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Abstract—Integration of critical infrastructures contributes to 

an increasing complexity and heterogeneity of their 

interdependencies, which results in a more detailed analysis 

process with emphasis on a certain aspect of the interactions such 

as cascading effects rather than the overarching system 

modelling and simulation. When external disturbances like 

natural disasters and intentional attacks take place, induced 

cascading failures are more likely to happen in large scale than 

they used to be. Their propagation paths and time-dependent 

behaviours are largely unknown to the area researchers and 

post-disaster consequences are rather difficult to quantify. This 

paper is presenting critical appraisal of existing methodologies 

for modelling cascading failures in interconnected systems. 

General explanations of the most widely used methodologies are 

firstly illustrated with the emphasis on their advantages and 

disadvantages and with the aim of choosing appropriate 

modelling and simulation methods for study of cascading failures 

in coupled electric power grids and telecommunication systems.  

Keywords—cascading failures; modelling and simulation;  

infrastructure interdependencies  

I.  INTRODUCTION  

Critical infrastructures (CIs) such as electric power system 
(EPS), transportation system, water distribution network and 
communication system (CS) can be no longer analysed alone 
as their interdependencies exert noticeable influences during 
both normal and abnormal operating periods. Rinaldi [1] 
summaries interdependencies into four classifications which 
are characterised as physical, cyber, geographical and logical. 
CIs with physical interdependencies rely on the material 
outputs of each other. Cyber interdependencies refer to cross-
sector influences caused by exchanging information with CS. 
Geographical interdependencies result from spatial adjacency 
and logical interdependencies are usually presented as financial 
connections, legal and political impacts. In the coupled model 
of EPS and CS, physical and cyber interdependencies are the 
major subjects to capture. 

EPS consists of generators, transmission networks, 
distribution networks and consumptions of end users, which 
makes it bulk in size and diffused in resource allocations. But 
nowadays the system has an even more complex topological 
structure due to the tendency of distributed generations and 
smart communications [2]. Among large varieties of 
communication techniques, those that can provide services 
with high confidentiality and stable availability are vastly used 
for EPS. Their bandwidth and latency requirements are 
restrictive. Protection information within substations should be 
received no later than 0.004 seconds and the restriction for 

external transmission is 0.008 to 0.012 seconds [3].  From the 
view of embedded applications, modern EPS and CS express 
their integrated relationships typically as telecommunication 
system embedded in EPS like Supervisory Control and Data 
Acquisition (SCADA), and electricity sources for CS units. 

Cascading failures that involve multiple CIs are extremely 
rare to happen but it becomes more frequent in recent years. As 
for long term impacts, large scales of people are affected and 
economic losses are huge. But during the short period after the 
triggering events, failures are spreading among CIs through 
their interdependencies in a considerable speed. In other words, 
interdependencies are the paths of their propagation and the 
only way to mitigate CI risks is to predict how cascading 
failures will perform given a certain context. This leads to three 
major tasks to model cascading failures: risk identification (RI), 
risk impact assessment (RIA) and risk prioritisation (RP) [4]. 
RI means to detect the potential risks in CIs contributed from 
other CIs through their interdependencies and identify the 
affected nodes and edges or risk propagation paths. RIA is to 
estimate the effects of the triggered events and to quantify the 
consequences with certain parameters. RP is to figure out the 
most vulnerable node or link that exposes CIs with largest risks. 
All three tasks focus on the CI behaviours during a short period 
between initial event and the moment external mitigation 
measures are taken. 

To start researching in analysing interdependent CIs, types 
of interdependencies, characteristics of research CIs, time-
varying behaviours of CIs under vulnerabilities and specific 
tasks to achieve are the main aspects to take into account, 
which also applies to choosing appropriate methods as a 
beginning. Therefore this paper is to compare different 
methods that have been applied for modelling and simulation 
of CI interdependencies based on the aforementioned criteria. 
Focus is on selecting suitable methods with reference to a few 
comprehensive reviews, to discover the hidden patterns of 
cascading failures happened in the interactive system that 
consists of EPS and CS. Since only two CIs are considered, the 
descriptions are expected to be realistic in reappearing the scale 
and complexity of the systems.   

II. MODELLING AND SIMULATION METHODS FOR 

ANALYSING INFRASTRUCTURE INTERDEPENDENCIES 

In the following section, seven modelling and simulation 
methods developed for studying CI interdependencies are 
introduced and discussed. The discussion focuses mainly on 
explaining the methodology rationales, strengths, weaknesses 
and representative applications. 
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A. Agent Based Modelling 

Agent based modelling (ABM) has been applied in many 
areas due to its detailed illustrations of the system behaviours. 
In this model, the fundamental element “agent” is  intended to 
provide certain service and governed by a series of what-if 
rules and pre-defined attributes [5]. The agents can therefore 
learn from their contexts and respond accordingly [6]. Based 
on this operating mechanism, agents are able to capture the 
real-world movements and interactions realistically, including 
time evolving behaviour between CIs that could be simulated 
by the mutual reactions of agents if sufficient input data are 
available. Typical attributes include name, coordinates,  
behaviour rules, memory, resources, decision making scenario 
and rules that modify the behaviour rules [7]. 

ABM has many advantages in modelling interdependent 
CIs. Its major feature, threshold based rules allow it to include 
nonlinearities and external contexts such as natural disasters, 
political laws or security protocols into the system modelling. 
All types of interdependencies can be expressed and embedded 
into the configurations of agents. The major downside of ABM 
is high computational cost (up to 50 hours for each simulation 
[8]) due to its low level abstraction. Abstraction level is an 
index that tells how generalised the description is. In other 
words, sufficient details are required for each agent and large 
amounts of data are desired, making the method unscalable for 
large system modelling. Experts on the incorporated CIs are 
also needed to provide assumptions on attributes and rules in 
case of scant input data. Therefore it is not practical to utilise 
sole ABM for modelling CIs with hundreds of buses especially 
when they are coupled. Integration with other methods is a 
reasonable way for optimisation. 

 FedABMS [9] combines ABM with federated simulation 
method to exploit both advantages. For interdependent CIs, 
agents that describe the behaviours of their elements are 
reusing the existing simulation models to build up agent 
attributes and threshold rules. Parallel analysis is therefore 
allowed and computational cost reduces. In [10], anticipation 
game theory is incorporated with ABM to simulate the impacts 
of Distributed Denial of Service (DDoS) attacks on CIs in the 
form of cyber interdependencies. In the model, the major 
players, defenders and attackers, are represented as agents in 
the game and they interact based on the rules derived from 
DDoS graph. Reference [11] uses ABM to provide 
reductionistic construction for the framework called mixed 
holistic reductionist approach which couples high level 
description with low level description. A tool for analysing 
cascading failures named CISIA is introduced. In conclusion 
the ABM is suitable for hybrid integration. 

B. Network Based Modelling  

Nodes and edges are the key elements of Network based 
modelling (NBM). Nodes represent the components of CIs and 
edges represent the links between two nodes. By using graph 
theory, NBM provides a straightforward presentation of the 
topological structure and flow patterns within CIs, which is a 
good feature for modelling cascading effects in a large system. 
Physical interdependencies such as electricity transmissions are 
unidirectional in the model while cyber interdependencies are 
marked as bidirectional links. Impacts of cascading failures can 
be statistically shown with indicators. Depending on whether 
nodes and edges are illustrated in detail, NBM can be divided 
as topology based modelling and flow based modelling [12].  

1) Topology Based Modelling: In this methodology, 

topologies are the only criteria for the studies of 

interdependencies among CIs and each node has only two 

states, working or failed [13]. Few data are needed and 

computational cost is rather low. However, it models dynamic 

events in a discrete way. Complex network theory (CNT) is a 

typical topology-based modelling (TBM) approach. It has 

been extended from modelling standalone CI to analysing 

infrastructure interdependencies [14]. Structural indices such 

as node degree and betweenness centrality are used to identify 

critical nodes that are exposed to vulnerability [8]. The nature 

of the method is the shortest path theorem which calculates the 

minimised sum of the weights of paths between two nodes [15]. 

If the sum is larger the vulnerability is higher.  

In TBM, the way to express one-to-one interdependencies 
can be quite different in order to explore the complex 
percolation scenarios [12]. Take a coupled system with 
infrastructure A and B for explanation. In [14] each node in A is 
interdependent on one and only one node in B and all nodes in 
B have their corresponding nodes in A; in [16] a fraction of 
nodes in A are dependent on some of nodes in B and similarly a 
fraction of nodes in B are dependent on some nodes in A; in [8] 
only certain part of a critical node is actually triggering indirect 
effects so more detailed abstraction is needed for these types of 
nodes but one-to-one relationship instead of one-to-fraction or 
fraction-to-fraction is used. 

2) Flow Based Modelling: Unlike TBM, flow based 

modelling (FBM) provides more detailed and realistic 

interpretations (e.g., the services nodes offer) of the 

infrastructure behaviours. Therefore dedicated flow based 

methods for different CIs are used with coordinators involved.   

In [17], flow based models developed for analysing power 
system and gas system are combined to study 
interdependencies. The simulation results are surprisingly 
different from those by topology-based modelling. The used 
flow based method for power system is ORNL-PSerc-Alaska 
(OPA) model [18],  where nodes represent different buses with 
active power injection vectors and edges are electric lines with 
active power flow vectors. Basic information like different 
notations for generation nodes and load nodes, maximum 
power limits at the buses, and transmission capacity limits of 
the edges can be embedded [19]. Three models, reliability 
block diagrams (RBD), stochastic activity networks (SAN),  
and network reliability analyser (NRA), are used together in 
[20] to support the quantification of mutual impacts among 
telecommunication network, telecommunication emergency 
power supply and power distribution grid respectively, under 
the circumstance that critical communication links are 
disconnected due to faults. Each model presents the flows of 
different media (logic, data and power) in different ways. 

During the applications of FBM, longer CPU time is 
needed since specific flow patterns of the CIs are highlighted 
with dedicated flow models and background knowledge 
concerning the existing modelling methods for single 
infrastructure is required for researchers. 

C. Economic Based Modelling  

To address the lack of mathematical simulation methods, 
some economic based models are extended for coupled 
infrastructure studies. In the following sections, two models 
that are well suited into the system behaviour analysis and 
large system modelling are introduced.  
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1) Inoperability Input-output Modelling: Inoperability 

input-output modelling (IIM) is a continuous modelling 

method for multi-sector analysis, descended from Leontief 

Input–Output model [21]. With the major function of analysing 

short-term dynamics, IIM uses data collected at the normal 

conditions to simulate the situation of CIs during the immediate 

period after the initial event happens. The nature of IIM is that 

a system should have a balance between inputs and outputs 

based on the concept of inoperability, which refers to the time-

varying unavailability of a working infrastructure to provide 

its assigned services [22].   

  (1) 

In (1), x i  is the total risk of inoperability that infrastructure i 
could possibly experience; a i j  is the probability of inoperability 
of infrastructure i given the state of infrastructure j; ci 
represents the inherent risk of inoperability contained in 
infrastructure i [12]. In other words, ∑ ja i jx j is the sum of 
indirect effects that result from other infrastructures. For 
analysis in economic aspects, large input-output data sets are 
available in the Bureau of Economic Analysis (BEA) [23], 
based on which a technical matrix for nearly 500 sectors has 
been generated to analyse  the interdependencies between U.S. 
economy and workforce [22]. But for other infrastructure 
modelling, this type of data is scant and can only be collected 
from literature.  

By upgrading the formulation with a dynamic variable that 
represents the infrastructure resilience to the induced 
disturbances, IIM is extended to be Dynamic Inoperability 
Input-output modelling (DIIM) which would be a suitable 
method to model continuous cascading failures. In [24], fuzzy 
logic is combined with DIIM to overcome the limitation of 
deficient data sources. To be precise, technical coefficients are 
expressed as fuzzy numbers and the inoperability of each sector 
is presented as a fuzzy variable. The ambiguity range of each 
parameter is based on the expert experience. In [25], ABM is 
involved with DIIM as AB-DIIM and in this model, the media 
that propagates among different interdependent sectors is not 
the risk of inoperability but services performed by different 
agents. In other words, inoperability is redefined as an abstract 
parameter that tells the overall interactions of the agents inside 
a sector.  

In general, IIM is a useful risk-based tool that can be easily 
combined with other methods. Its computational cost is small 
since simulation is not undertaken but modelling calculations. 
However, it has some limitations due to the linear expression. 
Over pessimistic results are likely to get because IIM assumes 
that no response will be made and self-healing ability as well as 
infrastructure resilience are neglected [26]. Its way of 
illustrating system mechanism is highly abstractive without 
component details, which calls for reductionist methods like 
ABM. 

2) Computable General Equilibrium: Computable general 

equilibrium (CGE) method is an progressive extension of IIM 

as it overcomes the weakness of IIM in modelling 

nonlinearities [27]. A comprehensive view of economic 

aspects is offered by considering the post-disaster changing 

prices [28]. Many key features of IIM are reserved for CGE 

modelling such as modelling interdependent behaviours of 

multi-sectors. While IIM analyses short-term dynamics, CGE 

is regarded as a method for assessing medium to long term 

impacts. As for practical applications, CGE is widely used for 

studying mainly macroeconomic issues especially in 

developing countries where reliable time-series data are not 

adequate and significant policy changes are more likely to take 

place [29]. But applying CGE method to analyse multiple 

types of infrastructure interdependencies is not so mature. 

The method originated from the concept of general 
equilibrium. General equilibrium refers to a balanced state of 
the overall economy which results from the interactions among 
several markets [30]. In CGE model, producer and customer 
are the two major players who interact to reach general 
equilibrium by means of supply, demand and prices [31]. In the 
infrastructure model, electricity and information are regarded 
as commodities. In simple terms, electricity is produced by 
generators and sold to customers while information is 
generated by monitoring devices and sold to regional control 
centres. As the actual interdependencies are of higher 
complexity, a set of equations together with corresponding data 
sets are used to represent the infrastructure behaviours when 
equilibrium of the overall system is reached [32].  

Practical problems emerge from calibrating production and 
selling functions since it is not easy to find adequate relevant 
data [33]. In addition, CGE is based on over optimised 
assumptions that every element of CIs are in optimal conditions 
and that the economy is in balance before perturbations [27]. 
Actual economic costs are claimed to be underestimated due to 
the involvement of short-term input substitution (it is assume 
that goods can be produced by substituted materials) [34].  

In [35], case studies on 9/11 terrorist attack are conducted 
using CGE to determine the indirect effects. A few 
disequilibria are incorporated in analysis for assessing direct 
impacts. Economic resilience is measured as parameters at 
different aggregation level. Reference [31] proposed a 
generalised modelling framework combining multilayer 
infrastructure networks (MIN) and spatial computable general 
equilibrium (SCGE) method. With spatial characteristics taken 
into account, a three dimensional framework of MIN is 
constructed to model various types of interdependencies 
simultaneously and captures the discrete decision-making 
behaviours of producers, customers and transport agents. The 
framework is extended in [36] and interdependencies are 
studied in dynamic and disequilibrium contexts. 

D. Petri Nets 

Petri nets (PN) are a promising tool developed for 
describing the concurrent processes of a complex system with 
multiple components. It is featured as a graphical tool similar 
to flow chart and block diagram and also a mathematical tool to 
quantify system behaviours with matrix calculations [37]. 
Similar to NBM, PN are able to incorporate the topological 
characteristics of complex CIs by applying the concept of 
conditions and events [38] to clarify the sequential movements 
in the network. Each petri net describes a single process with 
key elements of places, transitions, arcs and tokens. Take a low 
level infrastructure model for illustration: Places refer to the 
conditions of infrastructure components; transitions are the 
events that change the component states; unidirectional arcs 
connect places with transitions and show the process direction; 
tokens represent the material subjects that are exchanged 
during the events between or among the particular places. In 
[12], [39], PNs are referred with the ability of modelling only 
physical interdependencies while  the  opposite opinions also 
exist [8]. 
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Fig. 1.  Comparative diagram of seven methods based on five critical criteria 

 

By using PN for analysis, both high level and low level 
descriptions can be realised. Continuous and discrete time-
dependent simulations are also achievable. From this point of 
view, PN are beneficial for analysing cascading failures and 
tracing dissemination of disruptions that happen without 
involving CS. The size of PN however, could easily expand to 
an explosive level for large system modelling and thereby the 
computational cost will be very high. So far, there has been 
very little research on addressing the side effects of growing 
size of the model. 

 Coloured Petri Nets (CPN) [40], are used with appropriate 
mathematical structures to study the spreading mechanism of 
the prevailing disruption. Based on the preliminaries of CPN 
theory, an integrated method named Timed Coloured Petri Nets 
(TCPN) is applied in [41], which adds time intervals and token 
values as additional attributes to the transitions. TCPN are used 
to capture the cause-effect interdependencies between sea ports 
and their supply chains in a continuous time scale under the 
framework of several patterns that arise commonly in supply 
chains. Reference [42] have proposed an integrated PN based 
method that combines SAN and Stochastic Well-formed 
Network (SWN) to quantify the failure consequences in the 
coupled system of EPS and CS. For CS infrastructure 
modelling, SWN is used as a highly abstractive method that 
depicts the attack or failure scenarios. SAN is selected as a 
supplement to describe the impacts of a DDoS attack to EPS. 
The results are presented as various attributes such as the 
percentage of mean power demand that is not met in the 
required time interval. 

E. Bayesian Network  

Bayesian network (BN) is a useful tool based on Bayes’ 
Theorem. The conditional probabilities of events A and B 
satisfy the relationship expressed in (2) [43]. 

  (2) 

As is mentioned in [44], BN is able to provide a acyclic 
graphical solution for infrastructure interdependency analysis. 
In this methodology, nodes and edges are used as the main 
elements as well where nodes represent random variables and 
edges are unidirectional arcs connect one node to another [45]. 
Each node has its parent node(s) and they are assumed to be 
only dependent on parents not their grandparents. Edges are 
always pointed from parent nodes to their children, which 
mean the spreading relationships could not go back to the 
nodes that are passed through. In the coupled system of CIs, 
nodes refer to the services that are offered by infrastructure 
elements and the quality of their service is dependent on some 
other services (parent nodes). If a fault event occurs at a node, 
its edges will point at the children and change their states.  

However, complete topologies of CIs are not usually 
needed since BN is only focusing on the part of coupled system 
that is influenced under a certain scenario [46]. So after 
identifying the affected services and devices, functional 
attributes are only assigned to affected nodes. Besides from 
these, each node has a conditional probability table (CPT) for 
probabilistic calculation [47]. Increase complexity of topology 
will lead to increase size of CPT for a node as each CPT 
contains the probabilities of the node at different states given 
the condition of its parents. In real cases the behaviours of 
nodes are usually assessed with ranks according to expertise or 
literature [46] so that probabilities could be estimated. This is 
still a difficult task and the size of CPT can be much larger. 

Once the CPTs for involving nodes are available, the risks and 
interdependencies of CIs could be analysed. 

An integrated method, Dynamic Bayesian Network (DBN) 
has been  used in [48], [49] to analyse CI interdependencies. 
DBN introduced a concept of intertime-slice links to represent 
the time-varying interdependencies, i.e., interactions in the time 
dimension are separated from the interactions at the static time 
slices. Risk prediction is proposed as one of the achievable 
tasks if DBN is used. The idea is to update CPTs in each time 
slice by learning from historical data and then use them to 
estimate the most possible conditions of nodes in each time 
frame. The feasibility of this approach though has not yet been 
confirmed. DBN has also been  used [50] for making decisions 
about  extreme events as it can handle probabilistic events  and 
provide  advice on the feasibility of mitigation measures. 

In summary, BN is a user-friendly method as it does not 
require much expertise in the domain of modelling rationale. It 
is also scalable for large system modelling especially for data-
driven tasks. During the application, data such as conditional 
probabilities of any two nodes (parent and children) are 
required. If these data are not available in literature or database, 
an intensive expert work is needed and bias will follow. These 
problems have seldom been addressed as the up-to-data 
techniques of BN are still subject of early stage research. 

III. COMPARISONS 

As discussed in the introduction, to select a suitable method 
one should consider not only usability but also other case-
dependent criteria. Given this perspective, five criteria are 
selected for grading performances of the methods and another 
five criteria are used to show the distinctiveness of each 
approach. Data acquisition is not included as one of the criteria 
for comparisons as it is one of the major unsolved challenges of 
most methods. To visualise the comparisons, radar diagram 
Fig.1 and Table I. are used. 

Comparative criteria for Fig.1 are selected based on [8], 
[12], [39] to include both fundamental requirements and  
specialised performance. Since the case studies on testing 
different methods have not yet been realised, judgements on 
grades are depending on the overall perceptions from previous 
experienced researchers in [4], [8], [12], [31], [33], [34], [39], 
[44], [51]–[54]. According to their semantic descriptions, it is 
relatively easy to find the best and worst methods based on a 
criterion, which are assigned with 5 and 1. The rest are then 
compared to them and roughly ranked with the grades. Fig. 1 
shows differences in the following aspects: 

1) Practicality: 

a) Computational speed: It is a metric to record how 

fast the modelling and simulation process will be. Methods 

that can deploy large systems are not necessarily faster than 
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TABLE I. OTHER CRUTIAL FEATURES OF DIFFERENT METHODS 

Approach 
Types of 

 Interdependencies [39] 
Major Advantages Tasks [4] Tools  

Abstraction 

level 

ABM P, C, G, L Realistic interactions RI Swarm, Repast and Netlogo Low  

IIM P, C Short term dynamics RI, RIA RIPS, ISA and REAcct [54] High 

CGE P, C, G, L Long term dynamics RI, RIA GEMPACK, GAM [4] High  

PN P, (C) Sequential events RIA Matlab, CPN Tools and Artifex [8] High/low 

BN P, C, G, L Conditional probabilities RI, RP Hugin, Netica and Analytica [50] Low  

TBM P, C, G, L Topologies RIA, RP NetworkX, igraph, SNAP and MatlabBGL [8] High/low 

FBM P, C, G, L Flow patterns RIA, RP OPA and IRRIIS [4], [19] Low  

 

 

 

others since the difficulties of calculation algorithm and 

desired quantities of inputs could also influence the speed. 

b) Maturity: It is used to describe the state-of-the-art of 

the methods. Number of relevant publications, number of 

available tools and major challenges to face are taken into 

accounts. If the core concepts are accepted broadly in the area 

and the major breakthroughs are made based on these 

standardised acknowledgements, the development of the 

method is regarded as mature. 

2) Cascading failure characteristics: 

a)  Dynamic simulation: This is the major criterion for 

modelling cascading failures because the time-varying 

behaviours of involved CIs are the most attractive and useful 

phenomena to study for making recovery strategies. 

Continuous models worth 5, discrete models are 1. The 

possibility of enhancement represents the increment of grades. 

b) Detail Replications: This metric assesses the ability 

of depicting not only disturbances but also normal conditions 

of the involved CIs. It does to some degree relate to the 

abstraction level since realistic description is achievable only 

if sufficient details are available. But low level abstraction 

sometimes does not require much information such as TBM. 

c) Large system modelling: Typically a model with over 

300 nodes is considered as large system while a model with 

nodes fewer than 100 is regarded to be small.  

In the Table I. “P”, “C”, “G” and “L” refer to physical, 
cyber, geographical and logical interdependencies. Not all the 
available tools are listed but some common ones.  

Given the criteria that are set up for evaluation, the ideal 
method for modelling and simulation of induced cascading 
failures between EPS and CS should be able to (1) analyse 
physical and cyber interdependencies; (2) model the continuous 
time-dependent behaviours; (3) capture topological 
characteristics; (4) model large system; (5) describe at certain 
level of abstraction to conserve fidelity; (6) have relatively low 
computational costs; (7) realise all three tasks, RI, RIA and RP. 
Obviously there is no such method that could offer all of the 
advantages. Thereby a generalised option is to incorporate two 
or three methods together to fulfil different requirements. In 
Fig.1, it is indicated that the opposing differences among 
methods are mostly related to large system modelling and 
detail replications, or the different characteristics of the CI 
behaviours. So given this fact, two ways of coordinating 
different methods can be proposed. One is to combine a high 
level abstractive method with a low level one, such as IIM with 
ABM, high level TBM with BN. The other type is to model 
EPS and CS separately with different models and use a third 
model to connect them. For example, PN is a suitable method 
for EPS to replicate sequential events and to model its physical 
interdependencies with CS while ABM is appropriate for CS 
since human behaviours are involved as power system 

operations. The coordinator may be a dedicated framework or a 
master simulation platform.  

Nevertheless the effectiveness of combination can only be 
judged after deploying the methods and tools. It is vital to be 
aware that these methods are different in many dimensions and 
more restrictive context requirements or assumptions may 
sometimes be made as premises for the incorporation. 

IV. CONCLUSIONS 

Although there are many reviews on the mainstream 
methods of analysing infrastructure interdependencies, 
comparisons given defined contexts of coupled EPS and CS 
have not yet been made. With the aim of choosing appropriate 
methods for studying cross-sector cascading failures, thorough 
comparisons are conducted as a first step of the overall 
interdependency studies. Seven candidate methods for 
modelling and simulation of cascading effects in critical 
interconnected infrastructure systems are introduced as they all 
have some distinctive advantages in modelling coupled EPS 
and CS. Specific criteria are selected to compare and highlight 
their strengths and weaknesses for the specific purpose. 
General solutions are concluded as utilising different 
combinations of candidate methods to analyse the cascading 
failures in depth. 
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