
Spectral-like gradient method for distributed
optimization
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Abstract—We consider a standard distributed multi-agent op-
timization setting where n nodes (agents) in a network minimize
the aggregate sum of their local convex cost functions. We
present a distributed spectral-like gradient method, wherein step-
sizes are node- and iteration-varying, and they are inspired
by classical spectral methods from centralized optimization.
Simulation examples illustrate the performance of the presented
method.

Index Terms—Distributed optimization, Consensus optimiza-
tion, Spectral gradient method, Barzilai-Borwein method.

I. INTRODUCTION

We consider distributed optimization problems where n
nodes in a generic network cooperate to minimize the sum
of their local convex costs. Such problems find applications in
many relevant fields, including distributed inference, e.g., [1],
[2], distributed control, e.g., [3], and parallel and distributed
machine learning, e.g., [14]. In this paper, to solve the de-
scribed class of problems, we present a novel distributed first
order method based on the class of spectral gradient methods
from centralized optimization.

Spectral gradient methods are a popular class of methods
in the context of conventional, centralized optimization, due
to their simplicity and efficiency. The class originated with
the Barzilei-Borwein method [6] and its analysis therein
for convex quadratic functions, while the method has been
subsequently extended to more general optimization problems,
both unconstrained and constrained, by Raydan and Birgin et
al, [4], [5], [8]. Spectral gradient methods incorporate second-
order information in a computationally efficient manner into
gradient descent methods, achieving in practice significantly
faster per-iteration convergence than standard gradient meth-
ods while the additional computational overhead per iteration
is very small. Roughly, the main idea behind spectral gradient
methods is to approximate the Hessian at each iteration with
a scalar matrix (the leading scalar of the matrix is called the
spectral coefficient) that approximately fits the secant equation.
Reference [5] demonstrates that the spectral gradient method
can be more efficient than the conjugate gradient method for
certain classes of optimization problems. R-linear convergence
of the method was established in [9], while extensions to
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constrained optimization in the form of Spectral Projected
Gradient (SPG) methods are developed, e.g., in [7]. A vast
number of applications is available in the literature and a
comprehensive overview is presented in [8]. In the context of
distributed systems and algorithms, reference [17] considers a
method with spectral-like step-sizes for localization problems.

In this paper, we present a distributed method that is a
generalization of spectral gradient methods for centralized
optimization. Extension of spectral gradient methods to a
distributed setting is a highly nontrivial task. We present an
exact method (converging to the exact solution) that utilizes
step-sizes that are akin to those of conventional (centralized)
spectral methods, where the spectral-like step-sizes are “em-
bedded” into the exact distributed first order method in [11].
We utilize the primal-dual interpretation of the method in [11],
as developed in [13], and the corresponding form of the error
recursion equation. We then exploit an analogy with the error
recursion of the conventional (centralized) spectral method [4]
to define the time-varying, node dependent, algorithm driven
step-sizes. This analogy also allows for an intuitive interpre-
tation of the presented method. R-linear convergence of the
presented method under appropriate conditions on the cost
functions and with appropriate safeguarding on the step-sizes
is proved in [16]. Convergence proofs and further analytical
and numerical studies can be found in [16].

The paper is organized as follows. Section 2 describes the
problem and gives preliminaries. The novel distributed spectral
gradient method is presented in Section 3. Initial numerical
tests are presented in Section 4, while conclusions are drawn
in Section 5.

II. MODEL AND PRELIMINARIES

Optimization and network models. We consider a con-
nected network with n nodes, each of which has access to
a local cost function fi : Rd → R, i = 1, . . . , n. The
objective for all nodes is to minimize the aggregate cost
function f : Rd → R, defined by

f(y) =

n∑
i=1

fi(y). (1)

We assume that each function fi, i = 1, . . . , n, is strongly
convex with modulus µ > 0, i.e., there holds:

fi(z) ≥ fi(y)+∇fi(y)T (z−y)+
µ

2
‖z−y‖2, y, z ∈ Rd; (2)



also, gradients of the fi’s are Lipschitz continuous with
constant L, i.e.:

‖∇fi(y)−∇fi(z)‖ ≤ L‖y − z‖, y, z ∈ Rd, i = 1, . . . , n.
(3)

Under Assumptions (2) and (3), problem (1) is solvable and
has the unique solution, denoted by y?. For future reference,
introduce also function F : Rnd → R, defined by F (x) =∑n
i=1 fi(xi), where the argument x ∈ Rnd consists of n

blocks xi ∈ Rd, i.e., x = ( (x1)T , ..., (xn)T )T .
We assume that the network of nodes is an undirected,

connected network G = (V, E), where V is the set of nodes
and E is the set of edges, i.e., all pairs {i, j} of nodes
which can exchange information through a communication
link. We denote by Oi the set of nodes that are connected
with node i through a direct link (neighborhood set), and let
Ōi = Oi

⋃
{i}. A symmetric, doubly stochastic n× n matrix

W with strictly positive diagonal entries is associated with G.
Denote by λ1 ≥ . . . ≥ λn the eigenvalues of W. It can be
shown that λ1 = 1, and |λi| < 1, i = 2, ..., n.

For future reference, the matrix W = W ⊗ I , where ⊗
denotes the Kronecker product and I is the (here of size d×d)
identity matrix is introduced. It can be seen that matrix W’s
d×d block on the (i, j)-th position equals wij I . By properties
of the Kronecker product, the eigenvalues of W take values
λ1, ..., λn, each occurring with multiplicity d.

Centralized spectral gradient method. We briefly review
the spectral gradient (SG) method in centralized optimization.
Consider unconstrained minimization of a generic objective
function φ : Rd → R which is continuously differentiable. Let
the initial solution estimate be an arbitrary x0 ∈ Rd. The SG
method generates the sequence of iterates {xk} as follows:

xk+1 = xk − 1

σk
∇φ(xk), k = 0, 1, . . . , (4)

where the initial spectral coefficient σ0 > 0 is arbitrary and
σk, k = 1, 2, ..., is given by

σk = P[σ,σ ] {σk,aux} , σk,aux =
(sk−1)T yk−1

(sk−1)T sk−1
. (5)

Here, 0 < σ < σ < +∞ are given constants, sk−1 =
xk − xk−1, yk−1 = ∇φ(xk) − ∇φ(xk−1), and P[a,b] stands
for the projection of a scalar onto the interval [a, b]. The
projection onto the interval [σ, σ] is the safeguarding that is
necessary for convergence under a generic cost function φ. The
quantity σk,aux can be interpreted as follows. Assume that we
seek Hessian approximation in the form Bk = σkI , i.e., we
seek scalar σk, such that the secant equation approximation
Bks

k−1 ≈ yk−1 is the best possible, in the least squares
sense. It is easy to show that this requirement yields (5). For
future reference, we briefly review a result on the evolution
of error with the SG method. Consider the special case of a
strongly convex quadratic function φ(x) = 1

2x
TAx + bTx

for a symmetric positive definite matrix A, and denote by
ek := x? − xk the error at iteration k, where x? is the

minimizer of φ. Then, it can be shown that the error evolution
can be expressed as [4]:

ek+1 = (I − σ−1
k A)ek. (6)

The above relation will play a key role in the intuitive
explanation of the distributed spectral gradient method that
we propose.

III. DISTRIBUTED SPECTRAL-LIKE METHOD

The algorithm. We now present the novel distributed
spectral gradient method. The algorithm is based on the exact
distributed first order method in [11] and incorporates into this
method a spectral-like step size policy; the utilized step-sizes
vary both across nodes and across iterations. The algorithm
maintains over iterations k = 0, 1, ..., at each node i, solution
estimate xki ∈ Rd and an auxiliary variable gki ∈ Rd. The
initial solution estimate x0

i is arbitrary, while g0
i = ∇fi(x0

i ),
i = 1, ..., n. The update rule is the following

xk+1
i =

∑
j∈Ōi

Wij x
k
j −

1

σki
gki (7)

gk+1
i =

∑
j∈Ōi

Wij g
k
j (8)

+
(
∇fi(xk+1

i )−∇fi(xki )
)
, k = 0, 1, ...

The inverse step-sizes σki are given by

σki = P[σ,σ]{σki,aux} (9)

σki,aux =
(sk−1
i )T yk−1

i

(sk−1
i )T sk−1

i

+ σk−1
i

∑
j∈Ōi

Wij

(
1−

(sk−1
j )T sk−1

j

(sk−1
i )T sk−1

i

)
sk−1
i = xki − xk−1

i , yk−1
i = ∇fi(xk)−∇fi(xk−1

i ),

where 0 < σ < σ < +∞ are, as before, the safeguarding
parameters. The initial step-size σ−1

i is an arbitrary scalar in
the interval [σ, σ], i = 1, ..., n.

The method in (7)–(8) and (9) at iteration k is implemented
as follows. First, each node i transmits to all its neighbors
j ∈ Oi the vector xki and receives xkj , j ∈ Oi. Next, each
node calculates σki according to (9) and afterwards performs
the update (7). Subsequently, each node i transmits to all its
neighbors j ∈ Oi quantity gki and receives gkj , j ∈ Oi, and
finally performs update (8). Clearly, each of the two steps (7)
and (8) is fully distributed and each requires one d-dimensional
vector exchange between the neighboring nodes. Note that
step-size calculation (9) is local to each node i and does not
require inter-neighbor communications.1

We now comment on the structure of the presented
method (7)–(8). The method incorporates spectral step

1In order to implement step (9), each node i needs quantities sk−1
j =

xkj − xk−1
j , for all j ∈ Oi; they are available to node i thanks to the

two most recent receptions from neighbors, i.e., thanks to the availability of
quantities xkj and xk−1

j , j ∈ Oi.



sizes (9) into the exact distributed first order method in [11];
in other words, when one sets (σki )−1 = α, for all i, k, with
α > 0 sufficiently small, algorithm (7)–(8) reduces to the
method in [11]. The spectral step sizes definition in (9) arises
from a non-trivial analysis and is based on an analogy with
centralized spectral gradient methods, as discussed ahead in
more detail. For further details see [16]. Quantity gki – as with
the method in [11] – serves as node i’s estimate of the network-
wide average gradient 1

n

∑n
i=1∇fi(xki ); quantity gki is placed

in (7) as a substitute of current node i’s local gradient ∇fi(xki )
with standard distributed gradient methods, e.g., [15], which
brings significant benefits to convergence properties of the
method. For details on the choice of safeguarding parameters
in (9), we refer to [16].

Step-size derivation. We now provide a derivation and
an intuitive justification of the step-size choice (9). The
derivation is based on a primal-dual interpretation of the
method in [11] available in [13] and on an analogy with
the error evolution with the centralized spectral gradient
method [4]. Recall that y? ∈ Rd is the solution to (1);
further, denote by xk = ( (xki )T , ..., (xkn)T )T ∈ Rnd, gk =
( (gki )T , ..., (gkn)T )T ∈ Rnd, and let Σk be the diagonal matrix
whose i-th diagonal entry equals σki . Next, let ekp := xk −x•,
where x• = ( (y?)T , ..., (y?)T )T (y? is repeated n times),
and ekd := gk + ∇F (x•) − ∇F (xk). Quantity ekp represents
the primal error, while quantity ekd represents the dual error
at iteration k.2 For notational simplicity, assume that d = 1,
while similar considerations hold for d > 1 as well. Also,
denote by J the n × n matrix with all entries equal to 1/n.
Let each fi be a strongly convex quadratic function, i.e.,
fi(xi) = 1

2hi(xi − bi)
2, and H = diag(h1, . . . , hn), hi > 0,

for all i. Then, the following recursion holds, see [13]:[
ek+1

p

ek+1
d

]
=

[
W − Σ−1

k H −Σ−1
k

(W − I)H W − J

]
·
[
ekp
ekd

]
(10)

We now present an analogy between the error recursion with
the centralized spectral gradient method for a strongly convex
quadratic cost with leading matrix A, see equation (6), and
the error recursion of the presented method (10). With the
centralized spectral gradient method, the error recursion’s
matrix equals I − σ−1

k A, and the (new) spectral coefficient
σk+1 is set such that the secant equation

σk+1(xk+1 − xk) = A(xk+1 − xk) (11)

is fitted with least mean square deviation. In other words, the
error recursion matrix I − σ−1

k+1A is set in such a way that
σk+1 I is a scalar matrix approximation of A.

We next consider the error recursion (10) of the presented
distributed method, and we specifically focus on the primal

2More precisely, ekd is a linear transformation of the dual error defined with
respect to an augmented Lagrangian dual reformulation of (1); see [13] for
details.

error update:

ek+1
p =

(
W − Σ−1

k H
)
ekp + Σ−1

k ekd

=
(
I − Σ−1

k [Σk (I −W ) +H]
)
ekp

+ Σ−1
k ekd. (12)

As we can see, the second equation above does not involve Σk.
When (6) is compared with (12), we can note that both the
primal error and the dual error affect (12). We may reduce
the effect of the dual error ekd by letting Σ−1

k be small
enough. This motivates safeguarding of Σk from below. On
the other hand, regarding the effect of ekp, we can see that
it is achieved through matrix I − Σ−1

k [Σk (I −W ) +H].
We make this matrix small as with the centralized spectral
gradient method’s case, through the following identification:
A ≡ Σk (I −W ) + H , and σk+1 ≡ Σk+1. Hence, we look
for the matrix Σk+1 as the least-mean-squares-error fit of the
following:

Σk+1

(
xk+1 − xk

)
= (Σk(I −W ) +H)

(
xk+1 − xk

)
.

When cost functions are generic (non-quadratic), the equation
above translates into:

Σk+1

(
xk+1 − xk

)
= ( Σk(I −W ) )

(
xk+1 − xk

)
+

(
∇F (xk+1)−∇F (xk)

)
.

Matrix Σk+1,aux is then obtained by minimizing:

‖Σk+1

(
xk+1 − xk

)
− ( Σk(I −W ) )

(
xk+1 − xk

)
−
(
∇F (xk+1)−∇F (xk)

)
‖2.

The minimizer Σk+1,aux here equals diag(σk+1
1,aux, ..., σ

k+1
n,aux),

with σk+1
i,aux as in (9) for k replaced with k+ 1, i = 1, ..., n. In

order to ensure both strictly positive step-sizes and a bounded
effect of the dual error, Σk+1,aux is finally projected entry-
wise onto the interval [σ, σ ], yielding (9).

Convergence and convergence rate. For a sufficiently
conservative choice of the safeguarding coefficients σ and σ,
it can be shown that the presented distributed spectral method
converges to the exact solution at an R-linear rate. This can be
shown through an extension of Theorem 2 in [12]. Details are
available in [16]. Namely, reference [12] analyses a variant
of the method in [11] with node-varying and time-invariant
step-sizes (without consideration of spectral-like step-sizes),
but the result therein can be extended to time varying step-
sizes like in (9). 3 More precisely, it can be shown that there
exist positive constants c′ and c′′ that depend on the number
of nodes n, weight matrix W , and the fi’s parameters µ and
L, such that, for 1

σ < c′ ≤ 1/(2L) and 1 ≤ σ/σ < c′′.

The error ‖xki − y?‖ converges to zero R-linearly, for each
node i = 1, ..., n. Extensive simulations on strongly convex
quadratic and logistic losses indicate that method (7)–(8)
always converges for 1

σ < c/L and 1
σ > 1/θ, where c and

3This result can be shown through a “worst case” analysis that does not take
into account the specific form of σk

j,aux in (9) but only utilizes information
on the safeguarding parameters σ and σ.



θ can be taken at least as large as c = 100, θ = 108. Pursuing
convergence analysis for a less conservative safeguarding is
left for future work.

IV. SIMULATIONS

This section provides a numerical example to illustrate
the performance of the presented novel distributed spectral
method. The example demonstrates a significant speedup
gained through the presented spectral-like step-size policy with
respect to the counterpart constant step-size method in [11].

We let fi : Rd → R, fi(x) = 1
2 (x−bi)TAi(x−bi), d = 10,

where bi ∈ Rd and Ai ∈ Rd×d is a symmetric positive definite
matrix. The quantities Ai, bi are generated randomly, indepen-
dently across nodes, where each bi’s entry is generated mu-
tually independently from the uniform distribution on [1, 31].
Further, each Bi is generated as Bi = QiDiQ

T
i , where Qi

is the matrix of orthonormal eigenvectors of 1
2 (B̂i + B̂Ti ),

and B̂i has independent, identically distributed (i.i.d.) entries
from standard normal distribution. Next, Di is a diagonal
matrix with the entries drawn in an i.i.d. fashion from the
uniform distribution on [1, 101]. The underlying graph has
n = 30-nodes and is generated as a connected graph instance

of the random geometric model with radius r =
√

ln(n)
n .

Finally, matrix W is as follows: for {i, j} ∈ E, i 6= j,
wij = 1

2(1+max{di,dj}) , where di is the node i’s degree;
for {i, j} /∈ E, i 6= j, wij = 0; and wii = 1 −

∑
j 6=i wij ,

for all i = 1, ..., n.
We compare the presented method and the method in [11].

The comparison allows to assess the benefits of incorporating
spectral-like step-sizes into distributed first order methods.
We use the relative error (averaged across nodes) as the
solution estimate quality metric: 1

n

∑n
i=1

‖xi−y?‖
‖y?‖ , y∗ 6= 0.

Both methods have all parameters equal except the step-sizes.
With the method in [11], we set step-size as α = 1/(3L),
where L = maxi=1,...,n µi, and µi is the maximal eigenvalue
of Ai. This value is the maximal possible step-size for the
method in [11], according to the empirical evaluations in [11].
In general, optimal tuning of the step-size with [11] requires
beforehand tuning and is problem and network dependent. For
more details, we refer to [16]. With the presented method, all
nodes’ step-sizes are initialized to the value 1/(3L). Further,
we let σ = 108 and σ = 3L

10 . This means that the presented
method allows the step-sizes to reach up to 10 times larger
values than the maximal possible value with [11].

Figure 1 plots the relative error versus number of iterations
with the two methods. We observed that [11] with step-size
equal to 1/σ = 10/(3L) diverges on this example.

V. CONCLUSION

We presented an exact distributed spectral-like gradient
method for distributed optimization. The construction of the
novel node- and time-varying step-sizes is based on a primal-
dual interpretation of the method and on an analogy that
we draw with centralized spectral gradient algorithms. The
presented method exhibits R-linear convergence to the exact

Fig. 1. Relative error versus iteration number for the method in [11]
(“harnessing”, solid line) and the novel presented method (dotted line).

solution under standard assumptions on the nodes’ local costs
and under appropriate safeguarding of the step-sizes. Simu-
lation examples on strongly convex quadratic costs illustrate
performance of the presented method.
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