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ABSTRACT 
Software architecture description languages (ADLs) were a particularly 
active research area in the 1990s.  In 2000, we published an extensive 
study of existing ADLs, which has served as a useful reference to software 
architecture researchers and practitioners.  However, the field of software 
architecture and our understanding of it have undergone numerous 
changes in the past several years.  In particular, the Unified Modeling 
Language (UML) has gained popularity and wide adoption, and as a 
result many of the ADLs we had studied have been pushed into obscurity.  
In this paper, we argue that the main reason behind this is that the early 
ADLs focused almost exclusively on the technological aspects of 
architecture, and mostly ignored the application domain and business 
contexts within which software systems, and development organizations, 
exist.  Together, these three concerns—technology, domain, and 
business—constitute the three “lampposts” needed to appropriately 
“illuminate” software architecture and architectural description.  We use 
this new framework to evaluate both the languages from our original 
study, as well as several more recent ADLs (including UML 2.0). 

1 Introduction 
1.1 Background 

Software architecture emerged as a field of software engineering research 
in the early 1990s, after the publication of Perry and Wolf’s seminal paper 
[33].  Quickly thereafter a number of architecture-based software 
development notations, methods, techniques, and tools were formulated.  
Of particular interest to the early software architecture researchers and (to 
a somewhat lesser extent) practitioners were the notations for modeling 
software architectures.  These came to be known as architecture 
description languages, or ADLs.  
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Several ADLs appeared in the software engineering literature in relatively 
short succession: Acme [15], C2 [39], Darwin [25], MetaH [4], Rapide 
[24], UniCon [37], Weaves [16], Wright [1], and so on.  Several other, 
already existing notations were also claimed to be ADLs, either by their 
developers or users: module interconnection languages (MILs) [34], 
StateCharts [17], CHAM [19], LILEAnna [41], UML 1.x [7], and so on. 
The early understanding of this subject was so immature that it was very 
difficult to argue for or against considering a given software modeling 
notation to be an ADL; languages often “became” ADLs simply because 
someone referred to them as such.  However, one thing common across all 
these notations was the implication that they would significantly alter and 
improve the way software is produced. 
 
Our study, which was conducted in the late 1990s and published in early 
2000 [27], provided some much needed answers.  It provided a technical 
basis for determining what an ADL is and is not.  In particular, this 
allowed us to formulate a clear argument against the inclusion of several 
commonly used notations into the ADLs category.  Our conclusions 
regarding some of these “non-ADLs”, such as StateCharts or CHAM, 
largely agreed with the conventional wisdom of the time, while in the case 
of others, such as UML 1.x, they were surprising (even though subsequent 
developments—the architecture modeling constructs added to UML 2.x—
proved our conclusions sound). 

 
These early “first-generation” ADLs came from different sources: 
commercial industry, government-funded aerospace companies, standards 
bodies, and academia.  They emerged from very different areas of 
software development.  For example, MetaH was targeted primarily at 
real-time systems (with a view toward the control systems domain), while 
Weaves modeled asynchronous data-flow architectures (geared to the 
needs of weather satellite-based systems).  The early ADLs also emerged 
from different areas of computer science, outside software engineering.  
For example, Rapide’s predecessors were used for hardware architecture 
modeling, while Darwin grew out of a distributed computing research 
project. 
 
Yet, despite these differences, the first-generation ADLs all shared certain 
traits.  They all modeled the structural and, with the exception of Acme, 
functional characteristics of software systems.  They invariably took a 
single, limited perspective on software architecture.  Some, such as 
Rapide, focused almost exclusively on event-based modeling at the 
expense of other system aspects; others, such as Wright, were specifically 
geared toward deadlock detection in concurrent architectures; still others, 
such as MetaH and UniCon, were mainly concerned with process 
scheduling.  To support such objectives the early ADLs heavily focused 



Moving Architectural Description from Under the Technology Lamppost     3 

on formalization of software architectural models, with an eye on their 
analysis. 
 
The result of this narrow focus was a set of ADLs that were deficient in 
various areas that were critical to many stakeholders. Most of these ADLs 
focused exclusively on software. For example, only MetaH had explicit 
support for modeling software architecture as well as the hardware it runs 
on. Few first-generation ADLs were accompanied by a strategy for 
implementing the described architecture.  Moreover, characteristics of the 
architecture description could often be verified using analysis tools and 
methods, but there was no way to ensure that the implemented system 
conformed to the architecture. Furthermore, these ADLs were not 
extensible in any meaningful way—it was prohibitively expensive to add 
features to these ADLs to support these unmet needs—severely limiting 
their range of applicability. 

1.2 The Changing Landscape of Software Architecture 
Since our 2000 study, the landscape of software architecture has continued 
to evolve. Two major changes are of interest here. First, the notion of 
software architecture has been expanded, allowing us to view ADLs in a 
new light. Second, notations and approaches for modeling software 
architecture have themselves continued to evolve, thereby providing us 
with information about directions in which the architecture modeling 
community is heading. 

 A Broader Notion of Software Architecture 
There is not today, nor has there ever been, a clear consensus on a 
definition of software architecture. Yet defining software architecture is 
critical to understanding what constitutes an architecture description 
language. Literally hundreds of definitions have been proffered; many 
have been cataloged by the Software Engineering Institute (SEI) and are 
available on the Web [10]. Our initial study struggled with this problem as 
well, identifying several alternative notions of what constituted 
architecture and what made up an ADL. Based on a broad survey of 
architecture description notations and approaches, we identified that ADLs 
capture aspects of software design centered around a system’s 
components, connectors, and configuration. This framework is concordant 
with what is supported in most first-generation ADLs, which, as we noted 
above, primarily tend to capture architectural structure along with 
properties of that structure. It was this framework that provided us with a 
“litmus test” as to whether a modeling notation was or was not an ADL. 
 
Since that time, however, other concerns have become increasingly 
prominent in the software engineering community, specifically those 
derived from domain-specific and business needs. Additional insight has 
come from notions of architecture beyond the software engineering 
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community—systems engineers, for example, have a broad notion of what 
constitutes architecture. Conferences such as the Working IEEE/IFIP 
Conference on Software Architecture (WICSA) have brought together 
researchers and practitioners from the software architecture, systems 
engineering, and enterprise architecture communities. All this has revealed 
that, while structural concerns retain a place of primacy in software 
architecture modeling, they do not and should not define its scope. Instead, 
we propose a broader definition of software architecture: 
 

Definition: A software system’s architecture is the set of principal 
design decisions about the system. 

 
Design decisions encompass every aspect of the system under 
development, including: 
 

• design decisions related to system structure – for example, “there 
should be exactly three components in the system, the ‘data store,’ 
the ‘business logic,’ and the ‘user interface’ component;”  

• design decisions related to behavior (also referred to as functional) 
– for example, “data processing, storage, and visualization will be 
handled separately;”  

• design decisions related to interaction – for example, 
“communication among all system elements will occur only using 
event notifications;”  

• design decisions related to the system’s non-functional properties 
– for example, “the system’s dependability will be ensured by 
replicated processing modules;” 

• design decisions related to the system’s development itself – for 
example, the process that will be used to develop and evolve the 
system; and 

• design decisions related to the system’s business position – for 
example, its relationship to other products, time-to-market, and so 
on. 

 
An important term that appears in the above definition is “principal.”  It 
implies a degree of importance that grants a design decision “architectural 
status.”  It also implies that not all design decisions are architectural, that 
is, they do not necessarily impact a system’s architecture.  How one 
delimits “principal” will depend on what the system goals are.  Ultimately, 
the system’s stakeholders (including, but not restricted only to the 
architect) will decide which design decisions are important enough to 
include in the architecture, and which are not. For example, consider a 
design decision such as “the log viewer component will check for new log 
entries once every second.” For systems where real-time log viewing is 
needed, the log refresh interval might be specified as part of the 
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architecture. For other systems, this may simply be an implementation 
detail and be elided from the description of the system’s architecture. 
 
From this definition of architecture, we can also derive definitions for 
architecture models, description languages, and the act of modeling: 
 

Definition. An architecture model is an artifact or document that 
captures some or all of the design decisions that make up a 
system’s architecture. Architecture models are sometimes referred 
to as architecture descriptions. 
 
Definition: An architecture description language is a notation in 
which architecture models can be expressed. 

 
Definition. Architecture modeling is the effort to capture and 
document the design decisions that make up a system’s 
architecture. 

 
This broader perspective changes the test for whether a notation can be 
considered an architecture description language. Instead of defining ADLs 
based on features (e.g., the ability to model high-level system structure), 
they are defined by stakeholder concerns—whether a notation can 
adequately capture design decisions deemed principal by the system’s 
stakeholders. As we will explain below, these concerns are substantially 
broader than those captured by first-generation ADLs. 
 
In some sense, this broader definition may seem like a step backward in 
that it is a relaxation of our original litmus test. In this new light, even 
some determinations we made in our original study about what is and is 
not an ADL may change. However, this raises the importance of 
discussing the adequacy of different notations for modeling software 
architecture. For example, under our new definition a notation that is not 
suitable for high-level structural modeling may now be classified as an 
ADL, but one that is clearly deficient in a critical respect. 
 
This induces a new way to evaluate architecture modeling notations: not 
based on how they model basic structural elements like components, 
connectors, and interfaces, but rather how adequately they model concerns 
important to their target stakeholders. 
 
Our criticisms of the early ADLs, and, to a somewhat lesser extent UML, 
stem from this issue. Those notations focused primarily on general 
concerns related to the technical aspects of designing and constructing 
software systems. However, we argue that additional concerns must be 
illuminated: those from application domains, as well as business needs. 
We posit that these three “lampposts” (technology, domain, and business), 
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can help explain the reasons behind the limited impact of the first-
generation ADLs and the shortcomings of UML.  In fact, they provide a 
means for a more complete treatment of ADLs than was given in our 
original study [27].  We also posit that several more recent, “second-
generation” ADLs, including UML 2.0, can be better understood and put 
in their proper context with the help of the three lampposts.   
 
This paper, therefore, provides a different perspective of ADLs, both first- 
and second-generation, with an improved understanding of a system’s 
development context and an ADL’s role in it.  In order to properly 
understand, and assess, an architecture modeling language, we believe that 
one needs to understand a number of issues that go beyond the usual 
system structure and behavioral concerns: the many overlapping and 
sometimes conflicting non-functional properties; the characteristics and 
needs of the application domain(s) at which the ADL is targeted; the 
system stakeholders; the organization’s business goals (e.g., managing 
architectural assets to support product families); and so on.  Capturing all 
such concerns with a single, narrowly focused notation (e.g., a first-
generation ADL) is impossible.  At the same time, as we will discuss, it is 
also impractical to try to do so with a “universal” notation, such as UML.   
 
In light of this, we will argue in this paper that a truly effective ADL must 
strike a proper balance between a strict focus on recurring technical 
concerns and the extensibility needed to include the concerns mandated by 
different application domains and business contexts.  Our principal 
objectives are to highlight and improve the current understanding of 
 

1. the limitations of purely technical approaches to software 
architecture, as in the first-generation ADLs; 

2. the justified attraction, but also limitations of “one-size-fits-all” 
approaches, as embodied in UML; and 

3. the need for specialization of a modeling language based on the 
demands of a specific application, application family, or 
application domain. 
 

Most importantly, returning to our metaphor, we will argue that, in order 
to realize their impact, ADLs have to step away from the technology 
lamppost and let in some light from the remaining two lampposts. This is 
not to say that there exists today an ‘ideal’ or ‘perfect’ ADL; in fact, we 
believe no such ADL can emerge because of the diversity of concerns that 
can impact systems development. Rather, we argue that ADLs can be 
made more effective by taking into account concerns from all three 
lampposts, and that several recent ADLs are indeed moving in this 
direction. 
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The remainder of the paper is organized as follows: Section 2 fleshes out 
our vision of the three lampposts and how they can (and should) influence 
software architecture modeling. Section 3 briefly recaps the lessons taught 
by first-generation ADLs. Section 4 describes, in some detail, a set of 
“second-generation” architecture description languages that have evolved 
from first-generation ADLs and are more appropriately positioned under 
the three lampposts. Section 5 summarizes lessons we have learned since 
our 2000 study [24], and extrapolates some future directions for 
architecture modeling. Section 6 concludes the paper. 

2 The Three Lampposts 
The old story about the man who lost his keys provides some context for 
our perspective on the design of architecture description languages. One 
variant of the story states that one night a man dropped his keys in a 
parking lot just before getting to his car. A friend saw him searching for 
the keys on the ground under a lamppost, but quite some distance away 
from the car. When asked why he was looking for the keys so far away 
from where he dropped them, the man replied, “Because the light is much 
better over here.” This story serves as a cautionary tale to all researchers: 
from time to time we fail to discover what is needed simply because we 
are looking for a solution merely in places where it is easiest to perform 
the research. 
 
The notion of “what is needed” is quite variable of course. For researchers 
in an academic computer science program, “what is needed” may simply  
be some interesting technical innovation. For an engineer working in a 
specific application domain, “what is needed” might be something that 
provides exceptional power in that domain, regardless of whether it has 
any value in any other situation. 
 
This characterizes how many architecture modeling languages have been 
developed: the concerns addressed by modeling languages have tended to 
reflect only the characteristics and specific interests of their creators. The 
creators of first-generation ADLs were largely software engineering 
researchers, and as such these ADLs model concerns that are of particular 
interest to various segments of the research community. For example, 
determining appropriate scheduling policies, deadlock-freedom, or the 
best separation of functionality into components and connectors are the 
focus of various first-generation ADLs. These concerns primarily arise 
from technological and engineering problems in constructing and 
maintaining large software systems, and are illuminated by the 
‘technology lamppost.’ 
 
We argue that an excessive or exclusive focus on concerns found under 
the technology lamppost is a critical failing of early architecture 
description languages:  they do not provide “what is needed” to satisfy a 
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robust software engineering ecology. As architecture modeling has 
evolved, languages that encompass concerns beyond the technology 
lamppost are those that have been the most influential, widely-adopted, 
and, arguably, successful. We believe that this is because they address 
concerns important to a wider variety of critical stakeholders. 
 
Developing a successful software system means satisfying a wide variety 
of stakeholders. Indeed, software engineers whose expertise and interests 
lie mostly under the technology lamppost are included. However, unless 
the system’s target users are themselves software engineers, the concerns 
of the users will fall mostly under another lamppost—the domain 
lamppost. These stakeholders are interested mostly in how well the 
software models and addresses problems that they are encountering in 
their own application domain. Additionally, the production of a software 
product typically does not occur in isolation. Products are largely 
interrelated—sharing components, providing complementary 
functionality, being built by overlapping teams of developers, and filling a 
particular space in a market. These concerns fall under a third lamppost—
the business lamppost. 
 
These three lampposts—technology, domain, and business—can provide 
several new insights about architecture description languages: 
 
• First, they provide a way to classify and evaluate architecture 

description languages, by asking to what extent a given ADL 
addresses concerns from each lamppost; 

• Second, they provide a possible way to explain the relative success or 
failure of past ADLs; 

• Third, they provide guidance for developers of new ADLs, as a 
reminder to include and balance support for concerns from all three 
lampposts. 

  
We thus posit that these three lampposts—technology, domain, and 
business—provide the necessary broad perspective on architecture 
description languages and their role in supporting product development as 
a whole.  
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Figure 1. The “three 
lampposts”:  domain of 
application, business 
concerns, and 
technology. 

 

 
Figure 1 shows these three types of concerns as intersecting areas; 
overlapping circles of light from the three lampposts, if you will. The 
technology circle is concerned with the specific technical bases for 
describing, developing, and reasoning about architectural models.  It 
includes formalisms, analysis techniques, and supporting tools. The 
domain circle is concerned with specific application domain knowledge.  
It includes knowledge about the domain’s nature and underlying science, 
typical approaches for solving problems in the domain, and standard 
elements of solutions to problems within that domain. The business circle 
is concerned with markets, organizations, the relationships of different 
products to one another, as well as the processes, people, finances, and 
organizations that all influence and are influenced by software systems.  In 
the subsections below we examine each of the circles of light, and discuss 
their areas of overlap. 

2.1 Technology 
The technology lamppost illuminates concerns surrounding the recurring 
technical challenges of engineering software systems, and creating the 
means for representing and reasoning about their architectures. This 
includes the perspectives of classical computer science and software 
engineering, including work on the most theoretical side, such as abstract 
formal models, as well as work on the very practical, such as linguistic 
means for describing architectures. It primarily includes work that is 
unfettered with (or uninformed by!) concerns of a particular 
implementation domain or business context. 
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The focus on identifying the critical abstractions, or conceptual 
foundations of software architectures, has led, for example, to discussions 
about what components, connectors, and interfaces are, and how important 
they are in modeling systems. Linguistic concerns have shaped discussions 
regarding the relative merits of declarative or imperative ADLs. 
Interoperability among different ADLs has been the focus of another line 
of work. 
 
Many of the discussions and choices regarding fundamental modeling 
techniques have been driven by concerns for the types of analyses that can 
be performed on the various models. For instance, the earliest work in 
ADLs seems to have been largely shaped by the need to capture the 
interfaces of components in such a way that mismatches between 
interfaces could be automatically identified. Later work in analysis has 
included data flow analysis, analysis for potential deadlocks, performance 
estimation, system composition, and others. Often, these ADLs leveraged 
pre-existing analyzable formalisms and applied their concepts to software 
architectures, since analysis techniques and tools were already available.  
 
Much of the work done in building a conceptual foundation for the 
modeling and analysis of software architectures has been accompanied by 
work to create a technical infrastructure of tools and environments.  Such 
infrastructure allows experimentation with the concepts and enables 
attempts to apply the results in practical settings. Of particular interest in 
this area are ADLs developed with the intent that models can be directly 
mapped into implemented systems. Models developed in ADLs such as 
SDL [40] and Executable UML [29] can be directly ‘compiled’ into 
(partial) implementations, while those expressed in Weaves and C2 can be 
mapped to implementations using available architecture frameworks. 
 
Most of the early work in the area of architectural description was 
conducted almost exclusively under this lamppost. A representative, 
though by no means only, example is the chemical abstract machine 
(CHAM) model [19]. This model has proven to be of some theoretical 
interest, but there is little evidence that it has any direct practical 
application, or that it was shaped by a specific practical need or context. 

2.2 Domain 
The domain lamppost illuminates concerns driven and informed by the 
knowledge of a specific application domain. In a sense, therefore, the 
“domain lamppost” is really a host of lampposts, one for each domain that 
someone cares to identify. The commonality, however, is in the approach: 
choices made for representing and reasoning about systems in a particular 
domain are driven by knowledge of that domain, and that knowledge can 
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be used to shape the representation and reasoning techniques employed in 
developing applications. 
 
Modeling languages that address domain-specific concerns offer special 
support for solving problems common to a particular target domain. This 
distinguishes domain-specific concerns from concerns found under the 
technology lamppost—which address general, recurrent problems in 
software development independent of any particular domain. Domain 
lamppost concerns may also include characteristics of the domain itself. 
Because of this, the notations are optimized for creating models in that 
particular domain. Put another way, by restricting one’s focus to just one 
domain, the smaller set of concerns that one has to worry about enables 
specialized, deep solutions to be created. In principle, this approach allows 
engineers to ‘speak the language’ of the target system’s users. Compared 
to generic approaches, descriptions of applications can be created that are 
parsimonious and precise. 
 
Unfortunately, much of the work in specifying and developing domain-
specific applications has not been captured in rigorous notations.  
Frequently the domain knowledge is captured only in the minds of the 
engineers involved.  This renders it difficult to see the exact ways domain 
knowledge shaped a particular approach. Moreover, if work in a domain 
does not result in something that can be identified as an ADL, then it 
becomes difficult to separate domain-focused architecture-based 
development from any type of technology that supports development 
specifically within that domain. 
 
Several notable successes from first-generation ADLs included a domain-
specific focus.  One good example is Weaves [16], which was targeted at 
supporting development of satellite ground stations and has been 
employed by a number of development organizations. In particular, 
Weaves supported the creation of applications which processed, in stages, 
continuous telemetry data. Particular knowledge of the domain, and 
telemetry streams in particular, exploited in Weaves, included the arrival 
rate and type of data received, the independent “connection-less” character 
of the data, and the need for dynamic reconfiguration of the data 
processing. Another example is MetaH, which was targeted at aircraft and 
missile avionics and flight control. Specifically, MetaH supported the 
specification and analysis of real-time, fault-tolerant multi-processor 
systems. MetaH was applied by a number of organizations beyond its 
developers, including Boeing, the US Army, and the SEI, with significant 
cost savings realized from at least one effort at the US Army [14]. 
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2.3 Business 
The business lamppost illuminates concerns focused on capturing and 
exploiting knowledge of the business context of a given development 
effort. This includes a product strategy—e.g., how a product will 
differentiate itself in its target market, how multiple products are related to 
one another, how a product fits into its development organization’s long-
term vision, and so on. It also includes the development organization’s 
processes for creating, managing, and evolving its products. 
 
Costs, including financial concerns, also fall under the business lamppost. 
It is important to recognize that business concerns do not exist only for 
for-profit development organizations or for commercially sold software. 
Open-source and free software products also compete in the marketplace, 
are developed by organized groups, and are evolved and diversified into 
families of related products. 
 
At first glance it may not seem as though the “business lamppost,” with its 
context as described above, is related to or sheds any light on architecture 
description languages. To illustrate the importance, however, consider the 
issue of how an organization retains and exploits its core competencies in 
the face of developer turnover.  One of an organization’s key assets is 
knowledge of how it builds its products, i.e., what enables it to build those 
products in a superior manner to its competitors.  If such knowledge is 
only retained in the heads of key people, then loss of one of those 
individuals could severely damage the company’s ability to compete. If, 
on the other hand, the knowledge is recorded in a more generally 
accessible, manageable, and useful manner, it can be used in training new 
personnel and in assisting in the effective production of the company’s 
products. 
 
Some of the knowledge so recorded may include description of what 
stakeholder perspectives are valued, how input from those stakeholders is 
recorded and used, and how various and competing internal perspectives 
are used to shape products.  Other knowledge may concern the qualities 
that the company values in its products, how those qualities are articulated 
both internally and externally, and how are they achieved, assessed, and 
monitored.  Still other aspects include how the company knows what 
features or properties of its products are responsible for their sales, and 
how it knows which of the products’ features are the critical ones.  A final 
example concerns how a company values its product assets that are under 
development.  That is, for products whose development cycle extends over 
many months, how is the value of the emerging asset accounted for; what 
artifacts are considered in making the valuation; and so on. 
 
As we stated above, business concerns have been largely ignored by the 
ADL development community. Software engineering researchers have 
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addressed business concerns, of course.  Examples include the process 
modeling notations that emerged in the 1980s and 1990s and cost 
modeling frameworks such as COCOMO [5] which, to an extent, 
addresses business and technology concerns together. Still, even recent 
ADLs address business concerns less than technological or domain 
concerns. 
 
Still, there are many business concerns that will likely never find their way 
into an ADL, simply because they are too distant from domain and 
technology concerns to be of much value in an ADL. For example, 
corporate management structures, marketing plans, and organization-wide 
financial data will probably never be found in an ADL. However, 
concerns such as products’ relationships to each other in product lines and 
cost data per component may well appear in an ADL. 

2.4 Overlapping Areas: Shedding Light from Multiple Lampposts 
It should be apparent from the above descriptions that the three 
perspectives described are not mutually exclusive – several ways in which 
the concerns overlap are clear.  Similarly it is clear that a particular ADL 
or related tool or technique may support objectives in more than one 
“circle of light.” 
 
Our perspective is that these overlaps, and technologies that support more 
than one concern, are important targets for developers and researchers. 
ADLs that address concerns from under only one lamppost are unlikely to 
be adopted beyond a very small number of enthusiasts. We have already 
seen this with, for example first-generation ADLs that addressed only 
general concerns from under the technology lamppost, or process 
modeling notations that addressed business concerns exclusive of 
technology or domain considerations. To be broadly adopted and to be 
effective in practice an ADL must satisfy the needs of diverse 
stakeholders, among many other factors (ease of use, return on investment, 
tool support, and so on). It must fit within a development organization, 
broadly construed. Thus an exclusive focus on a single concern (e.g., 
technology) is insufficient; multiple views, domain-specific concerns, and 
the business context must all be considered.1 
 

                                                 
1 As we have pointed out, there are many concerns under these lampposts 
that will not be appropriate for representation in an ADL, particularly 
concerns that exist far at the periphery and address only one of the 
domain, technology, or business concerns. Because of this, we believe that 
ADL designers should take all three lampposts into account, but they 
should not attempt to cover all possible concerns from all three lampposts. 
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Figure 2 repeats the diagram of Figure 1, but now with the different areas 
labeled.  Our intent is to elaborate the meaning of the various areas in the 
diagram. 
 

Figure 2. The 
overlapping areas of the 
“three lampposts” 

 
The Technology area that is exclusive of any overlap with domain 
knowledge or business context comprises generic concepts, description 
languages, tools, and infrastructure focused on recurring concerns in the 
development of software systems.  All too frequently, research work in 
this area has produced solutions that are difficult to use and which have 
not been widely adopted – precisely because of a focus which is narrower 
than the full set of stakeholder perspectives necessary. 
 
The Domain area that is exclusive of the other two perspectives comprises 
concerns regarding the underlying nature, principles, and science of a 
domain, as well as domain characteristics deemed “irrelevant” to either the 
business or technology perspectives.   
 
The Business area that is exclusive of the other two concerns are those 
facets of business that are independent of the development organization’s 
domain of expertise and independent of technology insofar as it relates to 
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product development.  This includes items such as financial accounting 
practices, human resources, and so on. 
 
Clearly the intersections are the areas of interest.  The intersection of 
Domain and Technology, for example, includes technological concerns 
that are specific to a particular domain. That is, where the technology-only 
area addresses recurring problems that occur while building software 
systems in general, the domain-plus-technology area addresses technical 
problems that occur while building software systems within a target 
domain. Application-family architectures fit within this sub-area, as do 
domain-specific modeling languages to capture those family architectures.  
The Weaves language mentioned above is an example formalism;  other 
examples of this ilk include MetaH (where the domain is control systems) 
and ADAGE [3] (where the domain is avionics guidance, navigation, and 
control). 
 
The intersection of Business and Technology links business concerns such 
as costs, product-to-product relationships, and processes to the technical 
construction of software systems, independent of any particular domain. 
Examples of tools that exist in this space include software project and 
process management approaches that relate process steps to specific 
software elements, configuration management systems that track the 
relationships of various software elements to one another, and 
architecture-centric cost modeling notations and tools. Such tools have a 
“one-size-fits-all” character to them, since they are domain-independent. 
 
The intersection of Domain and Business includes the core competencies 
of an organization: that knowledge of a domain combined with business 
strategies and practices which enable the organization to succeed in that 
domain.  To the extent that such knowledge is not supported by 
technology it remains somewhat ephemeral. This area is typified by 
classical systems engineering: a focus on modeling the domain, customer 
requirements, and processes to develop a solution, while deferring 
decisions about specific technological (e.g., implementation) details until 
late phases of development. 
 
The “sweet spot” of the diagram is, of course, the region where all three 
lampposts overlap. We have labeled that region in Figure 2 “product-line 
architectures” as most evocative of what this intersection includes and 
enables. Knowledge of an application domain combined with a business 
strategy for that domain and supported by technology enables the 
representation of and reasoning about a family of applications comprising 
a business product line. However, product lines are not the only approach 
that fits in this ‘sweet spot;’ any approach that takes into account all three 
lampposts will fit there.  
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These three lampposts help illuminate the various types of research that 
have been undertaken in areas related to architecture description 
languages.  However, the lampposts cast light which is, at best, imprecise 
and fuzzy at its boundaries.  The discussion below proceeds to consider 
how ADLs have evolved, being driven by one or more concerns from 
these lampposts. The discussion is specific and more precise, however, 
being grounded in the specifics of several languages. 

3 First-Generation ADLs 
As discussed in the Introduction, in our initial study of ADLs [27] we 
considered several classes of notations: “first-generation” ADLs, UML 
[7], formal modeling notations  –  some of which were targeted 
specifically at architectural concerns, such as CHAM [19] and LILEAnna 
[41], module interconnection languages [34], and even programming 
languages. We defined an ADL as a modeling notation that provides 
facilities for capturing a software system’s components (i.e., 
computational elements), connectors (i.e., interaction elements), and 
configurations (i.e., overall structure).  Additionally, we identified specific 
dimensions of components, connectors and configurations, as well as 
guidelines for evaluating a given notation as a potential ADL. 
 
This definition allowed us to eliminate certain candidate notations 
relatively easily, and we eventually reduced the set to about 20 notations. 
Of those, ten notations were included in the study as bona fide ADLs, as 
shown in Figure 3. 
 

Figure 3. The scope and 
applicability of first-
generation ADLs 
(adopted from our 
original study).  

 

 
Placed in the context of the three lampposts, most of these ADLs solely 
focused on technology: Acme [15], Aesop [30], Darwin [25], Rapide [23], 
SADL [35], UniCon [37], and Wright [1]. Aesop’s explicit support for 
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architectural styles [33] placed it closer than the others to the intersection 
of technology and application domain shown in Figure 2 because a style, 
such as model-view-controller, may provide a canonical architectural 
solution for a given application domain, such as GUI-intensive systems.   
 
In addition to a clear technological focus, three of the studied ADLs 
leveraged more extensively properties of an application domain: 

• C2’s ADL [26] grew out of an architectural style for graphical user 
interface-intensive applications [39], which was eventually 
broadened to a larger class of distributed, dynamic systems 
characterized by asynchronous event-based interaction. 

• MetaH [4] focused on concurrency issues and real-time 
computation scheduling as found specifically within control 
systems. 

• Weaves [16] was created to support large-volume, asynchronous 
data-flow architectures as found in satellite ground stations.  
Similar to C2, Weaves has shown potential for applicability to 
data-intensive systems beyond its original target domain. 

 
Perhaps most strikingly, none of the first-generation ADLs focused on 
business concerns.  This may very well have been their critical 
shortcoming.  On the other hand, as will be further elaborated in the next 
section, UML has attempted to provide a broad coverage of modeling 
issues spanning the area illuminated by both the technology and business 
lampposts.  This may help to explain its wide adoption in industry.  

3.1 The Rise of UML 
UML, the Unified Modeling Language, has achieved more mainstream 
support than any other notation for modeling software-intensive systems 
since the use of flowcharts. As its name implies, UML was derived 
through the unification of multiple influential modeling approaches: the 
Booch method [6], Rumbaugh’s Object Modeling Technique (OMT)  [36], 
Jacobson’s Object-Oriented Software Engineering (OOSE) [20] method, 
Harel’s statecharts [17], and various other sources.  
 
Whether UML is an ADL, and how suitable it is for that purpose, has been 
the subject of study and debate. Under our broader definition of software 
architecture given above, it is clear that even the earlier versions of UML 
can be used as architecture modeling notations.  
 
UML emerged around the same time as the first-generation ADLs and, 
despite its shortcomings when it came to modeling critical architectural 
concerns [27, 28], it was rapidly and widely adopted. UML has continued 
to evolve. Since 1997 alone, UML has undergone four major revisions: 
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UML versions 1.0, 1.1, 1.3, and 2.0.2  Furthermore, the “impending” 
release of UML 2.0, with at least some of its enhancements targeted at 
improved software architecture modeling, was announced and awaited for 
several years. Then, very soon after this major revision of the language 
appeared, the main UML standards body began preparing another version 
(UML 2.1). Unlike the often highly-specialized first-generation ADLs, 
UML is a huge and constantly growing composite notation, thirteen 
different, loosely connected individual notations (‘diagrams’ in UML 
parlance). 
 
However, UML is not a panacea: it has shortcomings that make it less than 
ideal for architecture modeling in many respects. For example, UML has 
ambiguous semantics—a UML diagram can often be interpreted in 
different ways—making it less than ideal for system architectures where 
precision is critical (e.g., safety-critical systems). UML has unlimited 
extensibility in principle, but with virtually no control over it.  For 
example, it allows one to introduce separate UML profiles to address 
different application domains and modeling needs, but it is also possible to 
introduce multiple profiles to address the very same concerns. In either 
case, unless the semantics behind those profiles are formalized using 
something akin to UML’s Object Constraint Language (OCL) [42]—
which is seldom done in practice, standard UML tools will be completely 
agnostic as to the intended meaning behind the profiles [28]. 
 
UML 2.0, as a second-generation ADL, will be discussed below. 

4 Second-Generation ADLs 
The first-generation ADLs predominantly remained under the “technology 
lamppost”—addressing interesting technical problems, but largely 
ignoring domain or business concerns. The contributions and lessons of 
this first generation of ADLs were not lost, however: even though they did 
not achieve significant adoption, they inspired a second generation of 
ADLs. These “second generation” ADLs tend to inherit lessons from 
earlier ADLs, as well as to include more domain and business concerns.  
In this section, we will discuss four representatives of this second 
generation of architecture description languages: UML 2.0, AADL, Koala, 
and xADL 2.0. 

                                                 
2 We became intimately familiar with this issue when we conducted an 
early study of UML’s suitability for architectural description: by the time 
that work was published [25], we were forced to update our study three 
separate times as new UML versions kept appearing. 
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4.1 UML 2.0 
The latest version of UML, UML 2.0 [8], is a syntactically rich language 
comprised of 13 different viewpoints, which are called “diagrams” in 
UML parlance. Stakeholders play a large part in how UML is employed in 
a project. They may use as many (or as few) of the diagrams as needed. 
Multiple instances of each viewpoint can be used to capture increasing 
detail about a system. UML is a “Swiss Army Knife” of notations—it 
provides stakeholders with a collection of useful notations (i.e., UML 
diagrams) for accomplishing different modeling goals. UML is not 
specialized for modeling any particular domain, although its diagrams 
reflect a bias toward modeling systems constructed in an object-oriented 
(OO) way.  
 
Early versions of UML (1.0 and 1.1) had only limited abilities to specify 
traditional architectural concepts from “under the technology lamppost” 
such as components, connectors, and deployments [28]. These have been 
rectified to some extent in UML 2.0. In particular, the component diagram 
has been almost completely overhauled to support the notion of 
components as loci of computation rather than just artifacts, as well as 
explicit specification of interfaces (both provided and required) and ports. 
Additionally, the new composite structure diagram allows hierarchical 
modeling, which lets stakeholders better express the relationships between 
different models and architectural concepts. As we have noted, however, 
as UML has changed so has the understanding of what constitutes 
‘software architecture.’  
 
From the perspective of concern-driven modeling, the analogy of UML to 
a Swiss Army Knife remains useful. Each UML diagram can be seen as a 
tool for modeling a particular concern. However, the number of tools—
diagrams—is finite. UML does not have diagrams for modeling every 
possible architectural concern. For example, there is no explicit support in 
UML for capturing product variants, or the evolution of a system’s 
architecture over time. Some diagrams can be employed for modeling 
multiple concerns by interpreting the same symbols in different ways, or 
by specializing the diagrams using UML’s extension mechanisms. In 
general, UML diagrams and symbols can be interpreted in different ways 
by different stakeholders. This intentional ambiguity is how UML 
maintains its generic, domain-independent nature. Specialization 
mechanisms allow users to define new attributes (called stereotypes and 
tagged values) and constraints that can be applied to existing elements. A 
collection of these additional attributes and constraints is known as a UML 
profile. Profiles are used to specialize UML to reduce ambiguity and better 
capture domain- and project-specific concerns. 
 
Profiles cannot define new diagram types, however—they can only 
decorate and specialize existing diagram types and their elements. 
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Sometimes, this is not enough. An example is SysML [38], a notation 
developed by a consortium of large systems development organizations as 
an extension of UML. SysML uses the built-in UML extension 
mechanisms (primarily stereotypes) to specialize existing UML constructs 
for specific purposes. For example, the standard UML Package element is 
stereotyped with a <<DependencySet>> stereotype to represent a special 
kind of package containing dependencies. However, where simply 
specializing existing UML diagrams and elements is not enough, SysML 
extends UML itself to include entirely new viewpoints and elements. For 
example, the SysML Requirements diagram is a new view for the specific 
purpose of capturing system requirements in a more detailed manner than 
UML’s use case diagrams allow. 

 UML Example 
To illustrate how UML models a system, we present some UML models 
of a basic three-tier Web application consisting of three components: a 
Web browser that serves as the user interface, a business logic component 
that processes data from the Web browser, and a database component that 
is responsible for persistent data storage. (In a real system, each of these 
coarse-grained components would likely be replaced with several finer-
grained components; the use of coarse-grained components here is to 
simplify our example). The structure of the application might be modeled 
using the UML component diagram shown in Figure 4. 
 

Figure 4. UML 
component diagram of 
a simple Web 
application.  

 
This diagram depicts the components in the application and their 
dependencies. It leverages several new features of UML 2.0: components 
are now specializations of UML classes, and component instances are 
modeled like objects. Additionally, this diagram uses explicit ports, as 
well as provided and required interfaces to describe the dependency 
relationships among the components. This is one view of the system’s 
architecture. Another view might capture its behavior. The behavior of the 
system might be expressed using a UML statechart diagram, as shown in 
Figure 5. 
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Figure 5. UML 
statechart diagram of a 
simple Web application. 

 
This diagram shows the behavior of the application whose structure is 
depicted in Figure 4. Note that this diagram shows the overall behavior of 
the application, independent of its components. A diagram that combines 
aspects of both the system’s structure and behavior might be a sequence 
diagram like that shown in Figure 6. 
 

Figure 6. UML 
sequence diagram for a 
simple Web application. 

 
This diagram shows one particular interaction among the components in 
the system—the browser sends a POST request to the business logic 
component, which updates the database, and returns a results page to the 
browser, which displays the page. 
 
These diagrams are complementary—each purports to depict the same 
system from a different perspective. UML does not have a set of 
consistency rules that can be used to determine whether this is the case, 
however—stakeholders are responsible for defining what it means for a set 
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of UML diagrams to be consistent and for ultimately making that 
determination3. Additionally, each diagram is ambiguous in different 
ways. Although the various symbols have basic meanings in UML (e.g., 
the dashed, open-headed arrow generally represents some sort of 
dependency, while the rounded rectangles in the statechart represent 
various system states) their specific meanings in the context of our Web 
application are not defined within the diagrams. This can be partially 
rectified through the use of the extension mechanisms mentioned above. 
For example, a UML profile might define stereotypes to add more detail, 
elaborating the meaning of these stereotypes using natural language in a 
separate document. 

 UML Under the Lampposts 
From the perspective of our three-lamppost model of ADL interpretation, 
UML is heavily centered in the business and technology areas. UML has 
significant ability to model systems from a technical perspective—
diagrams such as class and statechart diagrams allow users to express the 
technical inner-workings of a system in great detail (if desired). However, 
it should be noted that UML is not a notation rooted in formality, and as 
such mathematical verification of technical system properties is not 
generally possible. UML does take into account business needs in a much 
stronger way than first-generation ADLs. Diagrams such as use case and 
interaction overview diagrams capture more stakeholder and process-
oriented aspects of a system than a first-generation ADL would. Support 
for domain-specific modeling is mostly accomplished through the use of 
UML profiles, although profiles are not a panacea: they cannot eliminate 
ambiguity, nor can they be used to create new kinds of diagrams—they 
can only specialize existing diagram types. 

4.2 AADL 
The Architecture Analysis and Design Language (AADL, formerly the 
Avionics Architecture Description Language) [2] is an ADL for specifying 
system architectures. While its historical name indicates that its initial 
purpose was for modeling avionics systems, the notation itself is not 
specifically bound to that domain—instead, it contains useful constructs 
and capabilities for modeling a wide variety of embedded and real-time 
systems such as automotive and medical systems. It is an outgrowth of the 
first-generation ADL MetaH developed by Honeywell [4], and is now 
developed collaboratively by a group of industrial and academic 

                                                 
3 Of course, there have been extensive efforts to explore the issue of UML 
consistency, including an entire workshop series (“Consistency problems 
in UML-based Software Development”) dedicated to the topic. What has 
emerged from this line of research has been a wide variety of alternative 
ways of defining and checking certain types of consistency within and 
across UML diagrams. 
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organizations. AADL is a Society of Automotive Engineers (SAE) 
standard, and as such is guided by a larger, more open group than its 
predecessor MetaH. 
 
AADL can describe the structure of a system as an assembly of 
components. It has special provisions for describing both hardware and 
software elements, and the allocation of software components to hardware. 
It can describe interfaces to those components for both the flow of control 
and data. It can also capture non-functional aspects of components (such 
as timing, safety, and reliability attributes). Syntactically, AADL is 
primarily a textual language, although a graphical visualization and a 
UML profile for it are under development. The syntax of the language is 
defined using BNF production rules. 
 
The basic structural element in AADL is the component. AADL 
components are defined in two parts: a component type and a component 
implementation. A component type defines the interfaces to a 
component—how it will interact with the outside world. A component 
implementation is an instance of a particular component type. There may 
be many instances of the same component type. The component 
implementation defines the component’s interior—its internal structure 
and construction. One additional element that affects components is a 
component’s category. AADL defines a number of categories (or kinds) of 
components; these can be hardware (e.g., memory, device, processor, bus), 
software (e.g., data, subprogram, thread, thread group, process), or 
composite (e.g., system). The category of a component prescribes what 
kinds of properties can be specified about a component or component 
type. For example, a thread may have a period and a deadline, whereas 
memory may have a read time, a write time, and a word size. 
 
AADL is supported by an increasing base of tools, including a set of open-
source plug-ins for the Eclipse software development environment that 
provide editing support and import/export capabilities through the 
extensible markup language (XML) [9]. An additional set of plug-ins is 
available for analyzing various aspects of AADL specifications—for 
example, whether all the elements are connected appropriately, whether 
resource usage by the various components exceeds available resources, 
and whether end-to-end flow latencies exceed available time parameters. 

 AADL Example 
To examine how AADL models systems, we present a partial AADL 
model of a sense-compute-control system. These systems are typical of 
what might be modeled in AADL. Figure 7 shows this model of a 
temperature sensor driver, running on a physical processor connected to a 
local 33MHz 32-bit PCI bus. 
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Figure 7. Partial model 
of a sense-compute-
control system in 
AADL. 

data sensor_control_data 
end sensor_control_data; 
 
data sensor_data 
end sensor_data; 
 
bus local_bus_type 
end local_bus_type; 
 
bus implementation local_bus_type.pci 
properties 
  Transmission_Time => 30 ns; 
  Allowed_Message_Size => 4 b; 
end local_bus_type.pci; 
 
system sensor_type 
features 
  network : requires bus access  
            local_bus_type.pci; 
  sensed  : out event data port sensor_data; 
  control : in event data port sensor_control_data; 
end sensor_type; 
 
system implementation sensor_type.temperature 
subcomponents 
  the_sensor_processor :  
              processor sensor_processor_type; 
  the_sensor_process : process  
              sensor_process_type.one_thread; 
connections 
  bus access network -> the_sensor_processor.network; 
  event data port sensed ->  
              the_sensor_process.sensed; 
  event data port control ->  
              the_sensor_process.control; 
properties 
  Actual_Processor_Binding => reference 
              the_sensor_processor applies to  
              the_sensor_process; 
end sensor_type.temperature; 
 
processor sensor_processor_type 
features 
  network : requires bus access local_bus_type.pci; 
end sensor_processor_type; 
 
process sensor_process_type 
features 
  sensed  : out event data port sensor_data; 
  control : in event data port sensor_control_data; 
end sensor_process_type; 
 
thread sensor_thread_type 
features 
  sensed  : out event data port sensor_data; 
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  control : in event data port sensor_control_data; 
properties 
  Dispatch_Protocol => periodic; 
end sensor_thread_type;  
 
process implementation sensor_process_type.one_thread 
subcomponents 
  sensor_thread : thread sensor_thread_type; 
connections 
  event data port sensed -> sensor_thread.sensed; 
  event data port control -> sensor_thread.control; 
properties 
  Dispatch_Protocol => Periodic; 
  Period => 20 ms; 
end sensor_process_type.one_thread; 

 
The first thing to note about this specification is the level of detail at 
which the architecture is described. A component 
(sensor_type.temperature) runs on a physical processor 
(the_sensor_processor), which runs a process 
(sensor_process_type.one_thread), which in turn contains a single 
thread of control (sensor_thread), all of which can receive control 
instructions through an in port (control) and output temperature data 
through an out port (sensed) over a PCI bus (local_bus_type.pci). 
Each of these different modeling levels is connected through composition, 
attachment of ports, and so on. This level of detail emphasizes the 
importance of tools, such as graphical editors, for modeling this 
information in a more easily understandable fashion. 
 
The second thing to note is that several of the elements are annotated with 
specific properties that describe their operation in more detail. For 
example, the PCI bus transmits 4 bytes (32 bits) of information every 30 
nanoseconds, and the sensor process runs and samples the temperature 
every 20 miliseconds. It is these details, tailored for real-time concerns, 
that make AADL’s analysis tool-set possible. 

 AADL Under the Lampposts 
AADL is heavily steeped in both the technology and domain areas of 
concern. From a technology perspective AADL allows detailed, 
automatically analyzable specifications akin to those that can be created in 
first-generation ADLs (and, in fact, similar to those created in its 
predecessor MetaH). It is a high-value, but high-cost notation. The kinds 
of automated analyses possible with AADL models are powerful, but 
models of even simple systems are verbose and complex at this level of 
detail, as the example above suggests. From a domain perspective, AADL 
is optimized for modeling systems in its target domain—namely 
embedded, real-time, hardware/software systems. The kinds of constructs 
and properties that are available are tailored for this purpose. This limits 
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what kinds of viewpoints and concerns can be captured in AADL, but it 
also helps to focus the language. The increasing realization that no single 
ADL will suffice for all modeling needs advocates solutions, such as 
AADL, which have deep support for the set of needs in a particular 
domain. 
 
The kinds of analyses that AADL makes possible are driven by business 
goals.  For instance, making quantitative determinations early about an 
embedded, real-time system (even at high cost) is important because such 
systems are often safety-critical and expensive to redeploy if an error is 
found. Nonetheless the language itself does not directly capture business 
decisions or concerns. 

4.3 Koala 
Consumer electronics is a dynamic and highly competitive domain of 
product development. For decades, devices such as televisions and cable 
descramblers were relatively simple devices with a few, well-defined 
capabilities. Over the years, these devices have become more and more 
complex, largely due to enhancements in their embedded software. The 
latest incarnations of these devices include features such as graphical, 
menu-driven configuration, on-screen programming guides, video-on-
demand, and digital video recording and playback. In a global 
marketplace, each of these devices must be deployed in multiple regions 
around the world, and specifically configured for the languages and 
broadcast standards used in those regions. 
 
The increasing feature counts of consumer electronic devices are 
accompanied by fierce competition among organizations, and it is just as 
important to keep costs down as it is to deploy the widest range of 
features. From a software perspective, keeping costs down can be done in 
two primary ways: limiting the cost of software development and limiting 
the resources used by the developed software and thus the costs of 
hardware needed to support it. Additionally, manufacturers often “multi-
source” certain parts. That is, they obtain and use similar parts – chips, 
boards, tuners, and so on — from multiple vendors, buying from vendors 
who can offer the part at the right time or the lowest price, and providing 
a measure of insurance against the failure of one particular part vendor to 
deliver. If the parts are not completely interchangeable, software can be 
used to mask the differences. 
 
Product line architectures provide an attractive way to deal with the 
diversity of devices and configurations found in the consumer electronics 
domain. Product line architectures allow a single model to express the 
architecture of multiple systems simultaneously, through the explicit 
modeling of variation points. Each variation point captures a number of 
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possible alternatives. Products in the product-line are selected by 
choosing from the alternatives at each variation point. 
 
Philips Electronics has developed an approach called Koala [32] to help 
them specify and manage their consumer electronics products. Koala is 
primarily an architecture description language derived from the Darwin 
ADL [25]. Koala also contains aspects of an architectural style, however, 
since it prescribes specific patterns and semantics that are applied to the 
constructs described in the Koala ADL. Koala, like Darwin, is effectively 
a structural notation: it retains Darwin’s concepts of components, 
interfaces (both provided and required), hierarchical compositions 
(components with their own internal structures) and links to connect the 
interfaces. In addition to these basic constructs, Koala has special 
constructs for supporting product-line variability. Koala is also tightly 
bound to implementations of embedded components: certain aspects of 
Koala, such as the method by which it connects required and provided 
interfaces in code, are specifically designed with implementation 
strategies in mind, such as static binding through C macros. 
 
Koala’s main innovations over Darwin include: 
 
IDL-based interface types: An interface type in Koala is a named set of 
function signatures, similar to those found in C. For example, the 
interface to a TV tuner in Koala might be declared like this: 
 
interface ITuner{ 
 void setFrequency(int freqInMhz); 
 int getFrequency(); 
} 
 
The ITuner interface type may be provided or required by any number of 
Koala components. When a provided and a required interface are 
connected, the provided interface type must provide at least the functions 
required by the required interface type. 
 
Diversity interfaces: One of the philosophies of Koala is that 
configuration parameters for a components should not be stored in the 
component; instead, configuration parameters, including selection of 
alternatives, should be accessed by the component from an external 
source when needed. This allows the application to be configured 
centrally, from a single component or set of components whose purpose is 
to provide configuration data for the application. “Diversity interfaces” 
are special required interfaces that are attached to components and are 
used by each component to get configuration parameters. 
 
Switches: A switch is a new architectural construct that represents a 
variation point. It allows a required interface to be connected to multiple 
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different provided interfaces. When the variation point is resolved, only 
one of the connections will actually be present. Which provided-required 
interface pair is connected depends on a configuration condition. A switch 
is connected to a diversity interface to get its configuration parameters, 
just as a component would. Depending on the values returned through the 
diversity interface, the switch will route calls to one of the required 
interfaces connected to it. If this means that there will be disconnected 
components, that is, components that will never be invoked, then Koala 
will not instantiate these components to save resources.  
 
Optional Interfaces: Several components may provide similar, but not 
identical, services. For example, a basic TV tuner component may have 
only the ability to change frequencies, but an advanced TV tuner may be 
able to search for valid frequencies as well. It is possible for callers to a 
TV tuner to include an optional interface, and query whether this interface 
is actually connected or not. If it is connected, the caller can make calls 
on the optional interface; if not, the caller should behave/degrade 
gracefully. 

 Koala Example 
It is easier to understand these constructs and their use with a simple 
example. Like Darwin, Koala allows simple, non-product-line structural 
specification. In Figure 8, we show a very simple part of an architectural 
model for a television set, a consumer electronics device for which Koala 
would typically be used. 
 

Figure 8. Simple 
television architecture 
for a single product. 

 

 
This architectural model shows two components, an NTSC tuner driver 
component that receives a television signal on a selected channel and 
decodes it for display, and a channel changer component that instructs the 
tuner to change the channel upon a user’s request. They communicate 
through an interface type ITuner, which might be specified as follows: 
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 void set_channel(int channel_num); 
 
This might be (part of) the software architecture of a single television. 
Because the tuner driver decodes NTSC signals, this television would be 
marketed in parts of the world where NTSC signals are used—the United 
States and Japan, for example. Now, consider the possibility that the 
architect wants to create a product-line of televisions that might be 
marketed globally, in areas where television standards are different. Here, 
the channel changer component might be reused, but the tuner component 
would have to be changed. The above architecture can be diversified into 
a product-line architecture using a diversity interface and a switch, as 
shown in Figure 9 (adapted from [32]). 
 

Figure 9. Product line 
of two products in 
Koala. 

 
Here, a switch is used to select between an NTSC tuner driver (suitable 
for markets like the US and Japan) and a PAL tuner driver (suitable for 
markets like Europe). A diversity interface  on the channel changer 
component, combined with a software module M is used to choose which 
driver component to invoke. The selection is made by a configuration 
component (not depicted in the figure) connected to the diversity 
interface. Through these mechanisms, Koala gives architects the power to 
specify and implement product lines of embedded systems.  

 Koala Under the Lampposts 
Koala draws from all three areas of concern: technology, domain, and 
business. The explicit configurations and direct mappings to 
implementations firmly root Koala descriptions in technology. The 
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features provided by Koala are optimized for the modeling of systems in a 
particular domain—embedded systems in the consumer electronics space.  
This domain is somewhat different from AADL’s, because it lacks the 
real-time and safety-critical aspects. Although developed for the 
consumer electronics domain, nothing in Koala prevents its use in other 
embedded, component-based product lines. 
 
The product-line aspects of Koala are driven primarily by business 
concerns. Koala allows certain business decisions—the relationship 
between products—to be specified directly in the language. Other 
business concerns—for example, reducing time-to-market and reducing 
costs through increasing reusability—influenced the particular selection 
of capabilities of the Koala ADL, but are not necessarily expressed 
directly in Koala models. 

4.4 xADL 2.0 
Our definition of software architecture characterizes it as a set of principal 
design decisions about a system. As we stated earlier, whether a particular 
design decision is principal or not is a function of the system’s 
stakeholders and their needs. Looking beyond the technology lamppost, 
and taking into account both domain- and business-specific concerns, the 
diversity of stakeholder needs expands greatly. This makes the 
development of a single notation that can adequately cover this variety of 
stakeholder needs unlikely. UML’s approach to this problem, as we have 
discussed, is to provide its users with a large set of often-ambiguous 
symbols that can be given additional meaning by users through profiles. 
However, this approach falls short when modeling needs arise that cannot 
be easily mapped to an existing diagram type, or when users want to create 
highly-optimized domain-specific notations. Ideally, it would be possible 
to create optimized notations tailored to individual project needs, but 
without developing the notations anew for each project. 
 
xADL 2.0 [11] attempts to address these issues by providing a platform 
upon which modeling features can be defined modularly and reused across 
projects. New features can be created and added to the language as first-
class entities. xADL inherits lessons from many different ADLs: first 
generation ADLs (namely, C2 [26] and xADL 1.0 [21]), as well as some 
second-generation concepts such as Koala’s product lines. Its major 
contribution, however, is its support for language extensions. In a way, 
xADL can be seen as an ADL factory: users can use it to rapidly develop 
architecture description languages tailored to their domain needs and 
business goals.  
 
xADL can best be described as a modular ADL. That is, modeling features 
such as the ability to model a component or a version tree for an artifact, 
are grouped into modules. The xADL language itself is a composition of 
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modules, and xADL users can extend the language by defining and adding 
in additional modules.  
 
xADL is an XML-based language. Each xADL module is implemented by 
one XML schema [13]. XML schemas use a data type definition format 
similar to data structures in an object-oriented programming language. 
Like classes in an object-oriented programming language, XML schema 
datatypes can be extended through inheritance. Derived datatypes can be 
declared in separate schemas. Through this mechanism, datatypes declared 
in one schema can be extended in a different schema. This means that 
features defined in one module can be extended in other modules using 
XML schema inheritance. 
 
Each xADL schema adds a set of features to the language. The constructs 
in each schema may be new top-level constructs or they may be extensions 
of constructs in other schemas. Modularizing the feature set in this way 
has several advantages. First, it allows for incremental adoption—users 
can use as few or as many features as makes sense for their domain. 
Second, it allows for divergent extension—users can extend the language 
in novel, even contradictory ways—to tailor the language for their own 
purposes. Third, it allows for feature reuse—because feature sets are 
defined in XML schema modules, schemas can be shared among projects 
that need common features without each group having to develop their 
own, probably incompatible, representations for common concepts. 
 
Here, the interplay between syntax and semantics becomes important. 
XML schemas are largely concerned only with the syntax of a language 
(or part of a language, when used modularly as in xADL). XML schema 
does not provide facilities, beyond ad-hoc documentation comments, to 
explain what individual elements mean and how they should be 
interpreted. As we have seen with UML, a single syntax can be interpreted 
in myriad ways to suit different purposes. For example, a syntactic 
element called a ‘package’ could be interpreted to mean a conceptual 
grouping of elements, a Java package, or a unit of deployment. 
 
The semantics—the meaning—of xADL’s modules and their elements are 
contained in several different places. At minimum, they can be carried in 
the minds of stakeholders and passed to new stakeholders by word-of-
mouth. A better option is to document the semantics of a given feature in 
project documentation or in comments in the xADL schemas themselves. 
An even stronger option is to encode the semantics in tools and 
visualizations that stakeholders use: tools define how stakeholders interact 
with a model and can be used to provide additional context and 
information about the meaning of a feature. Finally, the semantics can be 
encoded in analysis tools associated with the feature, where errors in 
interpretation can be identified by automated tools. 
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As pointed out above, xADL purposefully allows divergent extension. 
This means that users can add new xADL features that conflict with 
existing xADL features. Syntactic conflicts will be detected automatically 
by tools like XML schema validators. Semantic conflicts—for example, 
two modules expressing the same concept in conflicting ways—cannot be 
automatically detected. It is up to the architect and other stakeholders to 
choose or define a set of compatible feature modules, and identify 
interactions between features. 
 
From time to time, new schemas are added to xADL as they are 
developed, both by its creators and by outside contributors. Current xADL 
schemas include features for modeling basic architectural structure 
(components and connectors) at both design-time and run-time, mappings 
from architectural elements to their implementations in source code and 
object code, and product-line features similar to those found in Koala. 
 
Because xADL can be extended with unforeseen constructs and structures 
in nearly arbitrary ways, it induces challenges that do not exist in 
languages with stable syntax and semantics, including most of the other 
ADLs we have discussed thus far. Specifically, parsers, editors, analyzers, 
and other tools must be developed to cope with a notation whose syntax 
may change from project to project. 
 
xADL addresses these challenges with an associated set of tools, each of 
which has specific support for dealing with new schemas. This support 
may come in the form of automatic adaptation to new schemas, in the case 
of syntax-directed tools, to guidance and APIs that allow developers to 
plug in their own support for new schemas in a straightforward manner. 
These are discussed below. 
 
The xADL Data Binding Library: The xADL data binding library is a 
library of Java classes that correspond to XML elements and attributes 
defined in xADL schemas. This library provides an interface by which 
tools can parse, read, modify, and serialize (write to disk) xADL 
documents. To support xADL’s extensibility, the library itself is 
modularized like the xADL language: each xADL schema is mapped to a 
package of Java classes. Adding new packages extends the library to 
support new schemas. 
 
Apigen: The data binding library would be of limited use if it had to be 
manually rewritten each time schemas were added to xADL. Apigen [12] 
is a data binding library generator: given a set of XML schemas, it can 
generate a complete new data binding library with support for those new 
schemas. These new data binding libraries can be used in place of existing 
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ones without affecting applications (except to provide support for the new 
schemas). 
 
ArchEdit: ArchEdit is a GUI-based, syntax-directed editor for xADL 
documents. Users navigate the xADL document using a standard tree 
widget that mirrors the hierarchical structure of the xADL XML 
document. The editing options available to the user — what sorts of 
elements can be added and so on —  are determined automatically based 
on the set of xADL schemas in use. When new schemas are added, 
ArchEdit adapts automatically to support them. 
 
In addition to these tools for supporting extensibility, xADL 2.0 is 
supported by a collection of tools in the ArchStudio 3 [18] environment, 
which provide graphical editing and visualization support, automated 
analysis, product-line specification and selection, and so on. To the extent 
possible, these tools are also modularized to support xADL extensibility. 
For example, ArchStudio’s graphical editor and analysis framework both 
allow new additions via plug-ins, such that new visualizations, editing 
behaviors, and analysis techniques for a new schema can be plugged into 
the environment easily.  

 xADL 2.0 Example 
Returning to our UML example of a three-tier Web application, the 
structure of the same xADL application might be depicted (in xADL’s 
graphical visualization) as in Figure 10. 
 

Figure 10. Graphical 
visualization of a Web 
application modeled in 
xADL 2.0.  

 
For space reasons, we leave out a complete description of the system in 
the XML format. However, the Database component might be specified as 
in Figure 11. 
 

Figure 11. XML 
specification of a 
component modeled in 
xADL 2.0 (some 
housekeeping data 
elided). 

<component id="dbComp"> 
  <description>Database</description>  
  <interface id="sql-in"> 
    <description>SQL</description>  
    <direction>in</direction>  
  </interface> 
</component> 

 
This very basic specification does not say much about the database 
component, however. By writing a new xADL schema that extends the 



Moving Architectural Description from Under the Technology Lamppost     34 

definition of a component to better describe databases, the description 
might look like Figure 12. 
 

Figure 12. Extended 
description of the 
database component. 

<component id="dbComp"> 
  <description>Database</description>  
  <interface id="sql-in"> 
    <description>SQL</description>  
    <direction>in</direction>  
  </interface> 
  <datasource> 
    <vendor>Oracle Corp.</vendor> 
    <location>db.example.com:1234/db1</location> 
    <username>webUser</username> 
    <password>secret</password> 
  </datasource> 
</component> 

 
The new schema would extend the definition of a component to add a 
<datasource> element; the contents of this element would also be defined 
in the schema.  Other properties of this component, and other components, 
are modeled in xADL 2.0 similarly. 

 xADL 2.0 Under the Lampposts 
xADL 2.0 addresses aspects of technology, business, and domain directly. 
Technology-centric xADL features include the ability to model 
architectural structure, types, and instances. Business-related schemas 
include xADL’s product-line schemas, which allow xADL to track the 
evolution of products over time and the relationships of products to one 
another. xADL has a few domain-specific schemas, such as schemas for 
modeling the behavior of asynchronous message-based systems; outside 
users have added their own domain-specific schemas.  
 
xADL’s primary contribution, however, is that it addresses all three 
lampposts at the meta-level. That is, by providing users the ability to 
rapidly develop their own language extensions and tools, xADL users can 
customize the language for their own technology, domain, and business 
goals. In this way, it serves as a kind of factory for second-generation 
ADLs.  It is this facet that renders xADL unique in comparison to all the 
other notations discussed in this paper. 

5 Discussion 
Several insights have emerged from our retrospective examination of the 
evolution of ADLs. 
 
Growing numbers of concerns are being considered part of a system’s 
architecture. First-generation ADLs reflect a relatively narrow view of 
what constitutes a system’s architecture. Many of them focus on modeling 



Moving Architectural Description from Under the Technology Lamppost     35 

structural views of a system, perhaps annotating the structural view with 
additional properties to capture one or two more concerns, such as 
behavior or implementation mappings. Second-generation ADLs take a 
decidedly more holistic approach, capturing a wider variety of concerns 
that might be of interest to stakeholders. In this sense, architecture 
modeling is becoming less feature-centric and more stakeholder-centric. 
 
More mature and successful ADLs incorporate concerns rooted in 
technology, domain, and business needs. First-generation ADLs were 
largely developed to address technological and theoretical concerns—
deadlock freedom, for example. While these capabilities are indeed 
powerful, they are often not the most critical properties of interest to 
stakeholders. Domain and business needs, both strong foci of traditional 
systems engineering practices, are now shaping software architecture 
description languages.  
 
Multiple views are a necessity. As the scope of architectural concerns 
grows, unified architectural models that present all information about a 
system’s architecture at once become impractically large. To be 
cognitively manageable, they must be partitioned into multiple views that 
show only a subset of concerns at once. The use of multiple views 
introduces difficulties, such as consistency management among the views, 
but these difficulties must be overcome to do multi-concern modeling. 
 
No single set of modeling features is sufficient for every project. Even 
the richest composite notations, such as UML 2.0, will still be inadequate 
to satisfy every project’s modeling needs. In architecture modeling, one 
size will never fit all. This is not to say that general-purpose notations are 
not worthwhile. In fact, they have certain attractive advantages, many of 
which derive from economies of scale. A general-purpose notation can 
attract more users, and therefore will likely be better validated, have more 
tool support from vendors, and have increased utility as a communication 
medium among stakeholders. However, such a notation can never be as 
expressive or highly optimized as a domain-specific notation. 
 
Extensibility is a key property of modeling notations. This follows 
from the earlier insights above: if general-purpose notations are useful but 
insufficient, and architectural concerns vary across domains and projects, 
a natural and effective solution is the use of extensible modeling notations. 
Extensible notations provide a basic, general purpose foundation for 
architectural modeling along with mechanisms that allow stakeholders to 
specialize the notation for their particular technology, domain, and 
business needs. 
 
Tools are as important as notations. The main power of a notation 
comes not through its syntax or even its semantics, but the tools that can 
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be used to operate on the notation. All of the second-generation ADLs we 
surveyed are supported by a variety of software tools and environments, 
for editing, visualization, analysis, creating extensions, and so on. 
Arguably, good tool support from major vendors was a driving force 
behind the widespread adoption of UML. Conversely, lack of good tool 
support can doom an otherwise excellent ADL to obscurity—something 
that we would argue was at least in part the case with several first-
generation ADLs. 

5.1 The Relationship between Methodologies and ADLs 
In this paper we have looked at ADLs in terms of how well the languages 
themselves support modeling concerns from under the domain, business, 
and technology lampposts.  The activity of developing and evolving a 
successful architecture, however, does not stand or fall on modeling 
notations alone. Instead, a wide variety of factors has to be considered, 
including how those notations are used in developing an architecture. A 
well-constructed ADL combined with a poor process will often result in a 
poorly-defined architecture. For an ADL such as UML, which does not 
enforce precise semantics or any particular method of use, processes and 
methodologies become critically important to developing high-quality 
architectures. 
 
ADLs themselves often imply one or more methods for developing models 
in that ADL. For example, an iterative process of modeling, language 
extension, and tool extension is favorable for xADL, while methods like 
top-down and bottom-up design might be favorable for AADL. These, 
however, are ‘micro-processes’ that fit within larger processes that govern 
software development throughout the lifecycle. ADLs can be integrated 
into these broader processes as well; perhaps the best examples we have 
seen are development processes that have been created with UML in mind. 
For example, many phases of the Rational Unified Process (RUP) [22] 
leverage UML models as inputs and outputs, and many efforts to 
implement Model-Driven Architecture (MDA) [31] processes use UML as 
a primary modeling notation. 
 
At this point, synergy between the development of software development 
processes and architecture description languages is just beginning to 
occur. As ADLs expand beyond the boundaries of the technology 
lamppost, we can expect that architecture-centric processes, some 
optimized for particular ADLs, will more substantially emerge in the 
future. 

6 Conclusions and Future Trends 
Our initial classification and comparison of ADLs [27] has been a useful 
reference point to researchers and practitioners, and has stood the test of 
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time in many ways.  All the same, it was a very technologically oriented 
study that largely ignored the other two lampposts.  There are two clear 
reasons for this.  The first is that ADLs themselves (and, it could be 
argued, even software architecture) were not sufficiently well understood 
at the time.  The second reason behind the limited scope of our original 
study is that no first-generation ADLs extensively supported architectural 
concerns beyond the technology lamppost. 
 
This paper has presented a new perspective on architecture and 
architecture description languages, which spans the three lampposts.  We 
believe that this perspective provides a basis for a much more thorough 
treatment of ADLs.  However, we are not so naïve as to think that this 
particular study will “close the book” on our collective understanding of 
software architectures and ADLs.  In fact, having looked at both the first- 
and the second-generation ADLs through the prism of the three lampposts, 
a natural question to ask ourselves is: will there be a “third generation” of 
ADLs?  
 
Certainly, even the best current architecture description notations leave a 
lot to be desired, so notations will undoubtedly continue to be developed 
and evolved. At the least, we should expect to see continued advances in 
the fundamentals of architecture modeling; it is unlikely that, for example, 
an ideal formal semantics will emerge that provides the basis for all 
architecture analysis activities in the future. Researchers will undoubtedly 
continue to investigate the best ways to detect deadlock, capture product-
lines, and make judgments about software qualities, all based on 
architecture models. 
 
If there is to be a major leap forward resulting in a third generation of 
ADLs, it will likely emerge from an even deeper confluence between 
high-level domain and business concerns of systems engineering and 
lower-level technological concerns derived from software engineering. For 
example, few ADLs today take into account concerns such as human 
organizations, costs, risks, and processes, while consideration of these 
factors is a key aspect of systems engineering. It seems likely that future 
architecture modeling approaches will begin to incorporate these concerns. 
 
An additional area in which ADLs will likely see improvement is in their 
expansion to other lifecycle activities. Architectural modeling is still very 
much design-centric. Second-generation ADLs generally have some 
support for tracing architectural design to other lifecycle activities—
SysML’s requirements view, or xADL 2.0’s implementation mappings, 
for example. As architecture modeling notations mature, we should expect 
to see even stronger traceability to activities such as requirements, 
implementation, testing, maintenance, evolution, and so on. Such 
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developments are needed to fully realize the central role that we feel 
architecture should play in software development. 
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