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Abstract— The recording and analysis of peripheral neural 

signals can be beneficial to provide feedback to prosthetic limbs 
and recover the sensory functionality in people with nerve injuries. 
Nevertheless, the interpretation of sensory recordings extracted 
from the nerve is not trivial, and only few studies have applied 
classifiers on sequences of neural signals without previous feature 
extraction. This paper evaluates the classification performance of 
two deep learning (DL) models (CNN and ConvLSTM) applied to 
the electroneurographic (ENG) activity recorded from the sciatic 
nerve of rats. The ENG signals, available from two public datasets, 
were recorded using multi-channel cuff electrodes in response to 
four sensory inputs (plantarflexion, dorsiflexion, nociception, and 
touch) elicited in response to mechanical stimulation applied to the 
hind paw of the rats. Different temporal lengths of the signals were 
considered (2.5 s, 1 s, 500 ms, 200 ms, and 100 ms). Both the two 
DL models proved to correctly discriminate sensory stimuli 
without the need of hand-engineering feature extraction. 
Moreover, ConvLSTM outperformed state-of-the-art results in 
classifying sensory ENG activity (more than 90% F1-score for 
sequences greater than 500 ms), and it showed promising results 
for real-time application scenarios. 

Keywords— ENG signals, classification, neural networks, deep 
learning, sensory stimulus, sciatic nerve. 

I. INTRODUCTION  
About 60’000 new cases of peripheral nerve injuries are 

reported every year just in the USA [1]. This type of damage can 
result in the complete or partial loss of sensory perception and 
movement control, altering the quality of life of the individuals. 
Recent research has seen the development of neuro prostheses 
as interfaces with peripheral nerves to incorporate sensory 
feedback and recover the lost functionalities [2-4]. These 
devices aim at bypassing the injury and restoring the flow of 
information between the central nervous system and the rest of 
the body. Among all, bidirectional devices are the best solutions 
because they can both record and later stimulate peripheral 
nerves in order to deliver sensory feedback [5,6]. A schematic 
of the functioning of main blocks implementing the sequence of 
operations in a neuro prosthesis interface is shown in Fig. 1. 
Such a system acquires the electrical signals from both ends of 
the peripheral nerve damage, send them to an external computer, 
interprets them and artificially stimulates the nerve, thus 
creating a bypass that can mimic the physiological response of 
the body. 

 
Fig. 1. Block diagram of operations in a bidirectional neuro prosthesis. 

Neuro prostheses for the open-loop control of lower and 
upper limb movement has improved in recent years [7,8], but the 
incorporation of sensory feedback within these devices is still 
challenging. Electromyographic (EMG) signals are usually 
employed for prosthetic movement control since they are easily 
accessible, but they cannot provide sensory information [9]. 
Thus, directly recording and interpreting ENG signals at the 
level of the nerve can guarantee better neuro-prosthesis 
performance, exploiting the neurosensory path of the patient. 
While advances have been achieved in stimulating peripheral 
nerves and producing sensory perceptions [7,8,10], the ability of 
long-term recording of ENG signals has not been thoroughly 
investigated. The main problems are the low Signal-to-Noise 
Ratio (SNR), the biocompatibility of the acquisition system and 
the poor surgical accessibility of the nerve [11-13]. With regards 
to the acquisition system, extra neural cuff electrodes, which act 
as sensors wrapped around the nerve, are often considered the 
preferable option to measure the ENG activity thanks to their 
low invasiveness. However, one of their main drawback is the  
limited SNR and selectivity compared to intraneural electrodes 
[13]. Thus, the direct interpretation of sensory information 
recorded from the nerve is not trivial, also because of the high 
complexity of the neural system. Indeed, the “transfer function” 
among the acquired ENG activity and the expected output is 
unknown. Therefore, neuro protheses should comprise a 
classification algorithm that can learn from past values of the 
recorded signal and generate data-driven predictions. 

In this context, the main contribution of this work is the 
introduction of deep learning classifiers for the discrimination of 
four sensory stimuli (touch, dorsiflexion, plantarflexion, and 
nociception) from ENG signals. In particular: 
• two classification approaches that can deal with noisy data 

without the need of hand-engineering feature extraction were 
evaluated. The novelty is the introduction of the ConvLSTM 
model, which is particularly suitable for spatio-temporal data 
and for extracting long-term temporal relationships within 
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the signal. The second model is based on Convolutional 
Neural Networks (CNN), state-of-the-art classifiers for 
spatiotemporal data, thus allowing performance comparison; 

• focus was dedicated to evaluate the influence of the 
implantation site for the electrical contacts on the 
discrimination performance; 

• five different temporal lengths of ENG sequences were 
evaluated to identify the optimal ones for both off-line and 
real-time classification scenarios. In the latter case, the 
acquisition plus the classification time intervals should be 
strictly less than 300 ms, which is the acceptable and not 
perceivable time delay between the stimulation of the limb 
and the actual classification of the signal [14]. 

The paper is organized as follows. Section 2 discusses related 
works on the classification of sensory evoked ENG signals. The 
proposed approaches for processing and classifying the data are 
introduced in Section 3. In Section 4, we present the main 
results and their discussion. Section 5 concludes the paper and 
delineates future research.  

II. RELATED WORKS 
Most of the algorithms implemented so far for the 

classification of sensory ENG signals require a preliminary 
extraction of features, which can be obtained by the Running 
Observation Window (ROW) method [9]. It consists in sliding 
a fixed time window (∼100/300 ms) over the ENG sequence to 
compute a set of selected characteristics, such as the mean 
absolute value, the wavelength or the variance estimator [15]. 
Later, a machine learning model employs such features to 
discriminate the sensory input that evoked the ENG activity. The 
main classifiers analyzed in sensory discrimination tasks are 
Linear Discriminant Analysis (LDA) [9], Support Vector 
Machines (SVM)  [11,16,17], and Random Forest. Brunton et 
al. [16] employed a ROW-based approach to classify different 
sensory stimuli (e.g., nociception, touch, proprioception) from 
the ENG signals using SVM, reporting ∼83% mean accuracy. 
Moreover, Silveira et al. [18] applied LDA in separating 10 
different stimuli, achieving up to 65% in the best-performing 
animal. The results of [18] also indicate that placing the cuff 
electrode in the distal position on the sciatic nerve allows to 
achieve a better discrimination of sensory stimuli compared to 
the proximal position. An important aspect of ROW is the 
possibility to perform majority voting to avoid transient jumps 
after the classification of sensory stimuli in each window [11].  

Recently, novel feature extraction frameworks have also 
been investigated. These comprise the spatio-temporal focus and 
the dynamic time warping to reduce the computational cost and 
improve the classification performance. The Spatio-Temporal 
Warping (STW) approach, introduced by Silveira et al. [9] 
before the LDA classifier, allowed to discriminate six 
proprioceptive stimuli with accuracy between 93.4 and 98%. On 
the other hand, other studies focused on the Velocity Selective 
Recording (VSR) to exploits the temporal information within 
ENG signals [19,20], like the conduction velocity and the 
direction of propagation of the electrical activity inside the 
nerve. Moreover, it is possible to infer the firing rate of active 
neural fibers within the nerve by detecting the compound action 
potentials (CAPs), i.e. the signature activity of the simultaneous 

activation of multiple neurons. Thus, its firing rate, as well as its 
shape, can be attributed to a different sensory stimulus. Koh et 
al. [21] were the first at introducing an innovative approach for 
ENG classification based on a combination of the CAP detection 
and the VSR method. They fed individual detected CAPs to an 
Artificial Neural Network (ANN) and a CNN architecture. The 
algorithms reached about 76.10% mean accuracy and 68.40% 
mean F1 score for separating dorsiflexion from plantarflexion, 
whereas the results were lower when trying to also separate the 
pricking stimulus. 

Even though the feature extraction process is still the most 
common approach, it can be time-consuming, and it requires 
human expert dependency for selecting the most relevant 
characteristics [22]. In this context, deep learning frameworks 
are getting more attention because they can handle and classify 
raw signals without the need of previous data processing steps. 
As for the feature extraction methods, most of the techniques 
adopted for ENG signal classification have been previously 
employed in the analysis of EMG activity, like CNN [23], ANN 
[24], Spiking Neural Network (SNN) [25] and Recurrent Neural 
Network (RNN) [26]. In a recent work, Porta et al. [27] obtained 
almost 84% mean accuracy in discriminating ten different 
stimuli (touch, nociception, dorsiflexion and plantarflexion at 
different intensities) with both CNN and SNN. Even better 
results were found when merging labels belonging to the same 
sensorial type (∼97% mean accuracy on the best animal). RNN 
architectures were not implemented for ENG classification so 
far, but they showed promising results in EMG-based 
applications, like recognition of finger and hand gestures [26], 
prosthesis control [28], and gait pattern recognition in 
exoskeletons [29]. 

III. DATASETS AND METHODOLOGIES 
The classification task of sensory nerve responses in rats was 

performed on two different datasets made available by the 
Newcastle University. The first one, the dataset 1, was produced 
in August 2016 [16]; the second one, the dataset 2, was acquired 
from November 2016 to May 2017 and later analyzed in [18]. 
The two datasets contain measures of naturally evoked ENG 
signals obtained by mechanical stimulation of the limb of five 
Sprague Dawley rats (three in dataset 1 and two in dataset 2). 
Extra-neural 16-channels cuff electrodes were positioned on the 
sciatic nerve of the animals (4 rings of 4 platinum contacts each), 
in distal position for dataset 1 and in proximal position for 
dataset 2 (see Fig. 2). The acquisition of the ENG signals was 
carried out with sampling frequency of 30 kHz. In particular, 
different classes of sensory stimuli were administered to the rats’ 
hind paw, grouped into the following stimulus categories: 

• nociception, with two classes depending on the pinching 
locations on the foot: heel pinch and outer toe pinch; 

• proprioception, which subsequentially divides in 
plantarflexion (+10°, +20°, +30°) and dorsiflexion (-10°, -
20°, -30°) of the ankle with respect to a neutral position, for 
a total number of 6 classes; 

• touch, with two stimuli related to different ways of touching 
the animal (100 g and 300 g of force). The experimental 
setup planned to alternate the stimulation with resting time 
instants (Fig. 2a). 



 

(a) 

 
(b) (c) 

Fig. 2. ENG signal (blue) and synchronization signal (red) for the different 
stimulus categories (a) [16]; different positions of cuff electrodes in the 

datasets (b) and the configuration of the electrodes in the 16-channel cuff (c). 

A. Signal Processing 
Before feeding the data to the classifiers, the signals were 

preprocessed to reduce some intrinsic problems, using 
MATLABTM. The main negative impairments affecting the data 
are: 

• powerline interference (PLI), which is present in all the 
recordings, with most contribution in the lowest harmonics; 

• sampling jitter-based distortions, which is visible in the 
time-frequency domain due to the acquisition system. 

The PLI was not removed from the signals, but suitable 
classifiers that can handle noisy data were selected. On the other 
hand, the regridding technique described in [27] was carried out 
to fix the uneven time grid of the signals. Starting from the Short 
Time Fourier Transform (STFT) of the ENG signals, it is 
possible to quantify the sampling shift ∆𝑓𝑓𝑠𝑠(𝑡𝑡) as:  

        ∆𝑓𝑓𝑠𝑠(𝑡𝑡) ≈ −𝑓𝑓𝑠𝑠0 ∙
∆𝑓𝑓0(𝑡𝑡)
𝑓𝑓0

 (1) 

where 𝑓𝑓𝑠𝑠0 is the nominal sampling frequency (30kHz) and 
∆𝑓𝑓0(𝑡𝑡) is the estimated shift of one PLI harmonic at its real 
frequency 𝑓𝑓0. The harmonic at 750 Hz was selected to estimate 
∆𝑓𝑓0(𝑡𝑡) because it was the one presenting the highest peak in the 
Power Spectral Density (PSD). Then, the actual time instants in 
which the signal was sampled were derived. More details of this 
method are given in [27]. 

Later, an 8th-order Butterworth bandpass filter between 800 
Hz and 2450 Hz was applied to obtain the ENG bandwidth of 
interest. Besides, noisy timesteps of the signal (up to some 
voltage) were deleted because they completely alter the ENG 
activity and its discrimination. Time instants higher than a 30 
mV in one or more electrodes were deleted. Finally, the signal 
was downsampled from 30 kHz to 5 kHz to reduce the 
dimensionality of the data. 

 
Fig. 3. Scheme of the different ENG sequence lengths. 

B. ENG sequence preparation 
Sequence length correction. The sequences corresponding to the 
stimulation instants were obtained using the synchronization 
signals in Fig. 2a). The ENG sequence lengths were not 
constant, either within the same trial or in different sensory 
stimuli. Sequences duration were about 3 s both in dataset 1 and 
2 for proprioception and touch, whereas the nociceptive 
sequences varied significantly in length: 0.25 s- 1.40 s (dataset 
1) 1.8 s- 5.6 s (dataset 2). Thus, the final sequence length was 
set to 2.5 s to standardize, considering only the steady-state 
response to mechanical stimulation as already carried out in 
previous works [16]. Truncation (for longer sequences) or 
padding same (for shorter sequences) was applied.  

Final dataset correction. A different number of repetitions were 
found for each stimulus class. Moreover, few sequences were 
too noisy, so they were discarded from the analysis. The final 
dataset is shown in Table 1, which is lightly unbalanced. Finally, 
the labels of each sequence were one-hot encoded for feeding 
the classifiers. 

TABLE 1. Final number of ENG sequences 

Animal 
Type of stimulation 

Nociception Plantarflexion Dorsiflexion Touch 
1 129 150 150 100 
2 104 145 147 78 
3 103 150 147 98 
4 102 177 177 79 
5 89 144 148 97 

 

C. Classification setup 
The classifiers were evaluated on different classification 

setups with varying time lengths of the ENG sequences (2.5 s, 1 
s, 500 ms, 200 ms and 100 ms), exploiting the available data as 
much as possible (see Fig. 3).  

Thus, from each sequence of 2.5 s more samples were 
obtained according to the chosen window. Moreover, different 
models were implemented for different animals, due to the 
inter-subject variability. Stratified 5-fold cross-validation was 
carried out to avoid the presence of overfitting. The sets were 
stratified also considering the different stimulus intensities and 
not only the 4 main sensory types, i.e., touch, nociception, 



dorsiflexion, and plantarflexion. Two models were considered: 
ConvLSTM which was evaluated on all the sequence lengths, 
and CNN, which was implemented as a comparison only on two 
selected sequence lengths (500 ms and 200 ms). Two different 
metrics were selected: the accuracy and the F1-score (macro). 
The first is the most used metric in ENG classification 
problems, so the results will be more comparable with the state-
of- the-art. The second also considers the minority class 
instances and it was obtained by averaging the F1-scores of 
each class. 

D. Classification models 
CNNs networks are usually applied to structured spatio-

temporal inputs because of their ability to recognize patterns 
within data without the need of feature extraction. For this 
reason, in this work a convolutional architecture was employed 
and adapted from [27]. It comprises a combination of two 1D 
convolutional layers: one with a kernel 𝐸𝐸 × 1 along the 
dimension of the electrodes and the other with kernel 1 × 𝐾𝐾 for 
convolving the signal in the time dimension. The result of these 
convolutions is then summed together row-by-row along the 
time dimension. Each of the kernels was moved with a stride 
length of 1, and padding “same” was applied to maintain the 
same dimensionality after the convolution. These layers form a 
convolutional block. Four convolutional blocks with an 
increasing number of filters (32, 64, 126, 256) were inserted 
before two simple 1D CNN layers, a flatten layer and a fully 
connected layer performing the classification. Max-pooling and 
dropout layers were used after each convolutional layer for 
dimensionality reduction and preventing overfitting 
respectively. A rectified linear unit (ReLu) activation function 
was employed in each convolutional layer to introduce non-
linearity, whereas Softmax was used at the end to transform the 
unbounded outputs into probabilities.  

The second model is the ConvLSTM, usually applied in 
video classification tasks. ConvLSTM was selected for its 
ability to extract spatio-temporal patterns typical of the CNN 
and at the same time understand temporal relationships within 
“frames” of ENG signals, as the Long-Short Term Memory 
(LSTM) [30]. In standard LSTM, the core cell can store values 
over arbitrary time periods thanks to three gates, that control the 
information flow into and out of the cell (Fig. 4). New 
knowledge is accumulated when the input gate is activated, and 
previous cell status is forgotten if the forget gate is active. 
Finally, the output gate decides if the final state should 
propagate. In the case of ConvLSTM, the convolution operator 
is also applied to the inputs. Unlike normal LSTM that can 
handle only 1D data, ConvLSTM takes 3D inputs, like the 
width, the height, and the RGB channels in an image. In this 
work, the samples of ENG signal to classify were transformed 
in a video-like structure: each sequence was divided into more 
time windows of length 𝑀𝑀 and height 16, which is the number 
of electrodes, and these windows are handled as “frames” (Fig. 
4). The value of 𝑀𝑀 was chosen empirically and set to 20 ms. The 
ConvLSTM architecture in this work comprises three main 
blocks, with a convolutional and a max pooling layers, before a 
final flatten and dense layers. The number of filters was set to 
16, 32 and 64 for blocks in ascending order, whereas the kernel 
size to 11 for the temporal dimension and 3 for the “electrode”  

 
Fig. 4. Scheme of the ConvLSTM cell (up) and representation of the “ENG 

frames” of 20 ms within a sequence (100 ms) to classify (down). 

dimension. The recurrent drop out, which is the fraction of the 
units to drop at each iteration for the linear transformation of 
the recurrent state, was 0.2. 
 
TABLE II. Results of the ConvLSTM (mean F1-score), reported as mean ± 
standard deviation calculated in the testing phase of the 5-fold cross-validation. 

Sample 
length 

F1-score (%) 
Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 

2.5 s 98.9 ±1.5 91.1 ±8.2 79.2±12.8 37.8 ±4.8 66.3 ±4.0 

1 s 92.2 ±4.7 86.8 ±6.0 91.8 ±4.9 31.7 ±6.7 78.3±17.2 

500 ms 92.7 ±1.9 94.5 ±2.6 87.7 ±3.2 42.7 ±3.3 69.8 ±2.8 

200 ms 90.1 ±3.5 77.6 ±1.8 81.8 ±1.5 42.7 ±2.9 62.9 ±5.8 
100 ms 85.6 ±0.9 75.9 ±1.0 76.6 ±2.2 40.7 ±1.7 65.3 ±1.6 

 

IV. RESULTS AND DISCUSSION 
Table II shows the results in terms of mean F1-score 

obtained by the ConvLSTM model in the various setups, 
whereas the accuracy is reported in the boxplots (Fig. 5). The 
averaged results among animals in dataset 1 indicated that the 
ConvLSTM can discriminate the 4 different sensory stimuli with 
∼90% mean accuracy and mean F1-score among animals for 
sequence length of 2500 ms, 1000 ms and 500 ms, ∼83% for 
200 ms and ∼79% for 100 ms. On the other hand, for dataset 2 
the averaged outcomes among rats are almost constant for all the 
setups, ranging between 51% and 56% approximately.  With the 
available datasets, the optimal trade-off between performance 
and repeatability was also identified. Sequence length of 500 ms 
should be selected for off-line classification. Instead, if one aims 
at incorporating the sensory discrimination into a real-time 



device, the choice falls on 200 ms, which is lower than the 
acceptable and non- perceivable time delay (300 ms). 

As far as the comparison with the CNN is concerned, the 
mean F1-scores are reported in Table III. The ConvLSTM 
performed almost 10% better than the CNN architecture for the 
500 ms setup, where this latter reached about 81% averaged 
accuracy and F1-score among animals. For the 200 ms case, the 
CNN results are almost 5% lower compared to the ConvLSTM. 
At the same time, the results are comparable to the ConvLSTM 
for the 500 ms classification task (∼55%) in dataset 2 and they 
are slightly better for sequence length of 200 ms.  

TABLE III. Results of the CNN (F1-score), reported as mean ± standard 
deviation calculated in the testing phase. 

Sample 
length 

F1-score (%) 
Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 

500 ms 90.2 ±5.0 80.8 ±4.2 72.4 ±2.8 43.3 ±4.4 65.1±15.4 

200 ms 87.4 ±4.5 72.3 ±3.4 74.0 ±8.3 44.7 ±2.4 68.9±14.3 

 

From the results of both CNN and ConvLSTM, an 
appreciable difference in performance can be noticed between 
dataset 1 and dataset 2. Indeed, the cuff electrodes were 
implanted in different positions: distally in the sciatic nerve for 
animal 1, 2 and 3 and proximally for animal 4 and 5. This 
corroborated previously findings that the implantation site of the 
cuff-electrode on the proximal part of the sciatic nerve allows to 
discriminate sensory stimuli less compared to the distal position 
[18]. For dataset 2, most of the misclassifications happened 
between the dorsiflexion and the plantarflexion, most likely due 
to the anatomy of the sciatic nerve. The increase in fasciculation 
in the distal position guarantees better classification 
performance because the cuff electrode can acquire the signals 
with higher selectivity. Furthermore, it can be observed all the 
testing models obtained different performance with respect to 
the animal considered. In dataset 1, rat 1 was the best performing 
in almost every setup, whereas in dataset 2 the classifiers 
discriminated sensory signal better in rat 5. The inter-subject 

variability is due to some stochastic factors, such as the 
positioning of the cuff electrode, the electrode coupling with the 
nerve, micro damages caused by the surgery, the nerve 
orientation with respect to the electrodes or the physiological 
nature of the ENG signals [11,18]. All these aspects contribute 
to affect the SNR, thus the final classification performance. 

Finally, the results of the ConvLSTM architecture were 
compared with the state-of-the-art. For dataset 1, Porta et al. [27] 
obtained similar averaged results among animals on 1s ENG 
sequences, but the ConvLSTM outperforms their CNN (above 
94% accuracy) when comparing the maximal performance in 
every animal. Moreover, they conducted a hard signal 
processing, which suggests that the ConvLSTM method can 
handle noisy data while preserving the same performance 
without the need of a time-consuming processing. For dataset 2, 
LDA classifiers were tested in [18], using sequence length of 2.5 
s for touch and proprioception and 500 ms for nociception. The 
maximum accuracy and F1-score in the animal 4 were 42.9% 
and 41.3%, which are lower than the maximal performance 
obtained by the ConvLSTM on 2.5 s or on 500 ms sequences. 
Moreover, both accuracy and F1-score were largely lower 
compared to animal 5, which in our case reached better results 
than animal 4. 

V. CONCLUSIONS 
In this work, the ConvLSTM model for discriminating 

sensory stimuli from the ENG activity in the sciatic nerve was 
successfully introduced. First, a light signal processing pipeline 
was selected before the actual classification task, pointing 
towards the realization of a real-time sensory discrimination 
method. The signals were down sampled even to 5 kHz before 
the classification, proving that it is possible to obtain high 
performance even with lower sampling frequencies. Then, two 
different models, ConvLSTM and CNN, were chosen because 
they do not require previous hand-engineering feature extraction 
and they can handle noisy data. Two publicy available datasets 
were considered for this analysis. Two optimal sequence lengths 
were found for off-line (500 ms) and real-time (200 ms) 
application scenarios. For animals in dataset 1, the ConvLSTM 

Fig. 5. Boxplots of the overall results (accuracy) of ConvLSTM during the 5-fold CV. Animals 1, 2 and 3 of dataset 1 are in blue, animals 4 and 5 of dataset 2 are in 
light blue to indicate the different implantation sites of the cuff-electrode. 



performed ∼10% better than the CNN with time length of 500 
ms and almost 5% better with 200 ms sequences. Instead, both 
models reached comparable performance in dataset 2. All the 
results confirmed prior findings that cuff electrodes in the distal 
position on the sciatic nerve can enhance the discrimination of 
sensory stimuli compared to the proximal site. Moreover, the 
superiority of the ConvLSTM for the classification task was 
proved with respect to the state-of-the-art. 

ACKNOWLEDGMENT 
We would like to thank Federica Porta and the PNRelay 

group. At the same time, all the authors express their thanks to 
the researchers of the Newcastle University for sharing their 
datasets. 

REFERENCES 
[1] N. Y. Li, G. I. Onor, N. J. Lemme, and J. A. Gil, ‘Epidemiology of 

Peripheral Nerve Injuries in Sports, Exercise, and Recreation in the 
United States, 2009 – 2018’, Phys. Sportsmed., vol. 49, no. 3, pp. 355–
362, Jul. 2021, doi: 10.1080/00913847.2020.1850151. 

[2] G. Valle, A. Saliji, E. Fogle, A. Cimolato, F. M. Petrini, and S. 
Raspopovic, ‘Mechanisms of neuro-robotic prosthesis operation in leg 
amputees’, Sci. Adv., vol. 7, no. 17, p. eabd8354, Apr. 2021, doi: 
10.1126/sciadv.abd8354. 

[3] K. Nazarpour, A. Krasoulis, and J. M. Hahne, ‘Control of prosthetic 
hands’, in Control of Prosthetic Hands: Challenges and emerging 
avenues, K. Nazarpour, Ed. Institution of Engineering and Technology, 
2020, pp. 1–13. doi: 10.1049/PBHE022E_ch1. 

[4] D. W. Tan, M. A. Schiefer, M. W. Keith, J. R. Anderson, J. Tyler, and D. 
J. Tyler, ‘A neural interface provides long-term stable natural touch 
perception’, Sci. Transl. Med., vol. 6, no. 257, Oct. 2014, doi: 
10.1126/scitranslmed.3008669. 

[5] I. Williams et al., ‘SenseBack - An Implantable System for Bidirectional 
Neural Interfacing’, IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 5, 
pp. 1079–1087, Oct. 2020, doi: 10.1109/TBCAS.2020.3022839. 

[6] S. Raspopovic et al., ‘Restoring Natural Sensory Feedback in Real-Time 
Bidirectional Hand Prostheses’, Sci. Transl. Med., vol. 6, no. 222, Feb. 
2014, doi: 10.1126/scitranslmed.3006820. 

[7] T. Callier and S. J. Bensmaia, ‘Restoring the sense of touch with electrical 
stimulation of the nerve and brain’, in Somatosensory Feedback for 
Neuroprosthetics, Elsevier, 2021, pp. 349–378. doi: 10.1016/B978-0-12-
822828-9.00010-1. 

[8] B. Güçlü, ‘Introduction to somatosensory neuroprostheses’, in 
Somatosensory Feedback for Neuroprosthetics, Elsevier, 2021, pp. 3–40. 
doi: 10.1016/B978-0-12-822828-9.00022-8. 

[9] C. Silveira, R. N. Khushaba, E. Brunton, and K. Nazarpour, ‘Spatio-
temporal feature extraction in sensory electroneurographic signals’, 
Philos. Trans. R. Soc. Math. Phys. Eng. Sci., vol. 380, no. 2228, p. 
20210268, Jul. 2022, doi: 10.1098/rsta.2021.0268. 

[10] G. Preatoni, F. Dell’Eva, G. Valle, A. Pedrocchi, and S. Raspopovic, 
‘Reshaping the full body illusion through visuo-electro-tactile 
sensations’, PLOS ONE, vol. 18, no. 2, p. e0280628, Feb. 2023, doi: 
10.1371/journal.pone.0280628. 

[11] S. Raspopovic, J. Carpaneto, E. Udina, X. Navarro, and S. Micera, ‘On 
the identification of sensory information from mixed nerves by using 
single-channel cuff electrodes’, J. NeuroEngineering Rehabil., vol. 7, no. 
1, p. 17, Dec. 2010, doi: 10.1186/1743-0003-7-17. 

[12] B. P. Christie et al., ‘“Long-term stability of stimulating spiral nerve cuff 
electrodes on human peripheral nerves”’, J. NeuroEngineering Rehabil., 
vol. 14, no. 1, p. 70, Dec. 2017, doi: 10.1186/s12984-017-0285-3. 

[13] C. E. Larson and E. Meng, ‘A review for the peripheral nerve interface 
designer’, J. Neurosci. Methods, vol. 332, p. 108523, Feb. 2020, doi: 
10.1016/j.jneumeth.2019.108523. 

[14] T. R. Farrell and R. F. Weir, ‘The Optimal Controller Delay for 
Myoelectric Prostheses’, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, 
no. 1, pp. 111–118, Mar. 2007, doi: 10.1109/TNSRE.2007.891391. 

[15] K. Englehart, B. Hudgins, P. A. Parker, and M. Stevenson, ‘Classification 
of the myoelectric signal using time-frequency based representations’, 
Med. Eng. Phys., vol. 21, no. 6–7, pp. 431–438, Jul. 1999, doi: 
10.1016/S1350-4533(99)00066-1. 

[16] E. Brunton, C. Blau, C. Silveira, and K. Nazarpour, ‘Identification of 
sensory information in mixed nerves using multi-channel cuff electrodes 
for closed loop neural prostheses’, in 2017 8th International IEEE/EMBS 
Conference on Neural Engineering (NER), Shanghai, May 2017, pp. 
391–394. doi: 10.1109/NER.2017.8008372. 

[17] E. Brunton, C. W. Blau, and K. Nazarpour, ‘Separability of neural 
responses to standardised mechanical stimulation of limbs’, Sci. Rep., 
vol. 7, no. 1, p. 11138, Dec. 2017, doi: 10.1038/s41598-017-11349-z. 

[18] C. Silveira, E. Brunton, S. Spendiff, and K. Nazarpour, ‘Influence of 
nerve cuff channel count and implantation site on the separability of 
afferent ENG’, J. Neural Eng., vol. 15, no. 4, p. 046004, Aug. 2018, doi: 
10.1088/1741-2552/aabca0. 

[19] M. Schuettler, V. Seetohul, J. Taylor, and N. Donaldson, ‘Velocity-
Selective Recording from Frog Nerve Using a Multi-Contact Cuff 
Electrode’, in 2006 International Conference of the IEEE Engineering in 
Medicine and Biology Society, New York, NY, Aug. 2006, pp. 2962–
2965. doi: 10.1109/IEMBS.2006.260335. 

[20] J. Taylor, B. Metcalfe, C. Clarke, D. Chew, T. Nielsen, and N. Donaldson, 
‘A Summary of Current and New Methods in Velocity Selective 
Recording (VSR) of Electroneurogram (ENG)’, in 2015 IEEE Computer 
Society Annual Symposium on VLSI, Montpellier, France, Jul. 2015, pp. 
221–226. doi: 10.1109/ISVLSI.2015.34. 

[21] R. G. L. Koh, A. I. Nachman, and J. Zariffa, ‘Use of spatiotemporal 
templates for pathway discrimination in peripheral nerve recordings: a 
simulation study’, J. Neural Eng., vol. 14, no. 1, p. 016013, Feb. 2017, 
doi: 10.1088/1741-2552/14/1/016013. 

[22] S. Raspopovic et al., ‘Neural signal recording and processing in somatic 
neuroprosthetic applications. A review’, J. Neurosci. Methods, vol. 337, 
p. 108653, May 2020, doi: 10.1016/j.jneumeth.2020.108653. 

[23] R. G. L. Koh, M. Balas, A. I. Nachman, and J. Zariffa, ‘Selective 
peripheral nerve recordings from nerve cuff electrodes using 
convolutional neural networks’, J. Neural Eng., vol. 17, no. 1, p. 016042, 
Jan. 2020, doi: 10.1088/1741-2552/ab4ac4. 

[24] A. David Orjuela-Canon, A. F. Ruiz-Olaya, and L. Forero, ‘Deep neural 
network for EMG signal classification of wrist position: Preliminary 
results’, in 2017 IEEE Latin American Conference on Computational 
Intelligence (LA-CCI), Arequipa, Nov. 2017, pp. 1–5. doi: 10.1109/LA-
CCI.2017.8285706. 

[25] E. Donati, M. Payvand, N. Risi, R. Krause, and G. Indiveri, 
‘Discrimination of EMG Signals Using a Neuromorphic Implementation 
of a Spiking Neural Network’, IEEE Trans. Biomed. Circuits Syst., vol. 
13, no. 5, pp. 795–803, Oct. 2019, doi: 10.1109/TBCAS.2019.2925454. 

[26] P. Koch, H. Phan, M. Maass, F. Katzberg, and A. Mertins, ‘Recurrent 
Neural Network Based Early Prediction of Future Hand Movements’, in 
2018 40th Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society (EMBC), Honolulu, HI, Jul. 2018, pp. 
4710–4713. doi: 10.1109/EMBC.2018.8513145. 

[27] A. Coviello, F. Porta, M. Magarini, and U. Spagnolini, ‘Neural network-
based classification of ENG recordings in response to naturally evoked 
stimulation’, in Proceedings of the 9th ACM International Conference on 
Nanoscale Computing and Communication, Barcelona Catalunya Spain, 
Oct. 2022, pp. 1–7. doi: 10.1145/3558583.3558855. 

[28] H. Aly and S. M. Youssef, ‘Bio-signal based motion control system using 
deep learning models: a deep learning approach for motion classification 
using EEG and EMG signal fusion’, J. Ambient Intell. Humaniz. Comput., 
Jul. 2021, doi: 10.1007/s12652-021-03351-1. 

[29] C. Chen, Z. Du, L. He, Y. Shi, J. Wang, and W. Dong, ‘A Novel Gait 
Pattern Recognition Method Based on LSTM-CNN for Lower Limb 
Exoskeleton’, J. Bionic Eng., vol. 18, no. 5, pp. 1059–1072, Sep. 2021, 
doi: 10.1007/s42235-021-00083-y. 

[30] C. Shi, Z. Zhang, W. Zhang, C. Zhang, and Q. Xu, ‘Learning Multiscale 
Temporal–Spatial–Spectral Features via a Multipath Convolutional 
LSTM Neural Network for Change Detection With Hyperspectral 
Images’, IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–16, 2022, doi: 
10.1109/TGRS.2022.3176642. 

 


