
Analysis of BPEL Data Dependencies

Yongyan Zheng, Jiong Zhou, Paul Krause
Department of Computing, University of Surrey

Guildford, GU2 7XH, UK
{y.zheng,j.zhou, p.krause}@surrey.ac.uk

Abstract

BPEL is a de-facto standard language for web service
orchestration. It is a challenge to test BPEL processes auto-
matically because of the complex features of the language.
The current formal semantics proposed for BPEL can be
categorized under three branches: Process Algebra, Petri-
nets, and Automata. Our goal is to automate the genera-
tion and execution of test cases for composed web services.
Model checking is an effective technique for automated test
generation, and most mature model checkers such as SPIN
and NuSMV use automata as the underlying formal model.
Hence, we follow the automata branch. Unfortunately, the
current automata based approaches omit the BPEL data
dependencies. In order to address this shortcoming, we
demonstrate how to model BPEL data dependencies in our
proposed web service automata.

Keywords: BPEL, finite state machine, data dependencies,
data flow analysis.

1. Introduction

BPEL (Business Process Execution Language) [2] is the
de-facto standard language for behavioural modelling in
web service orchestration. As is well known, it is tedious
and time-consuming to create test cases manually, espe-
cially for large and complex models. BPEL is a semi-
formal flow-based language with complex features, so it is
desirable to provide an automatic test case generation tool
for BPEL. In order to verify BPEL rigorously, there are a
number of proposals for applying model checking to verify
BPEL, by transforming BPEL processes into formal models
such as process algebras, Petri nets, and automata [12, 10].
From the model-driven-testing point of view, a BPEL pro-
cess should be not only a design model but also a test model
to derive test cases. In this paper we focus on analyzing
BPEL data dependencies. The analysis of BPEL control de-
pendencies is covered in [16], and use of the model check-
ers SPIN [9] and NuSMV [5] for test case generation from

BPEL processes can be found in [17].
The rest of the paper is organized as follows. A moti-

vating example is provided in section 2, the background of
BPEL and web service automata is introduced in section 3,
the analysis of BPEL data dependencies is provided in sec-
tion 4, related works are reviewed in section 5, and finally
the conclusions are given in section 6.

2. Motivating Example

In BPEL, variables and links may affect the control flow,
variables may appear in expressions on the conditions in
switch and while, and may also be used in the conditions
to fire particular links in the source element. There are
two types of variables explicitly declared in a BPEL pro-
cess: BPEL variables and flow links. BPEL variables are
declared in the variables tag of either process or scope ac-
tivities. Flow links are Boolean variables declared in the
links tag of the flow activity. The output link of an activity
is defined as true if the associated activity completes nor-
mally, otherwise the link is defined false. BPEL variables
and links can be used and defined by the process or scope
enclosed activities, and the flow enclosed activities, respec-
tively.

flow

process

switch

C DB

link1

[g] [!g]

link2
AND-join

A

e1 e2

var1

pick

var2

E

Figure 1. Unreachable and deadlock activities

Fig 1 shows the importance of analysing BPEL data flow.
The boxes, the solid arcs, and the dashed arcs denote BPEL
activities, control flow, and data flow, respectively. The pro-
cess encloses a flow, which in turn includes pick, switch,
and E running concurrently. The example contains unreach-
able and deadlock activities. Firstly, B never instantiates

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

variable var1, due to the interaction between data flow and
control flow. In the pick, A and B are mutually exclusive
in control flow, but the output of A is the input of B in data
flow, so B cannot instantiates var1. E is unreachable due to
the faulty design of links. In the switch, C and D are mutu-
ally exclusive in control flow, so that link1 and link2 cannot
be both true to satisfy the AND-join condition. Therefore,
E can never be executed. Secondly, there is a deadlock be-
tween swtich and E, which is caused by the cyclic data flow
between them. On one hand, E waits for both link1 and
link2 to be true but this condition can never be satisfied. On
the other hand, the switch waits for its input var2 to be de-
fined but var2 cannot be defined by E because of the falsity
of either link1 or link2. This illustrates the necessity to ver-
ify both control and data dependencies of BPEL processes.

3. Background

BPEL consists of two categories of activities: basic and
structured activities. Basic activities are atomic actions,
including receive, reply, assign, invoke, throw, terminate,
empty, and wait. As with programming languages, the
structured activities impose control flow dependency
constrains on the executions of either the basic or struc-
tured activities within them. A structured activity can
contain an arbitrary depth of sub-activities. The structured
activities include pick, switch, while, sequence, flow, scope,
eventHandlers, faultHandlers, compensationHandler.

Definition 1. A Web Service Automaton (WSA) M
is a sextuple M = (IM , SM , s0M , SfM , TM , δM).
As a convention, we omit the subscript of M so that
M = (I, S, s0, Sf , T, δ).

1) I is the signature of M , denoted as a triple I =
(E,L,O), where E,L,O are pair-wise disjoint and
represent sets of input, internal, and output events, re-
spectively. Let Msg = (L ∪ E ∪ O) be the set of
events, we assume that L is the disjoint union of a set
Lin of internal input events and a set Lout of internal
output events, and the elements of (E ∪ O) will be
called external events.

2) S is a set of states, s0 ∈ S is the initial state, Sf ⊆ S
is a set of final states.

3) T ⊆ (EX∪{Ω})×BX×(℘(AX∪O∪Lout)∪{Ω})
is a set of transitions, where EX denotes the event
expression. AX,BX are sets of assignments and
Boolean expressions respectively.

• EX is the set of Boolean expressions over input
event sets E ∪ Lin. The operators ∧,∨,¬ in the
input event set correspond to the boolean opera-
tors AND, OR, and NOT, respectively.

• For each transition t = (ex, g, a) ∈ T (graphi-
cally denoted as ex[g]/a), ex ⊆ EX ∪ {Ω} is
the event expression , g ∈ BX is the guard pred-
icate, and a ⊆ ℘(AX ∪ O ∪ Lout) ∪ {Ω} is the
action set composed of assignments and output
events. Ω indicates the omission of an event ex-
pression or an output event.

The components of transition t are denoted as t.ex =
ex, t.g = g, t.a = a.

4) δ ⊆ S × T × S is the transition relation (graphically
denoted as s t→ s′). If s t→ s′ with t = (ex, g, a), then
if the machine is in state s, has received the messages
m that satisfy the t.ex, and the guard t.g is evaluated
to true, then the machine would execute the set of in-
structions t.a and change state to s′.

Definition 2. We assume that we have available a countable
infinite set V of variables together with a set D of values.
We define Env to be the set of all functions ε : V → D,
an element ε ∈ Env represents the current values of vari-
ables in some system configuration. The data structure of
machine M is a triple (VM , AXM ∪ EM ∪ OM , BXM),
where AXM , BXM can be retrieved from the transition
set TM . AXM = {exp ∈ AX|∃t ∈ T.exp ∈ t.a} and
BXM = {exp ∈ BX|∃t ∈ T.exp ∈ t.g}. Let exp de-
notes an input event, output event, assignment, or Boolean
expression. We need three functions:

• def : (AX∪EM)→ ℘(V), where def(exp) ⊆ ℘(V)
returns the assigned variable, i.e. the variable is the
variable on the left hand side of the assignment, and
the input parameters of M .

• cuses : (AX ∪ OM) → ℘(V), where cuses(exp) ⊆
V returns the variables on the right hand side of the
assignment, and the output parameters of M .

• puses : BX → ℘(V), where puses(exp) ⊆ V re-
turns the variables in the Boolean expression.

We define VM to be the disjoin union of⋃
exp∈(AXM∪EM∪OM)(def(exp) ∪ cuses(exp)) and⋃
exp∈BXM

puses(exp).

The machine composition adopts interleaving semantics.
Asynchronous execution of web services is achieved by us-
ing queues for message processing. The default queueing
protocol in WSA is to associate a FIFO queue for each mes-
sage. WSA communicate by message passing.

Each BPEL activity without flow link corresponds to one
WSA. A BPEL activity with flow links will have an asso-
ciated linkWrapper machine and a core machine. A target

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

(resp. source) link in an activity is incoming (resp. outgo-
ing) link to the activity. Since target and source tags are
standard element of BPEL activities, a BPEL activity may
or may not have flow links. Modelling linkWrapper ma-
chines and core machines seperately can simplify the ma-
chine structure and clarify machine roles. The linkWrap-
per machines share a common machine layout, and they are
specifically used to handle flow links. As a result, a BPEL
process that consists of a set of BPEL activities will be as-
sociated with 1..* WSAs.

Since WSA have no hierarchy, we simulate the hierarchi-
cal control dependencies of BPEL activities by adding start
and done as common administration messages between ma-
chines. A machine can play the role of parent or child. For
a machine Mj , if Mi sends a start message to Mj , then Mi

is the parent machine of Mj and Mi is the child machine
of Mi. A child machine will send a done message to its
parent machine when reaching one of its final states. Each
machine has 0..1 parent machines, and 0..∗ child machines.
Since the BPEL basic activity is atomic and a BPEL struc-
tured activity is hierarchical, the machine for BPEL basic
activity has no child, and the machine for a BPEL struc-
tured activity has 0..∗ children.

For data handling, BPEL uses a blackboard approach,
where a set of variables is shared by all activities. By mes-
sage passing, there are two possible ways to model data ex-
changes. The centralized approach is to simulate the shared
data access by adding data writing to and reading from the
blackboard. In this case, a machine is required for each
variable x to control other machines to write or read x. The
decentralized approach is to analyse the BPEL process to
discover data dependencies among activities. We use the
latter approach because fewer machines will be involved
such that the overall state space for a BPEL process can
be smaller.

In the following, we use a loan-approval process exam-
ple from [2] for illustrating how to capture BPEL data de-
pendencies in WSAs and how to generate data flows.

4. BPEL Data Dependencies

In a system, a BPEL process P is seen as a compo-
nent, and the partnerLinks declared in P correspond to the
components interacting with P . In the loan-approval exam-
ple that will be used later in this paper, the BPEL process
loanapproval includes three partnerLinks, so the system has
four components: loanapproval, customer, assessor, and ap-
prover. From the testing point of view, when more than one
BPEL process is considered, the system boundary needs to
be included. The components within the system boundary
are called service-under-test (SUT), and a component out-
side the system boundary is called tester. In the following,
for a message msg(x) ∈ EM ∪OM , msg and x denote the

message name and input/output parameter, respectively.
Let {Mm..Mn} be the set of machines selected as SUT,

a message msg(v) sent from machine M1 to machine M2,
and a transition t associated with variable x, we have:

• t is annotated with df(x) if a) x is defined in an as-
signment action of t, i.e.{x ∈ def(exp)|exp ∈ t.a};
or b) x = v is the input parameter of M2

where M1 and M2 are tester and SUT respectively,
i.e. {x ∈ def(exp)|t ∈ TM2 .exp ∈ t.ex}, M2 ∈
{Mm..Mn}, M1 /∈ {Mm..Mn}.

• t is annotated with us(x) if a) x is
used in an assignment action or guard
of t, i.e.{x ∈ cuses(exp)|exp ∈ t.a} or
{x ∈ puses(exp)|exp ∈ t.g}; or b) x = v
is the output parameter of M1 where M1

and M2 are tester and SUT respectively, i.e.
{x ∈ cuses(exp)|t ∈ TM1 .exp ∈ t.a ∩OM1},
M2 ∈ {Mm..Mn}, M1 /∈ {Mm..Mn}.

• Let P1, P2 be two BPEL processes. t is annotated with
idf(x) if x = v is the input parameter of M2 where
M1,M2 belong to different BPEL processes but both
are SUT, i.e. {x ∈ def(exp)|t ∈ TM2 .exp ∈ t.ex},
M1,M2 ∈ {Mm..Mn}.

• Let P1, P2 be two BPEL processes. t is an-
notated with ius(x) if x = v is the output
parameter of M1 where M1,M2 belong to dif-
ferent BPEL processes but both are SUT, i.e.
{x ∈ cuses(exp)|t ∈ TM1 .exp ∈ t.a ∩OM1},
M1,M2 ∈ {Mm..Mn}.

The i in idf(x), ius(x) means internal. For simplicity, a
transition t is def-x if t can be either annotated with df(x)
or idf(x), while t is use-x if t can be either annotated with
us(x) or ius(x).

Definition 3. A variable x is globally defined and
used if there exist transitions t1 ∈ TM1, t2 ∈ TM2,
where t1, t2 are with def-x and use-x, respectively. The
variable x is locally defined and used if: 1) there exist
transitions t1, t2 ∈ TM , where t1, t2 are with def-x and
use-x respectively; or 2) there exits a transition t1 ∈ TM

where t1 is with def-x and use-x.
According to the BPEL specification [2], in a WSA the

case 1) and 2) will not exist for those variables explicitly
declared in BPEL processes (i.e. BPEL variables and flow
links). Therefore, we only consider globally defined and
used variables, such that a machine can either have a transi-
tion with def-x or have a transition with use-x but not both.
As a result, the def-x (resp.use-x) annotation of a machine
M can be retrieved from the def-x(resp. use-x) of a transi-
tion t ∈ TM . A exdu-pair of x is a transition pair (ti, tj)

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

where ti is with def-x and tj is with use-x. The pair of ma-
chines with def-x and use-x is called machine-exdu-pairs.

4.1 Data Exchange Models

An internal data exchange model is used for a single
BPEL process to specify the relation between inputs and
outputs of BPEL activities. An external data exchange
model is used to capture how messages are transferred from
one BPEL process to other BPEL processes. When a single
BPEL process is selected as SUT, an internal data exchange
model is enough to capture the BPEL data semantics. When
multiple BPEL processes are selected as SUT, a global data
exchange model which is the union of the internal and exter-
nal data exchange models is required to capture the BPEL
data semantics.

A. Internal Data Exchange Model

In this section, we identify different types of data de-
pendencies of BPEL activities, and discuss how to capture
these data dependencies in WSAs.

Rule 1. In a BPEL process P , let x be a BPEL vari-
able or a flow link explicitly declared in P , and Mi be the
WSA associated with BPEL activity Bi. BPEL activities
can be categorized into four types.

1) WhenBi receivesmsg(x) from an external BPEL pro-
cess, given that the partner who sends msg(x) is a
tester and Bi is SUT, Mi is with def-x. The BPEL ac-
tivities belonging to this type include: receive activity,
invoke activity with x as outputVariable, pick activity,
and eventHandler activity.

2) When Bi uses x in a predicate or assignment, it reads
the value of x and Mi is with use-x. The following
BPEL activities belong to this type: assign activity
with x on the right of assignment expressions, while
activity and switch, and an activity with x as a tar-
getLink.

3) When Bi sends a message msg(x) to an external
BPEL process, given that the partner who receives
msg(x) is a tester and Bi is SUT, Mi is with use-x.
The BPEL invoke activity with x as inputVariable, and
the reply activity belong to this type.

4) When Bi defines x in an assignment, it writes a value
to x and Mi is with def-x. Two BPEL activities be-
long to this type: assign activity with x on the left
of assignment expressions and an activity with x as a
sourceLink.

Rule 2. In a BPEL process P , the data can only exchange
between two machines M1,M2 ∈ P if one of the following
conditions is satisfied:

1) M1,M2 have a same parent machine, i.e. they are
same-level machines;

2) M1,M2 are parent and child, or vice-versa.

For simplicity, condition 1) will be checked first, and
condition 2) will be checked when 1) is false.

The rationale behind rule 2 is illustrated by an exam-
ple in Fig 2. The BPEL process fragment is shown in
Fig 2(a), where the solid lines denote the node hierarchy
of BPEL activities. It has a sequence activity that encloses
flow, while, and switch activities. The flow activity encloses
A and B activities. The while activity encloses C activity.
The switch activity encloses C and D activities. In the
example, MA is used to denote the machine for activity A,
and Mf ,Mw,Ms are short for Mflow,Mwhile,Mswitch.
By analyzing model(a) according to rule 1, suppose we
have MA,MC with def-x, Mw,Ms with use-x, MB with
def-y, and MD,ME with use-y.

seq

D

C

flow def-y

E

B

A

def-x

use-x

use-y

use-y
use-x

def-x

while

switch

seq

D

C

flow

E

B

A

while

switch

x
y

x

x
x

y seq

D

C

flow

E

B

A

x

y

x

x

x,y

y

x

y

while

switch

(a) (b) (c)

Figure 2. Modelling internal data exchanges

To capture data semantics of the BPEL process in WSAs,
Fig 2 (b)(c) show two ways of modelling data exchanges.
The dashed and solid lines denote the machine data flows
and the control flows, respectively. In (b), for an arbi-
trary variable v, the machine with def-v will send message
msg(v) to the machine with use-v directly. Based on the
data exchange model (b), two problems may exist.

1) Sending intermediate data values.

2) Sending data to unreachable machines.

Problem 1) exists in the example; machine Mw receives
msg(x) from MA and uses x in its predicate pred. If pred
is true, it starts the child machine MC . MC re-defines x.
On the one hand, MC sends msg(x) back to Mw for re-
evaluating pred. On the other hand, MC sends msg(x) to
Ms. The while loop continues until pred becomes false.
Since MC is in a while loop, everytime MC is executed, it
will send message msg(x) to Ms. If the while loop iter-
ates n times, then Ms will receive n − 1 times of msg(x)
with intermediate values of x. Nevertheless, Ms only needs
the value of x in the final loop, so the decision of sending
msg(x) should be made by Mw.

Problem 2) also exists in the example. Ms has two child
machines MD,ME , where in a given time only one of the

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

child machines can be executed but not both. Therefore, ei-
ther MD or ME needs to receive msg(y). However, since
MB cannot decide the choice of MD or ME , MB will send
msg(y) to MD and msg(y) to ME . Suppose ME is not
chosen to execute, MB will send msg(y) to an unreach-
able machine. Therefore, MB should send msg(y) to Ms

which can decide which child machine should receive the
data. Furthermore, problem 2) may exist for a BPEL activ-
ity B with flow links, which will be associated a linkWrap-
per machine MBwp and a core machine MB . Since MBwp

is the parent of MB , MBwp decides whether MB can be
started. MB can be started only when the predicate for the
targetLinks is evaluated to be true in MBwp. So if MB

requires a data v, the message msg(v) should be sent to
MBwp which decides whether to forward it to MB .

The above two problems can be solved by adding the
constraints of rule 2, shown in Fig 2 (c). For the first prob-
lem, MC sends msg(x) to its parent Mw, and Mw for-
wards msg(x) to the same-level machine Ms. For the sec-
ond problem, MB sends msg(y) to its parent Mf , and Mf

fowards msg(y) to the same-level machine Ms, which in
turn forwards msg(y) to one of MD,ME . Comparing (b)
and (c), the (c) approach is clearer and more precise even
though it requires additional message transfers.

According to rule 2, Fig 3 below shows an algorithm
to generate a data exchange path (machine sequence) for
a machine-exdu-pair (d node, u node). The idea is to find
a common ancestor node cp. The message msg(x) is sent
upstream from d node to a child node MC1 of cp, while
msg(x) is received downstream from a child node MC2 of
cp to u node. Finally MC1 sends msg(x) to MC2. The
worst-case time complexity of the algorithm is O(n2).

1 foo (d_node, u_node) : path {
2 IF (d_node == u_node) RAISE ERROR!

3 d_path.add(d_node);

4 u_path.add(u_node);
5 d_cur = d_node;

6 u_cur = u_node;
7 WHILE ((d_par == d_cur.parent()) != NULL OR (u_par == u_cur.parent()) != NULL) {

8 IF (d_par != NULL) {

9 IF (d_par IN u_path) {
10 IF (d_par == u_path[0]) RETURN d_path.add(d_par);

11 ELSE {
12 u_path = u_path.getNodesBefore(d_par);

13 RETURN d_path.concat(reverse(u_path));

14 }
15 } ELSE {

16 d_path.add(d_par);
17 d_cur = d_par;

18 }

19 }
20 IF (u_par != NULL) {

21 IF (u_par IN d_path) {
22 IF (u_par == d_path[0]) RETURN u_path.insert(u_par,0);

23 ELSE {

24 d_path = d_path.getNodesBefore(u_par);
25 RETURN d_path.concat(reverse(u_path));

26 }
27 } ELSE {

28 u_path.add(u_par);

29 u_cur = u_par;
30 }

31 }
32 }

33 RETURN NULL;

}

Figure 3. Internal data exchange algorithm

In Fig 3, given (d node, u node) as input, two se-
quences d path, u path are created (line 2-3). Starting
from d node, u node, it iteratively gets the parent nodes
from the current nodes, denoted by d par, u par, until
both root nodes are reached (line 7). The while contains
two parts. First, it checks whether a common ancestor
node is reached. 1.1) d par is in u path(line 9-14): if
u node itself is the parent of d node, then the output path is
〈d node, u node〉 (line 10); otherwise, the output path is the
reversed elements of the u path before the common node.
1.2) d par is not in u path(line 15-18), d par is added to
d path and d par becomes the current node. Second, simi-
larly it checks whether a common ancestor node is reached.
2.1) u par is in d path(line 21-26): if d node itself is the
parent of u node, then the output path is 〈d node, u node〉
(line 22); otherwise, the output path is the reversed elements
of the u path before the common node. 2.2) u par is not
in d path(line 27-30), u par is added to u path and u par
becomes the current node.

We use the variable x in Fig 2 as an exam-
ple. From (a) we get the machine-exdu-pairs for x
are (MA,Mw), (MA,Ms), (MC ,Mw), and (MC ,Ms).
When applying the algorithm to the example, the
data exchange paths for the above machine-exdu-pairs
would be 〈MA,Mf ,Mw〉,〈MA,Mf ,Ms〉,〈MC ,Mw〉, and
〈MC ,Mw,Ms〉, respectively.

In the loan-approval example below, when the BPEL
process loanapproval is selected as SUT, the internal data
exchange model of this single process is shown in Fig 4,
where the control flows are not shown for simplicity.

invokeApprover
linkWrapper (M7)

receive

linkWrapper (M2)

reply

linkWrapper (M9)

assign

linkWrapper (M5)
invokeAssessor

(M4)

invokeApprover
(M8)

Assign
(M6)

reply

(M10)

req req

req,l2req,l1

req req

inforisk

req reql4

receive

(M1)

l3

info

risk

info

invokeAssessor
linkWrapper (M3)

info, l5

info

info,l6

info

loanapproval

Figure 4. Internal data exchange model

According to rule 1, the machine-exdu-pairs for vari-
able req are (M1,M4), (M1,M8). By the algorithm of
Fig 3, the data exchange paths for the above machine-
exdu-pairs are 〈M1,M2,M3,M4〉 and 〈M1,M2,M7,M8〉
respectively. Similarly for flow link l1, the machine-exdu-
pair is (M2,M3) and the data exchange path is 〈M2,M3〉.
Note that for a variable x, the additional msg(x) messages
are only used to capture the BPEL internal data exchanges.

B. External Data Exchange Model

Since the communication scheme between web services
is message passing, BPEL processes exchange data by pass-

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

ing messages. There exist two ways to capture the inter-
actions between BPEL processes: top-down and bottom-
up approaches. The top-down approach is to firstly design
a conversation protocol to capture global interactions of
BPEL processes, and secondly design the BPEL processes
to implement the conversation protocol. The bottom-up ap-
proach is to firstly design BPEL processes, and secondly
derive the global interactions from the BPEL processes. [8]
points out the advantage of the top-down approach over the
bottom-up approach. However, from the testing point of
view, it is especially important to verify the correctness of
the BPEL interactions when a conversation protocol is miss-
ing. In our framework, we assume that there is no conver-
sation protocol to guide the design of BPEL process inter-
actions. Instead, we verify the correctness of BPEL pro-
cess interactions by deriving a BPEL external data exchange
model from individual BPEL processes.

For the loan-approval example, three partnerLinks are
included in the loanapproval process: customer, assessor,
and approver. If customer is selected as a tester, then
the SUT contains three components: loanapproval, asses-
sor, and approver. The external data exchange model can
be easily constructed from BPEL activities by identifying
which partnerLink a message is sent to or received from.

approverassessor

req

req req

info

inforisk

loanapproval

SUT

approverassessor

customer

approve(req)

approve(req)

approve(info)

approve(info)check(risk)
loanapproval

check(req)

(1) (2)

Figure 5. External data exchange model

In Fig 5, the left shows the messages passing between
BPEL processes for the loan-approval example, and the
right shows the derived BPEL external data exchange model
where customer component is chosen as tester and the rest
components are selected as SUT.

C. Global Data Exchange Model

A global data exchange model is the union of the internal
data exchange models of invidual BPEL processes and the
external data exchange model of these BPEL processes. In
the loan-approval example, when BPEL processes assessor,
loanapproval, and approver are selected as SUT, the global
data exchange model is shown in Fig 6.

4.2 BPEL Data Flows

After modelling how data exchanges within a BPEL pro-
cess and across BPEL processes, data flows can be derived
for each variable so that we can check whether a defined
variable will be later used and whether a used variable has

invokeApprover

linkWrapper (M7)

receive
linkWrapper (M2)

reply
linkWrapper (M9)

assign
linkWrapper (M5)

invokeAssessor

(M4)

invokeApprover

(M8)

assign

(M6)

reply
(M10)

req

req

req,l2req, l1

req

risk

req reql4

receive
(M1)

l3

info

risk

info

invokeAssessor

linkWrapper (M3)

info, l5

info

info, l6

info

loanapproval

receive

(M1)

switch

(M2)

assign2

(M4)
reply
(M5)

assessor

assign1
(M3)

assign2

(M4)
reply

(M5) approver

info

reqreq

risk

risk

risk

assign1

(M3) req

info
info

info

receive
(M1)

switch
(M2)

Figure 6. Global data exchange model

been previously defined. In this section, we will discuss two
kinds of data flow: 1) the data flows when a single BPEL
process is selected as SUT; 2) the data flows when multiple
BPEL processes are chosen as SUT.

Let x be a variable. A du-pair of x is a transition pair
(ti, tj) where ti is with df(x) and tj is with us(x). A
def-clear path with respect to x is a transition sequence
〈t1, t2, .., tn〉 where there is no df(x) in any transition tk
where 1 < k < n. A data flow (or du-path) of x is a
transition sequence that (ti, tj) is a du-pair and there is a
def-clear path from ti to tj with respect to x.

Definition 4. Let M1,M2 be two machines, there is
a data flow from M1 to M2, i.e. t2 ∈ T2 is data dependant
on t1 ∈ T1, iff there exists a variable x such that

1) t1 is with df(x).

2) t2 is with us(x).

3) There exists a def-clear path from t1 to t2 for x.

The data flows for a variable x can be constructed by
identifying du-pairs, and checking whether there is a def-
clear path between the du-pairs. The data flows for a
variable x can be derived automatically by model check-
ing techniques, based on the annotations df(x), us(x) of
transitions. For each du-pair 〈ti, tj〉 of variable x, where
ti ∈ TMi, tj ∈ TMj . In tj , x needs to be asserted that
x has been defined previously. For the purpose of illustra-
tion, here we use machine-du-pairs retrieved from du-pairs,
and use machine sequences retrieved from the transition se-
quences of data flows. The pair of machines with df(x) and
us(x) is called machine-du-pairs.

A. Data Flows of Single BPEL Process

When a single BPEL process P is selected as SUT, the
data flows can be derived from the internal data exchange
model of P . In the loan-approval example, when BPEL pro-
cess loanapproval is selected as SUT, the internal exchange
model is shown in Fig 4. By model checking, the data flows
for BPEL variables and flow links can be derived as follows.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

First, for BPEL variable req, the machine-du-pairs are
(M1,M4), (M1,M8), so the data flows are via machine
sequences 〈M1,M2,M3,M4〉 and 〈M1,M2,M7,M8〉.
Second, for BPEL variable risk, the machine-du-pair
is (M4,M3), so the data flow is via machine se-
quence 〈M4,M3〉. Third, for BPEL variable info, the
machine-du-pair are (M6,M10), (M8,M10), so the data
flows are via machine sequences 〈M6,M5,M9,M10〉,
and 〈M8,M7,M9,M10〉. Finally, for flow links
l1, l2, l3, l4, l5, l6, their data flows are via machine se-
quences 〈M2,M3〉, 〈M2,M7〉, 〈M3,M7〉, 〈M3,M5〉,
〈M5,M9〉, and 〈M7,M9〉, respectively.

B. Data Flows of Multiple BPEL Processes

For multiple BPEL processes {P1, .., Pn}, the data flows
for a variable can be derived from the global data exchange
model of {P1, .., Pn}. In the loan-approval example, when
BPEL processes loanapproval, assessor, and approver are
selected as SUT, the global exchange model is shown in
Fig 6. By model checking, the data flows can be derived in
the following.

Let P.Mi denote machine Mi of BPEL pro-
cess P , and S,L,A are used as shorthands for
the BPEL processes assessor, loanapproval, and
approver, respectively. First, for BPEL variable
req, the machine-du-pairs are (L.M1, S.M2) and
(L.M1, A.M2), so the data flows are via machine
sequences 〈L.M1, L.M2, L.M3, L.M4, S.M1, S.M2〉
and 〈L.M1, L.M2, L.M7, L.M8, A.M1, A.M2〉. Sec-
ond, for BPEL variable risk, the machine-du-pairs are
(S.M3, L.M3) and (S.M4, L.M3), so the data flows are
via machine sequences 〈S.M3, S.M2, S.M5, L.M4, L.M3〉
and 〈S.M4, S.M2, S.M5, L.M4, L.M3〉. Third,
for BPEL variable info, the machine-du-
pairs are (A.M3, L.M10) and (A.M4, L.M10),
so the data flows are via machine sequences
〈A.M3, A.M2, A.M5, L.M8, L.M7, L.M9, L.M10〉,
and 〈A.M4, A.M2, A.M5, L.M8, L.M7, L.M9, L.M10〉.
Finally, the data flows of flow links are the same as the data
flows derived from a single BPEL process.

5. Related Works

In the literature, most existing work abstracts from data
and focuses attention on the control flow. When data is
omitted, the transition guards and variables were left out, so
selecting one of two control paths, solved by the evaluation
of data, needs to be modelled by a nondeterministic choice.
Even for work that does consider BPEL data, data depen-
dencies are not modelled in an explicit way. In this section,
we review work with consideration of modelling data de-
pendencies in the orchestration models such as BPEL pro-

cesses. The purpose of analyzing data dependencies is to
ensure data is always defined before being used.

In [13], they propose a BioOPera Flow language to
model the control dependencies and data dependencies be-
tween tasks (BPEL activities) as visual flow graphs. In or-
der to maintain the consistency, they provide a set of con-
straints when constructing a data flow graph. For instance
in a process data flow graph, data always flows from out-
put to input parameters of tasks. The input parameters of a
process can only be connected to input parameters of tasks,
and output parameters of the process may receive data only
from output parameters of tasks. A constant data can be
connected to multiple input parameters, but an input pa-
rameters bound to a constant data cannot have any other
incoming data flow edge. A toolset is developed to support
the visualization. Even though their focus is not rigorous
verification of design models, they show the importance of
considering control and data dependencies in separation.

In the composition language proposed by [15], each task
(equally to a BPEL activity) has an inputDependencies sec-
tion to describe the control dependencies and data depen-
dencies from itself to other tasks. For instance, variable x is
the output data of task tk1 and the input data of task tk2, tk2

will declare a data dependency in its input-Dependencies
section to specify tk1 is the source who sends x to it. The
task who receives a message from an external web service
will send the message to other ’downstream’ tasks which
have dependencies on this message. Their composition lan-
guage is mapped to Pi-calculus. In Pi-calculus, a process
denotes web service task, channels represent takes data de-
pendencies, and control dependencies are represented im-
plicitly using the operators of Pi-calculus directly. The com-
position service as a whole is modelled as a parallel com-
position of all of these processes. Their data dependency
modelling makes the data definition and usage clear. With
this in mind, our WSA should also be able to capture the
data dependencies of BPEL activities in an explicit way.

A grid workflow language is proposed in [7], where each
activity may have data-in port and data-out port. The data
exchange describes that the data flows from data-out ports
to data-in ports. They discuss the constraints added on the
data exchanges in conditional activities (e.g. BPEL switch
and pick), in sequential loop activities (e.g. BPEL while),
and in parallel loop activities (e.g. BPEL flow).

The authors in [3] provide a model of data flow in addi-
tion to control flow for OWL-S process models. They trans-
form OWL-S to Promela so that SPIN model checker can
be used to verify the OWL-S process model. Their scope of
the data flow is limited to within a composite process. The
processes in a composite process can exchange data among
themselves or with the parent process. In OWL-S, a process
is similar as a BPEL activity. We also add such level-based
constraint on the BPEL internal data exchanges.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

For external data exchanges between orchestration mod-
els, if there is a conversation protocol available, the data
dependencies between web services can be directly derived
from the conversation protocol; otherwise, one needs to an-
alyze the data exchanges to get the data dependencies. The
work of [4] discusses how to analyze data exchanges be-
tween YAWL workflow models, so that the resulting data
dependencies between web services can be used for ser-
vice matching. In [6], they propose a OWL-P language to
model both the conversation protocol as well as the orches-
tration models. When composing orchestration models, the
designer needs to define a set of composition axioms to add
constraints on the conversation protocol. A data-flow axiom
states the data exchange dependency among the orchestra-
tion models. In our test framework, we do not assume a
conversation protocol is available, and the data dependen-
cies between BPEL processes need to be analyzed.

In [11], they propose data nets to capture data exchange
and data manipulation within an orchestration model, as
well as data exchange between composition models. The
control flow of a orchestration model is modelled by STS
(State Transition System) [14]. STS with data is the syn-
chronized product of all the STSs and data nets. A tool is
needed to do the experimental evaluation. Since our WSA
includes data, there is no need to add a separate data model.
Data flows can be derived from WSAs based on existing
data flow analysis techniques.

6. Conclusions

In this paper, we analyse the BPEL internal and exter-
nal data dependencies and illustrate how to capture these
dependencies in our previously proposed web service au-
tomaton (WSA). Model checkers can be used to automat-
ically generate data flows for each variable, so that data
flow testing can be applied to either a single BPEL pro-
cess or multiple BPEL processes. The proposed WSA is
implemented in XML, where a transition annotated with
df(x), idf(x), ius(x), us(x) are denoted as XML transi-
tion attributes df, idf, ius, us respectively. We developed
an Eclipse based tool as a part of the DBEStudio deliver-
able of the EU project [1]. The tool allows users to se-
lect SUT, a pre-defined test coverage criterion, and a model
checker. Thereafter, the tool can automatically generate JU-
nit test cases by mapping BPEL processes to WSAs, map-
ping WSAs to the input languages of the selected model
checker, invoking the model checker to generate counterex-
amples, and retrieving test cases from the counterexamples.

Acknowledgment

This work was supported by the EU FP6 funded project
Digital Business Ecosystems.

References

[1] Digital business ecosystem. http://www.digital-
ecosystem.org, 2007.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, S. Thatte, and S. Weer-
awarana. Business process execution language for web ser-
vices version 1.1. May 2003.

[3] A. Ankolekar, M. Paolucci, and K. P. Sycara. Towards a for-
mal verification of owl-s process models. In International
Semantic Web Conference, Lecture Notes in Computer Sci-
ence, pages 37–51. Springer, 2005.

[4] A. Brogi and R. Popescu. Towards semi-automated
workflow-based aggregation of web services. In IC-
SOC, Lecture Notes in Computer Science, pages 214–227.
Springer, 2005.

[5] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri.
Nusmv: A new symbolic model verifier. In Proc. of CAV,
pages 495–499. Springer-Verlag, 1999.

[6] N. Desai, A. U. Mallya, A. K. Chopra, and M. P. Singh. In-
teraction protocols as design abstractions for business pro-
cesses. IEEE Trans. Softw. Eng., 31(12):1015–1027, 2005.

[7] T. Fahringer, J. Qin, and S. Hainzer. Specification of grid
workflow applications with agwl: an abstract grid workflow
language. In Proc. of CCGRID, pages 676–685. IEEE Com-
puter Society, 2005.

[8] X. Fu, T. Bultan, and J. Su. Synchronizability of conversa-
tions among web services. IEEE Transactions on Software
Engineering, 31(12):1042–1055, 2005.

[9] G. J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison Wesley Professional, 2003.

[10] R. Hull and J. Su. Tools for design of composite web ser-
vices. In Proc. of SIGMOD, pages 958–961. ACM Press,
2004.

[11] A. Marconi, M. Pistore, and P. Traverso. Specifying data-
flow requirements for the automated composition of web
services. In Proc. of SEFM, pages 147–156. IEEE Computer
Society, 2006.

[12] N. Milanovic and M. Malek. Current solutions for web ser-
vice composition. IEEE Internet Computing, 08(6):51–59,
2004.

[13] C. Pautasso and G. Alonso. Visual composition of web ser-
vices. In Proc. of HCC, pages 92–99. IEEE Computer Soci-
ety, 2003.

[14] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Au-
tomated synthesis of composite bpel4ws web services. In
Proc. of ICWS, pages 293–301. IEEE Computer Society,
2005.

[15] S. J. Woodman, D. J. Palmer, S. K. Shrivastava, and S. M.
Wheater. Notations for the specification and verification of
composite web services. In Proc. of EDOC, pages 35–46.
IEEE Computer Society, 2004.

[16] Y. Zheng and P. Krause. Automata semantics and analysis
of bpel. In Proc. of DEST. IEEE Computer Society, 2007.

[17] Y. Zheng and P. Krause. A model checking based test case
generation framework for web services. In Proc. of ITNG,
pages 715–722. IEEE Computer Society, 2007.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

