it can be used in
any application that aims to implement undo/redo seman-
tics for the Back and Forward buttons.

5. Acknowledgments

The Chair of Applied Telematics/e-Business is endowed
by Deutsche Telekom AG.

References

[1] L. Baresi, G. Denaro, L. Mainetti, and P. Paolini. Assertions
to better specify the amazon bug. InProceedings of the 14th
international conference on Software engineering and knowl-
edge engineering, pages 585–592. ACM Press, 2002.

[2] M. Book and V. Gruhn. A dialog flow notation for web-based
applications. In M. Hamza, editor,Proceedings of the Seventh
IASTED International Conference on Software Engineering
and Applications, pages 100–105. The International Assoca-
tion of Science and Technology for Development (IASTED),
ACTA Press, 2003.

[3] L. D. Catledge and J. E. Pitkow. Characterizing browsing
strategies in the World-Wide Web.Computer Networks and
ISDN Systems, 27(6):1065–1073, 1995.

[4] A. Cockburn and S. Jones. Which way now? analysing and
easing inadequacies in www navigation.International Jour-
nal of Human Computer Studies, 45(1):105–129, 1996.

[5] S. Greenberg and A. Cockburn. Getting back to back: Alter-
nate behaviors for a web browsers back button. InProceed-
ings of the 5th Annual Human Factors and the Web Confer-
ence, 1999.

[6] L. Johnston, D. Peters, J.-G. Schneider, and U. Wellen. Re-
quirements analysis in distributed software engineering edu-
cation: An experience report. In6th Australian Workshop on
Requirements Engineering (AWRE 2001), 2001.

[7] H. Shubin and M. M. Meehan. Navigation in web applica-
tions. interactions, 4(6):13–17, 1997.

[8] H. Shubin and R. Perkins. Web navigation: resolving con-
flicts between the desktop and the web. InCHI 98 conference
summary on Human factors in computing systems, page 209.
ACM Press, 1998.

[9] L. Tauscher and S. Greenberg. Revisitation patterns in world
wide web navigation. InProceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages 399–406.
ACM Press, 1997.

