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Abstract—This paper considers the problem of filter design
with secrecy constraints, where two legitimate parties, Alice and
Bob, communicate in the presence of an eavesdropper, Eve,
over multiple-input multiple-output (MIMO) Gaussian channels.
In particular, we consider the design of transmit and receive
filters that minimize the mean-squared error (MSE) between the
legitimate parties subject to a certain eavesdropper MSE level,
in the situation where the eavesdropper MIMO channel is a
degraded version of the main MIMO channel. We analyze the
penalty in terms of MSE in the eavesdropper channel due to
the assumption that optimal linear receive filters are used, while
the eavesdropper employs nonlinear conditional mean estimation
instead. This penalty is also shown to be negligible in regions of
operational interest. We present a set of numerical results to
illustrate the main conclusions.

I. INTRODUCTION

Due to the inherent broadcast nature of the wireless

medium, security and privacy protection remains an issue of

utmost importance in wireless communications. Aside from

traditional cryptographic algorithms, insensitive to the physical

nature of the wireless medium, information-theoretic security

– widely accepted as the strictest notion of security – have

regained increasing attention in recent years. This calls for

the use of physical-layer techniques exploiting the inherent

randomness of the communications medium to guarantee both

reliable and secure communication.

The basis of information-theoretic security, which builds

upon Shannon’s notion of perfect secrecy [1], was laid by

Wyner [2] and by Csiszár and Körner [3] who proved in sem-

inal papers that there exist channel codes guaranteeing both

robustness to transmission errors and a certain degree of data

confidentiality. In particular, Wyner considered the wiretap

channel where the eavesdropper observes degraded versions

of the main channel messages over the wiretap channel,

and characterized the rate-equivocation region of the wiretap

channel and its secrecy capacity. Ever since, the computation

of the secrecy capacity of a range of communications channels

has been an important research topic (e.g., see [4], [5], [6]

and [7]).

This paper considers secure communications from the

estimation-theoretic view point. We consider the problem of
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filter design with secrecy constraints in the classical wiretap

scenario consisting of two legitimate parties that communicate

in the presence of an eavesdropper, where the objective is to

dimension transmit and receive filters that minimize the mean-

squared error (MSE) between the legitimate parties whilst

guaranteeing a certain eavesdropper MSE level. In particular,

the aim is to characterize the impact incurred on performance

when the eavesdropper uses the optimal nonlinear receive

filter whilst the transmitter assumes that the eavesdropper uses

the optimal linear filter. Interestingly, this class of problems

represents a natural generalization of filter design for point-

to-point communications systems which has been considered

in the past by several authors (e.g. [8], [9]). Further work on

the topic of filter design in the wiretap channel scenario can

also be found in [10] and [11].

This paper is structured as follows: Section II defines the

problem. Sections III and IV briefly present the optimal solu-

tion for the linear receive and transmit filters. Section V shows

various numerical results to illustrate the primary outcomes of

this paper. Section VI summarizes the primary contributions of

the manuscript and draws the main conclusions of this work.

II. PROBLEM STATEMENT

We consider a communications scenario where a legitimate

user, say Alice, communicates with another legitimate user,

say Bob, in the presence of an eavesdropper, Eve (see Figure

1).

Bob and Eve observe, each one, the output of the main and

the eavesdropper MIMO channels respectively, given by:

YM = HMHTX+NM (1)

YE = HEHTX+NE (2)

where YM and YE are the nM - and the nE-dimensional

vectors of receive symbols, X is the l-dimensional vector of
independent, zero-mean and unit-variance transmit symbols.

NM and NE are nM - and nE-dimensional complex Gaussian

random vectors with zero mean and identity covariance matrix.

The nM ×m matrix HM and the nE ×m matrix HE contain

the deterministic gains from each main and eavesdropper

channel input to each main and eavesdropper channel output,

respectively. The m× l matrix HT represents Alice’s transmit

filter.



Figure 1. Multiple-input multiple-output Gaussian wiretap channel model.

It is assumed that Bob’s and Eve’s estimate of the vector

of input symbols are given by:

X̂M = HRMYM (3)

X̂E = HREYE (4)

where the l × nM matrix HRM and the l × nE matrix HRE

represent Bob’s and Eve’s linear receive filters, respectively.

In this setting, we take as a performance metric the MSE

between the estimate of the input vector and the true input

vector given by:

MSE = E
[

‖X− X̂‖2
]

(5)

The general objective is to design Alice’s transmit filter and

Bob’s receive filter that solve the optimization problem:

minMSEM = E
[

‖X− X̂M‖2
]

(6)

subject to the constraint MSEE = E
[

‖X − X̂E‖2
]

≥ γ, with

0 ≤ γ ≤ l and to a total power constraint tr
(

HTH
†
T

)

≤
Pavg, where E

(

·
)

denotes the expectation value and
(

·
)†

the

Hermitian transpose.

We assume that the matrices H
†
MHM and H

†
EHE are

positive definite. We also assume a degraded scenario where

H
†
MHM ≻ H

†
EHE . It is reasonable to make such assumption,

as in the wiretap channel, the legitimate parties must have

some advantage over the eavesdropper.

The design of the filters based on the MSE criteria con-

stitutes a means to provide additional security in a com-

munications system. The rationale is based on the fact that

some applications require the MSE to be below a certain

level to function properly, so that this approach would impair

further the performance of the eavesdropper. Even though

this approach does not guarantee perfect information-theoretic

security, as defined in [1], [2] and [3], the work presented

in [11] analyzes the mutual information in the eavesdropper

channel, showing that by imposing a minimum threshold on

the MSE in the eavesdropper channel one will, not only impair

the eavesdropper performance but also limit the amount of

information that is leaked.

One can in fact argue that the eavesdropper will not use the

optimal linear receive filter, but rather the optimal nonlinear

receive filter to process the information, which corresponds to

conditional mean estimation:

X̂E = E
{

X | YE = yE

}

=
∫

x PX

(

X = x
)

PYE |X

(

yE | X = x
)

dx
∫

PX

(

X = x
)

PYE |X

(

yE | X = x
)

dx
(7)

As such, the goal of this work is to assess the penalty

incurred by the use of conditional mean estimation by the

eavesdropper, when the transmitter assumes that both the

receivers use the optimal linear filter. Surprisingly, it will be

shown that the penalty is negligible in regions of operational

interest.

III. OPTIMAL LINEAR RECEIVE FILTERS

This section considers the design of the optimal receive

filters. In order to characterize the optimal linear transmit filter,

we assume that Bob and Eve use the linear receive filters that

minimize, respectively:

MSEM = E
[

‖X−HRMYM‖2
]

(8)

and

MSEE = E
[

‖X−HREYE‖2
]

(9)

The optimal receive filters, for any fixed transmit filter HT ,

correspond to the Wiener filter given by (see e.g. [12]):

H∗
RM = H

†
TH

†
M

(

I+HMHTH
†
TH

†
M

)−1

(10)

H∗
RE = H

†
TH

†
E

(

I+HEHTH
†
TH

†
E

)−1

(11)

In turn, the MSEs corresponding to these receive filters are

given by:

MSEM = tr
(

(

I+H
†
MHMHTH

†
T

)−1
)

(12)

MSEE = tr
(

(

I+H
†
EHEHTH

†
T

)−1
)

(13)

where tr
(

·
)

denotes the trace operator.

As mentioned in the previous section, the fact that the

eavesdropper can use more sophisticated nonlinear techniques

in order to estimate Alice’s information will be studied in this

paper.

IV. OPTIMAL LINEAR TRANSMIT FILTER

We briefly lay out the optimal solution previously presented

in [11]. In general, it follows from the Karush-Kuhn-Tucker

conditions that, with respect to the transmit filter, the op-

timization problem falls into three different categories: (1)

power constraint active and secrecy constraint inactive; (2)

power and secrecy constraints active; (3) power constraint

inactive and secrecy constraint active. Consequently, rather

than solve completely the optimization problem, we will

concentrate on the solutions in the regimes (1) and (3). We also

present conditions that depend solely on the system parameters

(e.g. Pavg , γ, HM , HE) which identify the exact regime of

operation. We note in passing that the general solution is only

known, to the best of our knowledge, for the parallel degraded

Gaussian wiretap channel [10].

A. Power constraint active / secrecy constraint inactive

We now consider the scenario where the power constraint is

active, whilst the secrecy constraint is inactive. This situation

arises typically in a regime of low available power, due to the

fact that the power, injected into the channel, is not enough to

meet or violate the secrecy constraint.

Consequently, the solution follows by solving the optimiza-

tion problem:

min
HT

tr
(

(

I+H
†
MHMHTH

†
T

)−1
)

(14)



subject to the constraint

tr
(

HTH
†
T

)

= Pavg (15)

To address this design problem, we shall use the fact that there
exists an orthogonal matrix C that diagonalizes H

†
MHM , i.e.:

C†H
†
MHMC = ΛM (16)

where ΛM = diag(λM 1, λM 2, . . . , λMl) ≻ 0. We assume that

the values of λMi, i = 1, . . . , l are organized in a decreasing

order, i.e., λM 1 ≥ λM 2 · · · ≥ λMl.
Theorem 1: The optimal transmit filter for the degraded

multiple-input multiple-output Gaussian wiretap channel with

no secrecy constraints is, without loss of generality, given by:

H∗
T = C diag(

√

σ∗
i ) (17)

where

σ∗
i =

√

1

λ · λMi

− 1

λMi

, λMi ≥ λ (18)

σ∗
i = 0, λMi < λ (19)

with λ such that
∑l

i=1
σ∗
i = Pavg .

Proof: See [10] or [8].

It is immediate to show that this regime is valid if:

γ <
∑l

i=1

1

1 + λEiσ
∗
i

(20)

where σ∗
i follows the solution embodied in Theorem 1, or:

σ∗
i =

Pavg +
∑nact

j=1

1

λMj
∑nact

j=1

1√
λMj

1√
λMi

− 1

λMi

(21)

with nact being the number of active channels. The value nact

is obtained from the algorithm present in [8].

B. Power constraint inactive / secrecy constraint active

We now consider the scenario where the secrecy constraint

is active and the power constraint is inactive. This is a situation

that typically arises in a regime of high available power: in

fact, the use of all the available power, in such regime, would

immediately violate the secrecy constraint.

Consequently, the solution follows by solving the optimiza-

tion problem:

min
HT

tr
(

(

I+H
†
MHMHTH

†
T

)−1
)

(22)

subject to the constraint

tr
(

(

I+H
†
EHEHTH

†
T

)−1
)

= γ (23)

To address this design problem, we shall use the fact that

there exists a non-singular matrix C that diagonalizes both

H
†
MHM and H

†
EHE [13], i.e.:

C†H
†
MHMC = ΛM (24)

C†H
†
EHEC = ΛE (25)

where ΛM = diag(λM 1, λM 2, . . . , λMl) ≻ 0, ΛE =
diag(λE1, λE2, . . . , λEl) ≻ 0, ΛM ≻ ΛE because

H
†
MHM ≻ H

†
EHE . We assume that the set of ratios

λMi/λEi, i = 1, . . . , l are in a decreasing order, i.e.,

λM 1/λE1 ≥ λM 2/λE2 ≥ · · · ≥ λMl/λEl.

Theorem 2: The optimal transmit filter for the degraded

multiple-input multiple-output Gaussian wiretap channel with

no power constraint is, without loss of generality, given by:

H∗
T = C diag(

√

σ∗
i ) (26)

where

σ∗
i = 0, λMi/λEi ≤ λ (27)

σ∗
i = +∞, λEi/λMi ≥ λ 1 (28)

λMi · lmmse2(λMiσ
∗
i ) = λ · λEi · lmmse2(λEiσ

∗
i ),

λEi/λMi < λ < λMi/λEi

(29)

with λ such that
∑l

i=1
lmmse(λEiσ

∗
i ) = γ. The linear mini-

mum mean-squared error (LMMSE) is lmmse(x) = 1/(1+x).

Proof: See [11].

It is immediate to show that this regime is valid if:

Pavg ≥
∑l

i=1
σ∗
i (C

†C)ii (30)

where σ∗
i follows the solution embodied in Theorem 2, or:

σ∗
i =

√
λMi

( nact∑

j=1

λMj

λEj−λMj
+γ−ninact

)

−
nact∑

j=1

√
λMjλEj

λEj−λMj
λEi

√
λEiλMi

nact∑

j=1

√
λMjλEj

λEj−λMj
−
√

λMiλEi

( nact∑

j=1

λMj

λEj−λMj
+γ−ninact

)

(31)

with C being the matrix that diagonalizes both channels,

nact the number of active channels and ninact the number

of inactive channels. We can obtain nact and ninact from the

algorithm present in [11].

V. RESULTS

We shall now present a set of numerical results to provide

further insight into the problem of filter design with secrecy

constraints. We consider a 2 × 2 MIMO Gaussian wiretap

channel where the main and the eavesdropper channel matrices

are, respectively, given by:

HM =

[

4 −1
1 2

]

, HE =

[

2 −1
1 1

]

(32)

Note that this represents a degraded scenario because

H
†
MHM ≻ H

†
EHE .

As discussed earlier, we are specifically concerned with the

impact that the use of the optimal nonlinear conditional mean

estimator by the eavesdropper has in the secrecy measure,

given that the transmitter, Alice, designs the linear transmit

filter by assuming that both Bob and Eve use the optimal

linear receive filter. We will consider the situations where

the input to the wiretap channel is both BPSK and 16-

PAM. Figure 2 shows the values of the MSEs in the main

1Note that σ∗

i = +∞ means that σ∗

i → +∞ is asymptotically optimal.
Obviously, this part of the solution will not belong to region of validity of
this regime.



and in the eavesdropper channels (considering the different

input signals) and the injected power into the channels vs.

the secrecy constraint, with Pavg = 1. We can observe that

designing the transmit filters with the assumption that the

eavesdropper is using an optimal linear receive filter can,

in fact, induce a penalty in the achieved secrecy, when the

eavesdropper uses the conditional mean estimator and the input

is not Gaussian (note that for Gaussian signals the conditional

mean estimator is the optimal linear receive filter). However,

and interestingly, as the solution evolves to higher values of

the secrecy constraint γ, which constitutes our area of greatest
operational interest, the penalty that we pay by assuming that

the eavesdropper uses Wiener receive filters vanishes, so that

for high values of γ the eavesdropper does not have any real

advantage in using the conditional mean estimator. This is due

to the fact that the power injected in the channel approaches

zero as the values of γ increases, in order to meet the secrecy

constraint.

Finally, we analyze the mutual information between the

input vector and the eavesdropper output vector, achieved by

this design. Figure 3 depicts the mutual information between

the input X and the eavesdropper output YE vs. the available

power, assuming that the input is Gaussian and considering

four different scenarios: (1) the optimal transmit filter; (2) the

transmit filterHT that minimizes the mean squared error in the

main channel, without the secrecy constraint; (3) the transmit

filter HT being a multiple of the identity matrix, and the

tr
(

HTH
†
T

)

equal to the power used by the optimal transmit

filter; and (4) the transmit filter HT being a multiple of the

identity matrix, and tr
(

HTH
†
T

)

= Pavg . As discussed in [11]

we verify that, even without directly minimizing the mutual

information in the eavesdropper channel, which corresponds to

the information-theoretic security criteria par excellence, the

optimal solution results in the lowest mutual information of

these four cases.

VI. CONCLUSIONS

To conclude, we verify that the penalty for optimizing

the transmit filter, considering linear receive filters, while the

eavesdropper employs in reality conditional mean estimation

is shown to be negligible for high values of γ. We also note

that the design of filters that minimize the MSE between

the legitimate parties whilst guaranteeing a minimum MSE

at the eavesdropper, subject to a power constraint, appears

to be a viable option to provide reliability and a certain

additional degree of security. In particular, the design have

been shown to limit the amount of mutual information leaked

to the eavesdropper, in comparison to other designs.
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