
Reasoning about Probabilistic Defense Mechanisms against Remote Attacks

Martı́n Ochoa∗, Sebastian Banescu†, Cynthia Disenfeld‡, Gilles Barthe§, Vijay Ganesh¶
∗Singapore University of Technology and Design

†Technische Universität München
‡University of Toronto
§ IMDEA Software

¶ University of Waterloo

Abstract—Despite numerous countermeasures proposed by
practitioners and researchers, remote control-flow alteration
of programs with memory-safety vulnerabilities continues to
be a realistic threat. Guaranteeing that complex software is
completely free of memory-safety vulnerabilities is extremely
expensive. Probabilistic countermeasures that depend on ran-
dom secret keys are interesting, because they are an inexpensive
way to raise the bar for attackers who aim to exploit memory-
safety vulnerabilities. Moreover, some countermeasures even
support legacy systems. However, it is unclear how to quan-
tify and compare the effectiveness of different probabilistic
countermeasures or combinations of such countermeasures.
In this paper we propose a methodology to rigorously derive
security bounds for probabilistic countermeasures. We argue
that by representing security notions in this setting as events
in probabilistic games, similarly as done with cryptographic
security definitions, concrete and asymptotic guarantees can
be obtained against realistic attackers. These guarantees shed
light on the effectiveness of single countermeasures and their
composition and allow practitioners to more precisely gauge
the risk of an attack.

1. Introduction

Memory-safety vulnerabilities, such as writing outside
of boundaries of buffers of programs written in C/C++, rep-
resent a high security risk for applications facing a network
or malicious input, since they can be exploited to execute
arbitrary code on a victim’s machine [1]. Although due to
its severity, several countermeasures have been proposed
in the last 15 years to mitigate the risk of exploitation, a
new generation of exploits taking advantage of code re-
use techniques [2], [3], [4] pose challenges to practitioners
and researchers. Also, as the difficulty to exploit buffer
overflows (BOF) increases, attackers resort to exploiting
other memory-safety vulnerabilities, such as format string
vulnerabilities, heap overflows and buffer over-reads (as in
the case of the recent Heartbleed exploit [5]).

Security researchers have come up with many coun-
termeasures (we interchangeably use the terms defense
mechanisms and countermeasures) against memory-based
exploitation, broadly classified as probabilistic and non-

probabilistic. Examples of non-probabilistic countermea-
sures include access control protection to certain memory
regions to avoid remote code injection on the stack [1]. This
kind of access control is currently implemented in most op-
erating systems and at the hardware level by most CPU ven-
dors. Unfortunately, such countermeasures cannot prevent
code re-use attacks such as Return-oriented Programming
(ROP) [2]. In ROP attacks, instead of injecting malicious
code, attackers find sequences of instructions in the victim’s
code (called gadgets) that can be executed in arbitrary order
by injecting pointers to them on the stack, which essen-
tially allows running arbitrary code without violating the
access control policy on the stack. Other non-probabilistic
countermeasures, such as Control-Flow Integrity (CFI) [6]
propose to statically compute a valid control-flow graph
of a program and enforce run-time monitors that detect
violations to this policy. Although promising, this technique
implies source-code or binary instrumentation, and can have
high performance overheads [7]. Moreover ROP attacks that
respect the original control-flow graph can be launched even
in contexts where CFI may be enforced [8].

Another class of countermeasures are probabilistic [1],
and can intuitively be classified under the “software di-
versity” or “moving-target” defense mechanisms. The core
idea behind them is that there is an element of randomness
(a seed or a key), that changes with every execution of a
program or with every fresh boot of the host executing the
program, depending on the implementation. This nondeter-
minism is used with the goal to slow-down an attacker:
without any further side-channel, an attacker would have
to guess the secret in order to launch the attack. Depending
on the size of the secret, this can effectively increase an
attacker’s effort to successfully carry out an attack, and
demotivate him/her. Prominently, address space layout ran-
domization (ASLR) [9] and random stack canaries [10]
have found their way into most modern operating systems.
Other countermeasures such as instruction-set randomiza-
tion (ISR) [11] and PointGuard [12] have been proposed
in the literature as valuable alternatives, because of ease
of implementation (easy or no binary instrumentation) and
low performance overheads. These characteristics are crucial
for practical applications, where legacy software running on
resource constrained environments such as industrial-control

ar
X

iv
:1

70
1.

06
74

3v
2

 [
cs

.C
R

]
 1

7
Fe

b
20

17

systems pose several implementation challenges.
However, the effectiveness (or the lack thereof) of prob-

abilistic countermeasures has been discussed in the literature
for various reasons. First, as stated before, clever exploita-
tion techniques such as ROP [2], Blind ROP [3] and JITROP
[4] invalidate certain assumptions on the attacker, made by
some countermeasures, rendering them less effective. On
the other hand, side-channels attacks [13] and low entropy
of randomization in certain architectures [14] make them
practically insecure.

In this work, we make the observation that the guar-
antees provided (or intended) by probabilistic countermea-
sures for memory-safety vulnerabilities resemble the ones of
cryptographic algorithms, and as such, can be represented
and reasoned upon using state-of-the-art cryptographic tools
and techniques. In particular, game-based reasoning [15] has
gained momentum in the past decade as a useful technique
to formalize proof techniques involving probabilistic guar-
antees such as semantic security [16] among others. At the
core of our contribution is a security property definition
that abstracts away from the concrete defense mechanism
and low-level details (such as various assembly languages,
processor architectures etc.), and that can be instantiated
for various countermeasures. In particular, our modeling
allows for reasoning about composed countermeasures in a
natural way. We presented some of the key ideas discussed
here in an earlier paper on attack-resistance of defense
mechanisms [17], but have considerably improved upon and
expanded these ideas in this paper.

Problem Statement. In this work, we address the prob-
lem of rigorously deriving security guarantees for proba-
bilistic countermeasures against remote exploitation attacks
for resource constrained but otherwise arbitrary attackers.
We are motivated to provide formal guarantees of efficacy
for defense mechanisms because such guarantees are crucial
in characterizing and understanding why certain defense
mechanisms work as intended while others fail.

Contributions. Our contributions can be summarized as
follows:

• We quantify the security of a probabilistic counter-
measure as the probability of an event in a proba-
bilistic game, similar to how it is done for the formal
verification of cryptographic primitives via security
games [15], [18].

• We compute bounds for popular probabilistic coun-
termeasures from the literature, showing that our ap-
proach generalizes. Crucially, we can analyze com-
positions of different countermeasures.

• We discuss how the use of replicas, similar as in
Secure Multi-Execution (SME) [19] and DieHard
[20] can be used to close certain side-channels
in the implementation of probabilistic countermea-
sures. Additionally, we show that this technique
can conceptually make exploitation harder against
many countermeasures even if the keys on which
the countermeasure is based are leaked.

The rest of this paper is organized as follows. Section 2

recaps fundamentals of stack-smashing attacks, since our
running examples will exploit BOFs, and fundamentals of
game-based cryptographic proofs. Section 3 presents the
central concepts and definitions, and Section 4 shows ap-
plications to various countermeasures. We show how to
reason on composed countermeasures in Section 5. Section 6
discusses how to plug-in leakage due to side-channels into
our reasoning, and how this could be prevented by means of
replicas. We discuss related work in Section 7 and conclude
in Section 8.

2. Background

In the following, we provide some background on
memory-based exploits and probabilistic countermeasures.
We focus on stack smashing attacks because of their pop-
ularity and criticality, and since they will serve as a basis
for our discussion. Finally, we summarize the fundamental
concepts behind code-based cryptographic proofs.

2.1. Stack smashing attacks

For the sake of clarity of presentation, in this work
we assume that the only way the attacker can violate the
control-flow integrity of a remotely accessible program is
via stack smashing attacks, e.g. code injection and code
re-use. Stack smashing attacks involve writing data input
by the attacker, beyond the declared boundaries of a stat-
ically allocated buffer, i.e. overflowing the buffer. If the
input of the attacker is long enough, then it will overwrite
the control-flow information (i.e. frame pointer and return
address) of the program which is also stored on the stack
in the vicinity of the overflowed buffer. Once the currently
executing function of the program is finished it will continue
execution from the instruction indicated by the overwrit-
ten return address. If this return address points to a valid
instruction sequence, then the control-flow integrity of the
program has been violated, since the program will deviate
from its intended behaviour. Otherwise, if the return address
points to a sequence of bytes that does not represent a valid
instruction according to the instruction set architecture (ISA)
or it points to an inaccessible memory address, then the
program crashes.

Code injection is a type of stack smashing attack, where
the attacker inserts the machine code s/he wants to execute
in the input that is passed to the vulnerable program. This
input is also known as the exploit payload or shellcode and it
also contains other data additional to the machine code to be
executed, e.g. the value with which the return address is to
be overwritten. As described in the previous paragraph, this
exploit payload will be written to the vulnerable buffer and
beyond its declared boundary. A crucial step of the attack is
therefore to overwrite the value of the return address with
the address where this injected code is stored on the stack.

Code re-use is similar to code injection, however, the
attacker inserts a sequence of addresses to existing code
in the process memory of the target program. Each of these
addresses generally points to a short sequence of instructions

ending with a return or jump instruction, which are called
gadgets. In between the addresses of the gadgets that the
attacker inserts, there may also be data values which are
used by the instructions of the gadgets (e.g. pop eax takes
such a data value from the stack). When a gadget finishes
execution it will either (1) execute the return instruction
which loads the address of the following gadget from the
stack and continues execution, or (2) execute the jump
instruction to an address (provided by the attacker via the
exploit payload), to the following gadget. Again a crucial
step for the attacker is to carefully craft the exploit payload
to overwrite the return address with the address of the first
gadget that s/he wants to execute.

2.2. System interface

In the previous subsection we have mentioned that the
attacker can only remotely access the system on which the
vulnerable program is running. To be more precise, we
assume a synchronous communication channel such as TCP,
i.e. after the attacker sends an input (request), s/he receives
/ observes an output (response) from the system. The output
can be either a message sent directly by the vulnerable
program or it can be an error message sent by the remote
system, (e.g. time-out), due to a crash of the vulnerable
program.

2.3. Code-based cryptographic proofs

Modern cryptography advocates the use of rigorous se-
curity definitions and reductionist proofs [16]. In a typical
case, security definitions are captured by probabilistic exper-
iments in which a challenger C interacts with an adversary
A, and the adversary will win the game if his response to
the challenge computed by C fulfills a well-defined winning
condition. An important class of experiments are the so-
called indistinguishability games, where an adversary must
guess some bit b sampled by the challenger; in this case,
the winning condition is b = b′, where b′ is the adversary’s
guess. Indistinguishability games can also be expressed by
means of two experiments: in the first experiment, the
challenger uses an ideal functionality, whereas in the second
experiment, the challenger uses a real functionality. In both
cases, the adversary returns a bit b ∈ {0, 1}. The advantage
of the adversary is then defined as the distance (i.e. absolute
value of the difference) between the probabilities that he
returns 1 in the first experiment and in the second exper-
iments. To manage the complexity of reductionist proofs,
some cryptographers adopt the game-hopping approach, in
which bounds on the adversary’s advantage are proved by
means of a sequence of transitions [15]. A further step
is to write experiments using an imperative probabilistic
programming language [15]. One can then give a formal
semantics to probabilistic programs and use this semantics
as a sound basis for rigorous mathematical reasoning [18].

One central tool in the game-hopping approach is rea-
soning up to failure event. In its simplest form, it considers
two programs that are syntactically identical until a boolean

flag bad is set (a flag is a boolean variable that remains true
once set).

Definition 1 (Identical until bad is set). Two games G1 and
G2 are identical until bad is set, if both contain a bad flag
(that is initially set to false) and they are syntactically
identical but for a statement if bad = true then S in
one game and if bad = true then T in the other, for
some sequence of instructions T and S.

Equipped with the notion of identical until bad is set,
we can proceed to state the Fundamental Lemma of Game
Playing, which is a cornerstone of the hop-based technique
proposed in [15], [18].

Theorem 1 (Fundamental Lemma of Game playing). Let
G1 and G2 be two (terminating) games identical until
bad is set. Let E an event defined on both games and
let F denote the event bad = true. Then:

|Pr [E]G1
− Pr [E]G2

| ≤ Pr [F]Gi
i = 1, 2

For a proof see [15].

Example 1 (PRF/PRP Switching Lemma). A simple ex-
ample that illustrates the game playing principle is the
Pseudo-Random Function/Pseudo-Random Permutation
(PRF/PRP) switching lemma [15]. Let Perm(n) be the
set of all permutations over strings of n bits {0, 1}n,
and let Func(n) the set of all functions from {0, 1}n to
{0, 1}n. The switching lemma states that the probability
of an adversary distinguishing sampling from the two
sets above given q oracle access calls to the sampling
procedure is at most q(q−1)

2n+1 . Formally, let Aπ be an
adversary querying an oracle that samples a random
permutation π ∈ Perm(n), and Aρ an adversary that
queries an oracle sampling a random function ρ ∈
Func(n). The adversary AP , for P ∈ {ρ, π} outputs a
bit (0,1) after querying the random function/permutation
q times. Then:

|Pr[Aπ = 1]− Pr[Aρ = 1]| ≤ q(q − 1)

2n+1

We can model the two different oracles using the pWhile
language of [18]. Here x $← S is a uniform random
assignment from the set S. We assume that the set I is
empty before giving oracle access to the adversary.

Proc. π
y $← {0, 1}n
if y ∈ I then
y $← {0, 1}n \ I

I ← I :: y
return y

Proc. ρ
y $← {0, 1}n
return y

where I :: y stands for concatenation of y to a list I .
Now, we can syntactically transform these programs into
the following, semantically equivalent ones (S1 has the
same output distribution as π and S2 has the same output
distribution as ρ):

Proc. S1

y $← {0, 1}n
if y ∈ I then
bad← true
y $← {0, 1}n \ I

I ← I :: y
return y

Proc. S2

y $← {0, 1}n
if y ∈ I then
bad← true

I ← I :: y
return y

Since S1 is identical to S2 up to setting the bad flag
to true, we can use the fundamental lemma of game
playing and derive:

|Pr[Aπ = 1]− Pr[Aρ = 1]| ≤ q(q − 1)

2n+1

|Pr[Aπ = 1]− Pr[Aρ = 1]| =
|Pr[AS1 = 1]− Pr[AS2 = 1]| ≤ Pr [bad = true]S1

≤ q(q − 1)

2n+1

since the probability of y ∈ I is the probability of a
collision in sampling q random elements, which is a
standard birthday paradox bound.

Interpretation of bounds. Probabilistic experiments are
always parametrized by a security parameter n; for instance,
the security parameter can be related to the size of the under-
lying domain (in our example, the length of the bitstrings).
Thus, the advantage of the adversary is implicitly given in
terms of a function ε(n), and some care is required for
interpreting the results—especially when the advantage is
expressed relative to a security assumption. One standard
interpretation is asymptotic: in this setting, one requires that
adversaries are probabilistic polynomial time (PPT) algo-
rithms and that their advantage is negligible in the security
parameter, i.e. goes to zero exponentially fast. Another, and
more appropriate for our purposes, interpretation is concrete
security; in this case, one analyzes the values of ε(n) for
chosen values of n that reflect practical scenarios.

3. Security of probabilistic defenses as games

In this section we present our formal approach on how to
characterize the expected security guarantees for probabilis-
tic defense mechanisms against memory-safety vulnerabili-
ties and how to formalize them as code-based games. In the
following we assume that the execution of the programs will
eventually timeout and therefore they are terminating. Also
we assume that programs are determinstic (by assuming
their source of randomness is isolated as a program input).
Thus, in this setting, programs can be though of as total
functions.

3.1. Security definition

Let P be a low-level program for an x86-like architec-
ture (i.e. x86 assembly). Let [P] : {0, 1}∗ → {0, 1}∗ be
a semantics function for P . Let JP K be an ideal execution
that will raise an exception and crash with a distinct output

crash whenever an attempt to exploit a memory-safety
violation is detected at runtime. Formally there exists a set
Ω(P) ∈ 2{0,1}

∗
such that:

∀ ω ∈ Ω, [P](ω) = crash

Let A be a PPT adversary that attacks P , which is
potentially a vulnerable program. A knows the program
P and can interact remotely with it (send inputs and can
observe the respective outputs) by means of a machine
executing it as discussed in Section 2.
Definition 2 (Effectiveness of defense mechanism). We say

that a probabilistic countermeasure c is effective against
remote exploitation if the probability of attacker A of
distinguishing the execution of P with countermeasure
c (denoted [P + c]), from the ideal execution JP K is
negligible on a security parameter n. The adversary has
oracle access to an instance of [P + c], which he can
query q times (where q is polynomial on n). Formally:

|Pr[A[P+c] = i]| ≤ ε(n)

Where i is an input to P such that i ∈ Ω(P) and [P +
c](i) 6= crash, for a negligible function ε.

Note that in this definition we abstract away from the
concrete attack (i.e. executing a remote shell, or disabling
stack execution protection), the vulnerability exploited (heap
or stack overflow, use after free etc.) and the countermeasure
used. We rely on the fact that a precondition for any attack
is that the memory-safety violation goes undetected.

3.2. Game-based modeling

In order to instantiate Definition 2, we will write the core
of a defense countermeasure as a probabilistic program (or
game), as well as the ideal execution J·K.

The ideal program execution is:

Proc. JP K(i)
if i ∈ Ω(P) then

o← crash
else

o← [P](i)
return o

where, for the sake of this paper, Ω(P) is the set of all
inputs that will cause the program to write out of bounds of
a static buffer. In principle our abstraction can be applied
for other memory safety violations (such as heap overflows
etc.) but we leave a thorough exploration of such extensions
for future work.

Clearly

Pr[i ∈ Ω(P) ∧ o 6= crash] = 0

in this case.
Instead, a regular execution of a program P with buffer

overflow vulnerabilities (together with an empty counter-
measure ∅) can be abstracted as:

Proc. [P + ∅](i)
If i ∈ Ω(P) then
ra← i.payload[0]
If ra ∈ Valid then
o← [M(P, ra)]

else
o← crash

else
o← [P](i)

return o

where Valid is the set of valid return addresses.M(P, ra) is
the sequence of bytes in the process memory of P , starting
from address ra. Since this input would make the ideal
execution crash, it means that it writes outside of bounds
of a memory buffer. We assume that a function i.payload[0]
is given that extracts the part of the input that overwrites the
return address in the stack. For simplicity we assume that
this function always returns a value, that is, the adversary
aims at overwriting the return address to perform some sort
of code injection/reuse. Certainly, in particular cases the
adversary might want just to manipulate local variables in
the proximity of the vulnerable buffer, but in this work we
limit ourselves to analyzing the more common and usually
more critical attack that involves remote code execution.

Note that if the attacker overwrites the return address
with a valid address, the exact output in this case is deter-
mined by the concrete state of the memory in the victim’s
host machine and could potentially result in a successful
attack (i.e. remote code execution etc.). We do not assume
to know a probability distribution for this memory, and
therefore will not explicitly reason on this part of the code.
Instead, note that in this case:

Pr[i ∈ Ω(P)∧ o 6= crash] = Pr[i ∈ Ω(P)∧ i.payload[0] ∈ Valid]

and will depend on the knowledge that the adversary has
of Valid.

3.3. Proofs

Let c be a memory-safety exploitation countermeasure.
In order to show its effectiveness, given Definition 2, we
can leverage the formal semantics of games. To this end,
we can proceed in several ways. We can reason directly
in the game describing [P + c] and bound the probability
|Pr[A[P+c] = i]| ≤ ε(n) as in the security definition. Al-
ternatively, following the literature in cryptographic proofs,
we can proceed to show a bound on ε(n) using game-
based transformations, as illustrated in the previous section
with the PRF/PRP switching Lemma. The idea of such
transformations is to start with the game describing [P + c]
and transform it until reaching JP K. While doing so, we
can keep track of the consequences of our transformations
(bad flags) to the probability of the event we want to bound.
Thanks to the fundamental lemma of game playing [15], we
know that:

|Pr [E][P+c] − Pr [E]JP K| ≤ Pr [F]JP K

We then leverage on the fact that by definition
Pr[AJP K = i] = 0 for i ∈ Ω(P) and [P + c](i) 6= crash,
and are left to bound the probability of an attacker in
distinguishing [P + c] from JP K.

In the following section we will discuss bounds for
various countermeasures and illustrate our technique.

4. Preventing attacks

In this section we show how to model popular probabilis-
tic countermeasures, and how to compute the probability of
an attack for countermeasures that aim at preventing attack
by crashing attack inputs with high probability.

4.1. Stack Canaries

Stack canaries [21] place a random value between static
variables and the return address on the stack. For efficiency,
stack canaries have typically a fixed size of one slot on the
stack (4 bytes on 32-bit systems) and are not recomputed
after each function execution due to performance reasons.
However, there is nothing prohibiting an implementation
from using larger canary sizes and updating their values
after each function execution. For simplicity of illustration,
we assume that the size of the canary is potentially arbitrary,
and that it is recomputed for each new function execution.
In this case:

Proc. [P + c](i)
If i ∈ Ω(P) then
k $← {0, 1}n
ca← i.payload[0]
ra← i.payload[1]
If ca = k and ra ∈ Valid then
o← [M(P, ra)]

else
o← crash

else
o← [P](i)

return o

Let the event:

E = i ∈ Ω(P) ∧ o 6= crash.

Now, it is easy to see that:

Pr[E] = Pr[i ∈ Ω(P) ∧ i.payload[0] = k

∧ i.payload[1] ∈ Valid]

≤ Pr[i ∈ Ω(P) ∧ i.payload[0] = k]

≤ Pr[i.payload[0] = k] =
1

2n

This follows because the assignment k $← {0, 1}n
guarantees that k is an independent and uniformly random
variable in the space of bitstrings of length n.

Alternatively, we can use a sequence of game transfor-
mations as depicted in Fig 1. We start with the game [P +c]
which is semantically equivalent (same output distribution)
to G1 that contains a bad flag in case the adversary guesses
the canary and a correct return address. G1 is in turn
equivalent up to bad to G2 which will crash even when the
adversary guesses the canary and the return address. After
removing the bad flag (G3), merging the redundant branches
(G4) and eliminating deadcode, which are all semantics
preserving transformations, we obtain JP K. Applying the
fundamental lemma of game playing we have:

|Pr [E]G1
− Pr [E]G2

| ≤ Pr [bad = true]G2

≤ Pr [i.payload[0] = k]G2

=
1

2n

Since in the ideal game Pr [E]G2
= Pr [E]JP K = 0 we

have that Pr [E][P+c] = Pr [E]G1
≤ 1

2n . This bound is
negligible in n and thus we derive the security proof.

4.1.1. Multiple sampling and single randomization. Note
that, by assumption, the adversary is a PPT. This means that
he can at most query the [P+c] oracle a polynomial number
of times q, and thus the probability of finding a suitable
i ∈ Ω(P) such that the execution is not automatically
stopped is bounded by q

2n , which is still a negligible function
in n. Now, if we modify the game to better model actual
implementations, and pass k as a parameter to the execution
of P :

Proc. G1

k $← {0, 1}n

Proc. [P + c](i)
If i ∈ Ω(P) then
ca← i.payload[0]
ra← i.payload[1]
If ca = k and ra ∈ Valid then
o← [M(P, ra)]

else
o← crash

else
o← [P](i)

return o

Then the probability of finding i ∈ Ω(P) ∧ o 6= crash
after q queries is given by:

q∑

j=1

1

2n − j ≤
q

2n − q

which is still a negligible function in n. Note that in
practice, if the value of n is relatively small, then the ex-
pected number of queries needed to find a successful guess
of the canary is also small, rendering the countermeasure
ineffective. This has been pointed out in [14] for ASLR,
which as we will see has an identical bound. However,
changing the key in every execution of a function has
a huge impact in preventing attacks that rely on partial
information leakage and side-channels, as we will discuss
in the following sections.

4.1.2. Concrete bounds. As discussed before, in practice
canaries will have often a 4 byte size and will not be
recomputed on each execution (but only on compilation).
This gives the bound1:

q∑

j=1

1

232 − j ≤
q

232 − q
This certainly is susceptible to brute-force attacks by

weak adversaries. To increase security, intuitively, one may
increase the size n of the canary. However, such an increase
would have a negative impact on performance. If we assume
the system size is s = 32, then dns e stack slots would need
to be pop-ed and compared to the canary value on each
function return. Moreover, if re-randomization is employed,
a larger number of bits must be randomly generated, which
also implies an increase in computation effort dependent
on the type and implementation of the random number
generator.

4.2. ASLR

ASLR [14] is a countermeasure that prevents stack ex-
ploitation by randomizing the position of the stack, heap and
code in process memory. In the following we assume that the
set of valid memory addresses (position of stack, heap and
code) has constant size |Valid|, and that the size of memory
is variable and of magnitude 2n. Moreover Πk is a random
permutation of addresses within memory. For simplicity
we assume that addresses can be permuted arbitrarily: in
practice there will be some constraints on the size of the
program, space between heap and stack etc. Also in practice
this randomization is done once per system start, however
for simplicity we assume this is done after processing any
input:

Proc. [P + c](i)
k $← {0, 1}n
If i ∈ Ω(P) then
ra← i.payload[0]
If ra ∈ Πk(Valid) then
o← [M(P, ra)]

else
o← crash

else
o← [P](i)

return o

Now, it is easy to see that:

Pr[i ∈ Ω(P) ∧ o 6= crash] ≤ Pr[i ∈ Ω(P)

∧ i.payload[0] ∈ Πk(Valid)]

≤ Pr[i.payload[0] ∈ Πk(Valid)]

=
|Valid|

2n

1. Mathematically the denominator of the concrete bounds could thus be
negative for certain values of q. However, in practice an attacker will stop
before that, because before reaching negative values the fraction will hit 1,
which indicates that the attack is successful.

Proc. [P + c](i)
If i 2 ⌦(P) then

k $ {0, 1}n

ca i.payload[0]
ra i.payload[1]
If ca = k and ra 2 Valid then

o [M(P, ra)]
else

o crash
else

o [P](i)
return o

G1(i)
If i 2 ⌦(P) then

k $ {0, 1}n

ca i.payload[0]
ra i.payload[1]
If ca = k and ra 2 Valid then

bad true
o [M(P, ra)]

else
o crash

else
o [P](i)

return o

G2(i)
If i 2 ⌦(P) then

k $ {0, 1}n

ca i.payload[0]
ra i.payload[1]
If ca = k and ra 2 Valid then

bad true
o crash

else
o crash

else
o [P](i)

return o

G3(i)
If i 2 ⌦(P) then

k $ {0, 1}n

ca i.payload[0]
ra i.payload[1]
If ca = k and ra 2 Valid then

o crash
else

o crash
else

o [P](i)
return o

G4(i)
If i 2 ⌦(P) then

k $ {0, 1}n

ca i.payload[0]
ra i.payload[1]
o crash

else
o [P](i)

return o

Proc. JP K(i)
if i 2 ⌦(P) then

o crash
else

o [P](i)
return o

Add bad
After bad nothing matters Remove bad

Branch coalescing

Dead code elimination

Figure 1. Game transformation for a canary based countermeasure.

This follows because the assignment k $← {0, 1}n
guarantees that k is an independent an uniformly random
variable in the space of bitstrings of length n.

4.2.1. Multiple sampling and single randomization. Sim-
ilarly as in the case of canaries, q queries yields a bound of
q·|Valid|

2n , which is still a negligible function in n. Now, if we
modify the game to better model actual implementations,
and pass k as a parameter to the execution of P :

Proc. G1

k $← {0, 1}n

Proc. [P + c](i)
If i ∈ Ω(P) then
ra← i.payload[0]
If ra ∈ Πk(Valid) then
o← [M(P, ra)]

else
o← crash

else
o← [P](i)

return o

Then the probability of finding i ∈ Ω(P) ∧ o 6= crash
after q queries is given by:

q∑

j=1

|Valid|
2n − j ≤

q · |Valid|
2n − q

which is still a negligible function in n.

4.2.2. Concrete bounds. In practice, for 32-bit architectures
without virtualization:

q∑

j=1

|Valid|
232 − j ≤

q · |Valid|
232 − q

To increase security one has to increase the size of the
permutation space n. This can be achieved concretely by
virtualising memory.

4.3. PointGuard

PointGuard [12] is a countermeasure for BOF attacks
which aims to overwrite pointers in any memory location

of a process, i.e. stack, heap and static data. PointGuard
augments the C compiler by encrypting all pointer values
that are stored in memory with a key k and also adds code
necessary to decrypt pointer values right before they are
loaded into CPU registers (denoted Decryptk). The only
pointer values which are unencrypted during program execu-
tion, are those located in CPU registers. Therefore, pointers
are never dereferenced directly from process memory, but
only via registers. Since registers are not addressable by
over-writing pointer values via BOF, the unencrypted pointer
values are kept confidential from attackers. The key k is
randomly generated on every new process execution and it
is never shared outside of the process’s address space. If
an attacker overwrites the return address on the stack with
another address (e.g. of shellcode or of gadgets), then this
address will first be decrypted using k and then derefer-
enced. This will probably lead to crash of the program due to
accessing an invalid memory location. To bypass PointGuard
an attacker thus has to guess the value of k.

Similarly, to ASLR (see Section 4.2), we assume that
the set of valid memory addresses has constant size |Valid|,
and that the size of memory is variable and of magnitude
2n. Also for simplicity we first show the case where k is
sampled for every input value passed to the program.

Proc. [P + c](i)
k $← {0, 1}n
If i ∈ Ω(P) then
ra← i.payload[0]
If Decryptk(ra) ∈ Valid then
rad ← Decryptk(ra)
o← [M(P, rad)]

else
o← crash

else
o← [P](i)

return o

Decryptk is the decryption function (e.g. XOR with key
k) used by the PointGuard mechanism. It follows that:

Pr[i ∈ Ω(P) ∧ o 6= crash]

= Pr[i ∈ Ω(P)

∧Decryptk(i.payload[0]) ∈ Valid]

≤ Pr[Decryptk(i.payload[0]) ∈ Valid]

=
|Valid|

2n

We can achieve this bound by assuming that an encryp-
tion under a random key behaves as a random permutation
(and therefore also its inverse).

4.3.1. Multiple sampling and single randomization. Sim-
ilarly as before, if we modify the game to better model actual
implementations, and pass k as a parameter to the execution
of P :

Proc. G1

k $← {0, 1}n

Proc. [P + c](i)
If i ∈ Ω(P) then
ra← i.payload[0]
If Decryptk(ra) ∈ Valid then
rad ← Decryptk(ra)
o← [M(P, rad)]

else
o← crash

else
o← [P](i)

return o

Then the probability of finding i ∈ Ω(P) ∧ o 6= crash
after q queries is given by:

q∑

j=1

|Valid|
2n − j ≤

q · |Valid|
2n − q

which is still a negligible function in n.

4.3.2. Concrete bounds. For 32-bit architectures such as
x86, the size of k is 32 bits. Therefore, the probability of
injecting a valid address is identical to that of ASLR (see
Section 4.2:

q∑

j=1

|Valid|
232 − j ≤

q · |Valid|
232 − q

Increasing security in this case is not only related to
the size of the memory, but also that of the key k. This
means security is not increased by increasing the size of
they key beyond the size of a memory pointer. Hence, the
size of memory pointers must be increased, e.g. by applying
virtualization or switching of a 64-bit architecture.

4.4. ISR

Instruction Set Randomization (ISR) [11] is a counter-
measure for code injection attacks via BOFs. Code injection
attacks are different from ROP and JOP attacks, because
they require the attacker to send executable shellcode as
part of their input, while the ROP and JOP attacks require

sending a sequence of gadget addresses and other non-
executable data values. Therefore, the code injection attacker
can be considered weaker than the ROP or JOP attacker.
Nevertheless, relatively recent work [22] has shown that
ISR can be combined with stack canaries in order to de-
fend against both attackers. This kind of composite defense
follows the defense in depth security principle, where a ROP
attacker first disables the execution prevention mechanism
on code on the stack (e.g. DEP on MS Windows, W ⊕X
on Linux), and then executes any code that is injected on
the stack. Employing ISR raises the bar for such attacks,
therefore, we believe it is interesting to model this protection
mechanism.

Similarly to PointGuard, ISR uses encryption via a key
k to prevent attacks. Differently from PointGuard it encrypts
all the instructions in the code segment, instead of the
pointers in all memory segments. Whenever the CPU fetches
an instruction to execute, it must be first decrypted using
k. Since the key k must be stored in a write-only CPU
register which cannot be accessed by attackers, the authors
have augmented a CPU emulator with such a register. If an
attacker injects shellcode onto the stack via a BOF exploit,
this shellcode will be first decrypted (denoted Decryptk,
e.g. XOR with key k) and then executed by the CPU. This
will highly likely lead to a crash of the program due to
an undefined instruction, i.e. the CPU will not be able to
execute the decrypted instruction because it is not part of
its Instruction Set Architecture (ISA). Therefore, an attacker
can bypass ISR by guessing the correct value of k and
encrypting the exploit payload with it before injecting it into
the vulnerable program. However, ISR can also be bypassed
by ROP and JOP attacks [2], [23]. These attacks do not
inject code on the stack, instead, they inject pointers to
existing code. Since existing code is already encrypted, it
will be properly executed by a program which employs ISR
as a countermeasure.

Proc. [P + c](i)
k $← {0, 1}m
If i ∈ Ω(P) then
ra← i.payload[0]
If ra ∈ Valid then

If Decryptk(M(P, ra)) ∈ ISA then
o← [M(P, ra)]

else
o← crash

else
o← crash

else
o← [P](i)

return o

For the sake of simplicity we assume an ISA with all

instructions having a fixed width of m-bits. It follows that:

Pr[i ∈ Ω(P) ∧ o 6= crash]

= Pr[i ∈ Ω(P)

∧Decryptk(M(P, i.payload[0]) ∈ ISA]

≤ Pr[Decryptk(M(P, i.payload[0])) ∈ ISA]

=
|ISA|
2m

4.4.1. Multiple sampling and single randomization. Sim-
ilarly as before, if we modify the game to better model actual
implementations, and pass k as a parameter to the execution
of P :

Proc. G1

k $← {0, 1}m

Proc. [P + c](i)
If i ∈ Ω(P) then
ra← i.payload[0]
If ra ∈ Valid then

If Decryptk(M(P, ra)) ∈ ISA then
o← [M(P, ra)]

else
o← crash

else
o← crash

else
o← [P](i)

return o

Then the probability of finding i ∈ Ω(P) ∧ o 6= crash
after q queries is given by:

q∑

j=1

|ISA|
2m − j ≤

q · |ISA|
2m − q

which is still a negligible function in m.

4.4.2. Concrete bounds. For the 32-bit fixed width ISA
we assumed earlier the probability of injecting a valid
instruction is:

q∑

j=1

|ISA|
232 − j ≤

q · |ISA|
232 − q

Increasing security in this case is directly related to the
width of the instructions in the ISA and the size of the key k.
However, similarly to PointGuard, increasing the size of the
key beyond the width of the instructions in the ISA does
not increase the security. This can be shown in practice,
where the width of instructions between and within an ISA
may vary. For instance, in the x86 architecture the smallest
instructions are 8-bits, while the longest instructions are
120-bits. This is precisely the insight that Sovarel et al. [24]
used to guess the 32-bit key, one-byte at a time, i.e. XOR-ing
an 8-bit instruction with a 32-bit key, only uses 8-bits of the
key. The search space for guessing a valid 8-bit instruction in

the x86 ISA is reduced from 232 to 28. After guessing these
8 bits of the key, the attacker can use a 16-bit instruction to
guess the next 8 bits, a.s.o. until the entire 32-bits of the key
are guessed. Note that this attack only works in the case of
multiple sampling and single randomization, i.e. if the key
is changed on every input, then the attack has a much lower
success rate. The attack by Sovarel et al. [24] is a prime
example of what can go wrong with randomization based
defenses if the key size is picked independently of the range
of the data items that it must protect.

5. Composition

In practice, in order to raise the bar against attackers,
various defense mechanisms are usually stacked together.
In the following we discuss examples of composed systems,
how to modeal and reason about them using games and their
resulting bounds.

5.1. ASLR ⊗ Canaries

ASLR and Canaries are commonly used simultaneously
in modern systems. We model the composed countermeasure
c = ASLR ⊗ Canaries as follows:

Proc. [P + c](i)
If i ∈ Ω(P) then
k1 $← {0, 1}n
k2 $← {0, 1}m
ca← i.payload[0]
ra← i.payload[1]
If ca = k1 then

If ra ∈ Πk2(Valid) then
o← [M(P, ra)]

else
o← crash

else
o← crash

else
o← [P](i)

return o

This modeling is motivated by the fact that when com-
posed, an attacker must bypass both the canary and the
ASLR protection in order to avoid a crash.

Now, we can calculate the following bound:

Pr[i ∈ Ω(P) ∧ o 6= crash] ≤ Pr[i.payload[0] = k1

∧ i.payload[1] ∈ Πk2(Valid)]

≤ 1

2n
· |Valid|

2m

This bound indicates that in some cases by combin-
ing probabilistic defense mechanisms, we can increase the
bounds of attack resistance. However, not all possible com-
binations will provide an increase. For instance, combining
ASLR and PointGuard will not increase the bounds given
by PointGuard as we will discuss later in more detail.

5.1.1. Multiple sampling and single randomization. Sim-
ilarly as in previous examples, if we modify the game to
better model actual implementations, and pass k1 and k2 as
parameters to the execution of P :

Proc. G1

k1 $← {0, 1}n
k2 $← {0, 1}m

Proc. [P + c](i)
If i ∈ Ω(P) then
ca← i.payload[0]
ra← i.payload[1]
If ca = k1 then

If ra ∈ Πk2(Valid) then
o← [M(P, ra)]

else
o← crash

else
o← crash

else
o← [P](i)

return o

Then the probability of finding i ∈ Ω(P) ∧ o 6= crash
after q queries trying to guess k1 and r queries trying to
guess k2 is given by:

(
q∑

j=1

1

2n − j

)
·
(

r∑

l=1

|Valid|
2m − j

)
≤ q

2n − q ·
r · |Valid|
2m − r)

which is still a negligible function in n,m.

5.1.2. Concrete bounds. In practice, for 32-bit architectures
without virtualization:

(
q∑

j=1

1

232 − j

)
·
(

r∑

l=1

|Valid|
232 − l

)
≤ q

232 − q ·
r · |Valid|
232 − r

5.2. PointGuard ⊗ ISR

We model the composition c = PointGuard ⊗ ISR as
follows:

Proc. [P + c](i)
If i ∈ Ω(P) then
k1 $← {0, 1}n
k2 $← {0, 1}m
ra← i.payload[0]
If Decryptk1(ra) ∈ Valid then
rad ← Decryptk1(ra)
If Decryptk2(M(P, rad)) ∈ ISA then
o← [M(P, rad)]

else
o← crash

else
o← crash

else
o← [P](i)

return o

This composition has the advantage that it is attack
resistant against both code injection attacks, ROP and JOP
attacks, because ISR defends against executing injected
code and PointGuard defends against overwriting the return

address. We can also perform a similarly attack resistant
composition between ISR and ASLR, or ISR and Canaries,
or even composing more than two countermeasures. How-
ever, we do not show these compositions here due to space
restrictions. We can calculate the following bound for Point-
Guard ⊗ ISR:

Pr[i ∈ Ω(P) ∧ o 6= crash]

≤ Pr[Decryptk1(i.payload[0]) ∈ Valid

∧ Decryptk2(M(P,Decryptk1(i.payload[0])) ∈ ISA]

≤ |Valid|
2n

· |ISA|
2m

Note that the attacker has to not only enter a validly
encrypted return address with key k1 but also to inject a
validly encrypted sequence of instructions at that address.

5.2.1. Multiple sampling and single randomization. If we
consider implementations of PointGuard and ISR where new
keys are generated for each program input, then the model
becomes:

Proc. G1

k1 $← {0, 1}n
k2 $← {0, 1}m

Proc. [P + c](i)
If i ∈ Ω(P) then
ra← i.payload[0]
If Decryptk1(ra) ∈ Valid then
rad ← Decryptk1(ra)
If Decryptk2(M(P, rad)) ∈ ISA then
o← [M(P, rad)]

else
o← crash

else
o← crash

else
o← [P](i)

return o

In this case, the probability of finding an input that
violates memory safety i ∈ Ω(P), after q queries trying
to guess k1 and r queries trying to guess k2, is equal to:
(

q∑

j=1

|Valid|
2n − j

)
·
(

r∑

l=1

|ISA|
2m − j

)
≤ q · |Valid|

2n − q ·
r · |ISA|
2m − r ,

which is a negligible function in n,m.

5.2.2. Concrete bounds. For 32-bit architectures where the
ISA has a fixed width, the bounds are equal to:
(

q∑

j=1

|Valid|
232 − j

)
·
(

r∑

l=1

|ISA|
232 − j

)
≤ q · |Valid|

232 − q ·
r · |ISA|
232 − r ,

Composition n-bit Architecture 32-bit Architecture 64-bit Architecture 128-bit Architecture

ASLR⊗PointGuard q·|Valid|
2n−q

1 2−23 2−87

ASLR⊗ISR q·|Valid|
2n−q

· r·|ISA|
2n−r

2−10 2−75 2−203

PointGuard⊗ISR q·|Valid|
2n−q

· r·|ISA|
2n−r

2−10 2−75 2−203

Canary⊗ASLR q
2n−q

· r·|Valid|
2n−r

2−22 2−87 2−215

Canary⊗PointGuard q
2n−q

· r·|Valid|
2n−r

2−22 2−87 2−215

Canary⊗ISR q
2n−q

· r·|ISA|
2n−r

2−26 2−91 2−219

ASLR⊗PointGuard⊗ISR q·|Valid|
2n−q

· r·|ISA|
2n−r

2−10 2−75 2−203

Canary⊗ASLR⊗PointGuard q
2n−q

· r·|Valid|
2n−r

2−22 2−87 2−215

Canary⊗ASLR⊗ISR q
2n−q

· r·|Valid|
2n−r

· t·|ISA|
2n−t

2−42 2−139 2−331

Canary⊗PointGuard⊗ISR q
2n−q

· r·|Valid|
2n−r

· t·|ISA|
2n−t

2−42 2−139 2−331

Canary⊗ASLR⊗PointGuard⊗ISR q
2n−q

· r·|Valid|
2n−r

· t·|ISA|
2n−t

2−42 2−139 2−331

TABLE 1. CONCRETE BOUNDS FOR COUNTERMEASURE COMPOSITIONS

5.3. Overview of compositions

According to AT&T2 the current overall average network
latency is 33 ms and no inter-USA state latency is faster than
4 ms. Therefore, in the worst case we assume that a remote
attacker to be able to submit attack requests (queries) with
a speed of 1 query/ms. Given this optimistic attack speed of
1 query/ms we also assume that after a total number of 225

queries, a network administrator or an intrusion prevention
system will block the attacker. This translates into over 9
days of continuous queries sent by the attacker, which again
aims to depict a worst case scenario.

We do not explicitly model the remaining possible com-
positions of countermeasures presented in Section 4. How-
ever, in Table 1 we provide an overview of both the general
formulas and the concrete bounds of the remaining composi-
tions, for 32-bit, 64-bit and virtualized 128-bit architectures,
where q, r and t represent the number of guesses for the
different keys of the composed countermeasures. Note that
in order to obtain the values in this table we also considered
the fact that the size of the ISA is 212 in the worst case,
because even in the Intel x86 ISA we have 3683 instructions,
if we consider all possible mnemonics and operand types
[25]. Finally, we assume the size of |Valid| is 216, because
according to Follner et al. [26], the number of ROP gadgets
in a programs range from a few hundred in programs as
small as bzip2, to a little under 60.000 ROP gadgets for
programs such as GCC. For many practical purposes the
number of ROP gadgets can be a useful estimation of |Valid|,
however, if one wants to use a sound upper bound the total
number of instructions can be counted. Since our paper
assumes that ISAs have a fixed width equal to the size of
one word, the size of |Valid| = 216 corresponds roughly to
218, 219 and 220 byte programs (ca. 256 KBs, 512 KBs and
1 MBs) for 32-, 64- and 128-bit architectures, respectively.

Since these countermeasures target different parts of the
program (e.g. instructions for ISR, pointers for PointGuard
and stack memory for Canaries), or are applied at different

2. http://ipnetwork.bgtmo.ip.att.net/pws/network delay.html

points of the program lifetime (e.g. compile-time for ISR,
PointGuard and Canaries or load-time for ASLR), the order
in which these countermeasures is fixed, i.e. the order of
applying the countermeasures cannot be changed.

Note that any composition involving PointGuard and
ASLR takes the same bounds of either one of the counter-
measures. This is due to the fact that both countermeasures
force attackers to guess a valid memory address. On the
other hand, ISR and Canaries force attackers to guess the
key used to encrypt instructions and the canary value, re-
spectively. Therefore, the lowest bound obtainable from any
composition involves ISR, Canaries and either PointGuard
or ASLR.

6. Side-channel attacks

An attacker can use side-channel attacks to get informa-
tion about a secret key by exploiting physical observations
such as time, power consumption, noise, etc. For instance, if
re-randomization is not employed, canaries are susceptible
to brute force attacks using crashing as a side-channel [27].
The key insight employed by this attack is that any integer
number of bytes can be written passed the bounds of a
buffer, (not necessarily a multiple of the machine word size).
So far, our modeling assumes that the adversary overwrites
both the canary and the return address entirely. However,
in practice s/he may choose to only partially overwrite the
canary, to learn it byte by byte, which is computationally
much faster than guessing all bytes at once. The attacker
uses the fact that the program crashes, as an oracle for his
guesses.

In other words, this means that the attacker can overwrite
the vulnerable buffer, up to and including only the first
byte of the canary. If this overwritten byte is incorrect,
then the program crashes, otherwise, the first byte of the
canary was guessed correctly and the attacker can move on
to guessing the second byte of the canary. This side-channel
attack reduces the search space from 2k to 28×dn8 e, which is
a linear function of the key size n. To be able to capture this

http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html

attack, we model canaries more accurately in the following
way:

Proc. G1

k $← {0, 1}n

Proc. [P + c](i)
If i ∈ Ω(P) then
ca← i.payload[0]
ra← i.payload[1]
If ow(k, ca) = k and ra ∈ Valid then
o← [M(P, ra)]

else
o← crash

else
o← [P](i)

return o

where ow(a, b) returns a string of length |ow(a, b)| = |a|
and overwrites the first |b| bytes of a with the corresponding
values in b, leaving the remaining values identical to the
corresponding positions in a:

ow(a, b)[i] =

{
b[i] if 0 < i ≤ |b|
a[i] otherwise

Therefore, if the the first entry of the payload
(i.payload[0]) is 1 byte in size, then ow(k, ca) will only
overwrite the first byte of the canary k.

6.1. Reasoning about side-channel leakage

We can formally plug the leakage λ learned by an
adversary to our bounds by decreasing the entropy on the
key (originally n bits) by λ bits. For instance, if there is
a side-channel leaking λ bits of information on the ASLR
key to the adversary after q1 observations, and then an at-
tacker performs q2 subsequent observations, then our bound
becomes:

Pr[i ∈ Ω(P) ∧ o 6= crash] ≤ q2 · |Valid|
2n−λ − q2

Depending on how λ increases with respect to q and n,
this could have practical relevance for concrete scenarios.

6.1.1. Concrete bounds. Take the side-channel attack on
stack canaries presented at the beginning of Section 6. If
we consider q1 = 256 = 28, i.e. 256 guesses made by the
attacker on the first byte of the canary, then we can consider
λ = 8-bits, since the attacker has guessed the first byte of
the canary, reducing the search space by that amount. Note
that in practice he needs in average just 128 tries to guess
the first byte, here we consider the worst case. Since the size
of the canary can be assumed to be 4 bytes (i.e. n = 32)
as we discussed in Section 4.1.2, the bound on a successful
attack becomes:

Pr[i ∈ Ω(P) ∧ o 6= crash] ≤ 1

224

which is at least 4 orders of magnitude higher than 1
232 .

If afterwards the attacker performs q2 queries, this bounds
becomes:

Pr[i ∈ Ω(P) ∧ o 6= crash] ≤ q2
224 − q2

In general, it is difficult to foresee and prevent all
possible side-channels, in particular if they consider time or
power consumption. However we can prevent many side-
channels that are reflected directly in the values sent to the
attacker (such as crashes and termination, or memory leaks
such as Heartbleed) by relying on simultaneous executions
of the victim program, as presented in Section 6.2.

6.2. Probabilistic countermeasures and replicas

The use of replicas (similarly to Secure Multi-Execution,
SME [19]) can prevent such information leakages. For in-
stance, in the case of canaries, if there are at least two
replicas with a different canary each, the probability of
an attacker overriding both with the same values is the
probability of both having the same bytes: If the canary
consists of 1 byte, then the probability of that byte (pseudo-
randomly generated) being the same in both replicas r0 and
r1 is Pr[cbr0 = cbr1] = 1

28 . If the canary consists of n bytes,
then Pr[

∧n−1
i=0 cb

r0
i = cbr1i] = 1

28n .
This reflects precisely the idea behind SME, instead

of having a direct mapping for each input of the system
whether it has high or low-level security, the security level
is given by the nature of the input given. Valid outputs are
considered of a high security level and the crash output
due to inconsistent replicas is considered as having a low
security level. Then, for a valid input (high security level),
all its valid outputs are calculated and given to the user
(since they also have a high security level). However, if
its invalid (low security level), with high probability the
program will crash (which will be the result of the low-
level security execution.

We can generalize this idea as depicted in Fig. 2. For
any countermeasure relying on a secret key, we execute
two copies of the program for different keys k and k′.
Before sending the resulting output to the remote adversary,
we compare the resulting outputs o = [P + c]k[i] and
o′ = [P + c]k′ [i]. We assume that both programs use
otherwise the same seeds for randomness and if they interact
with the system they read the same values (such as the
system’s clock, values of files, sockets etc.). If they are
different, it means that the output is dependent on the only
different input for the two copies: the secret keys. In this
case, we send a crash message to the adversary and reset
the program’s copies with two fresh keys. However, legal

qX

j=1

1

2n � j

!
·

rX

l=1

|Valid|
2m � j

!
 q

2n � q
· r · |Valid|

2m � r
)

which is still a negligible function in n, m.

5.2.1. Concrete bounds. In practice, for 32-bit architectures
without virtualization:

qX

j=1

1

232 � j

!
·

rX

l=1

|Valid|
232 � l

!
 q

232 � q
· r · |Valid|

232 � r

5.3. PointGuard ⌦ ISR

We model the composition c = PointGuard ⌦ ISR as
follows:

Proc. [P + c](i)
If i 2 ⌦(P) then

k1
$ {0, 1}n

k2
$ {0, 1}m

ra i.payload[0]
If Decryptk1(ra) 2 Valid then

rad Decryptk1(ra)
If Decryptk2(M(P, rad)) 2 ISA then

o [M(P, rad)]
else

o crash
else

o crash
else

o [P](i)
return o

This composition has the advantage that it is attack
resistant against both code injection attacks, ROP and JOP
attacks, because ISR defends against executing injected
code and PointGuard defends against overwriting the return
address. We can also perform a similarly attack resistant
composition between ISR and ASLR, or ISR and Canaries,
or even composing more than two countermeasures. How-
ever, we do not show these compositions here due to space
restrictions. We can calculate the following bound for Point-
Guard ⌦ ISR:

Pr[i 2 ⌦(P) ^ o 6= crash]

 Pr[Decryptk1
(i.payload[0]) 2 Valid

^ Decryptk2
(M(P, Decryptk1

(i.payload[0])) 2 ISA]

 |Valid|
2n

· |ISA|
2m

Note that the attacker has to not only enter a validly
encrypted return address with key k1 but also to inject a
validly encrypted sequence of instructions at that address.

6. Side-channels

An attacker can use side-channel attacks to get informa-
tion about a secret key by exploiting physical observations
such as time, power consumption, noise, etc. For instance,
the byte-based attack for canaries (Sec. 4.1) exposes infor-
mation through the termination covert channel. Either the
program crashes and the current canary byte is known to
be incorrect, or it does not crash and the attacker can start
guessing the next byte.

We can formally plug the leakage � learnt by an adver-
sary to our bounds by decreasing the entropy on the key
(originally n bits) by � bits. For instance, if there is a side-
channel leaking � bits of information on the ASLR key to
the adversary after q observations, then our bound becomes:

Pr[i 2 ⌦(P) ^ o 6= crash]  q · |Valid|
2n�� � q

Depending on how � increases with respect to q and n,
this could have practical relevance for concrete scenarios.
In general, it is difficult to foresee and prevent all possible
side-channels, in particular if they consider time or power
consumption. However we can prevent many side-channels
that are reflected directly in the values sent to the attacker
(such as crashes and termination, or memory leaks such as
Heartbleed) by relying on simultaneous executions of the
victim program.

The use of replicas (similarly to DieHard [26] and
Secure Multi-Execution, SME [19]) can prevent such in-
formation leakages. For instance, in the case of canaries, if
there are at least two replicas with a different canary each,
the probability of an attacker overriding both with the same
values is the probability of both having the same bytes: If
the canary consists of 1 byte, then the probability of that
byte (pseudorandomly generated) being the same in both
replicas r0 and r1 is Pr[cbr0 = cbr1] = 1

28 . If the canary
consists of n bytes, then Pr[

Vn�1
i=0 cbr0

i = cbr1
i] = 1

28n .
This reflectes precisely the idea behind SME, instead

of having a direct mapping for each input of the system
whether it has high or low-level security, the security level
is given by the nature of the input given. Valid outputs are
considered of a high security level and the crash output
due to inconsistent replicas is considered as having a low
security level. Then, for a valid input (high security level),
all its valid outputs are calculated and given to the user
(since they also have a high security level). However, if
its invalid (low security level), with high probability the
program will crash (which will be the result of the low-
level security execution.

We can generalize this idea as depicted in Fig. 2. For
any countermeasure relying on a secret key, we execute two
copies of the program for different keys k and k0. Before
sending the resulting output to the remote adversary, we
compare the resulting outputs o = [P +c]k[i] and o0 = [P +
c]0k[i]. We assume that both programs use otherwise the same
seeds for randomness and if they interact with the system
they read the same values (such as the system’s clock, values

qX

j=1

1

2n � j

!
·

rX

l=1

|Valid|
2m � j

!
 q

2n � q
· r · |Valid|

2m � r
)

which is still a negligible function in n, m.

5.2.1. Concrete bounds. In practice, for 32-bit architectures
without virtualization:

qX

j=1

1

232 � j

!
·

rX

l=1

|Valid|
232 � l

!
 q

232 � q
· r · |Valid|

232 � r

5.3. PointGuard ⌦ ISR

We model the composition c = PointGuard ⌦ ISR as
follows:

Proc. [P + c](i)
If i 2 ⌦(P) then

k1
$ {0, 1}n

k2
$ {0, 1}m

ra i.payload[0]
If Decryptk1(ra) 2 Valid then

rad Decryptk1(ra)
If Decryptk2(M(P, rad)) 2 ISA then

o [M(P, rad)]
else

o crash
else

o crash
else

o [P](i)
return o

This composition has the advantage that it is attack
resistant against both code injection attacks, ROP and JOP
attacks, because ISR defends against executing injected
code and PointGuard defends against overwriting the return
address. We can also perform a similarly attack resistant
composition between ISR and ASLR, or ISR and Canaries,
or even composing more than two countermeasures. How-
ever, we do not show these compositions here due to space
restrictions. We can calculate the following bound for Point-
Guard ⌦ ISR:

Pr[i 2 ⌦(P) ^ o 6= crash]

 Pr[Decryptk1
(i.payload[0]) 2 Valid

^ Decryptk2
(M(P, Decryptk1

(i.payload[0])) 2 ISA]

 |Valid|
2n

· |ISA|
2m

Note that the attacker has to not only enter a validly
encrypted return address with key k1 but also to inject a
validly encrypted sequence of instructions at that address.

6. Side-channels

An attacker can use side-channel attacks to get informa-
tion about a secret key by exploiting physical observations
such as time, power consumption, noise, etc. For instance,
the byte-based attack for canaries (Sec. 4.1) exposes infor-
mation through the termination covert channel. Either the
program crashes and the current canary byte is known to
be incorrect, or it does not crash and the attacker can start
guessing the next byte.

We can formally plug the leakage � learnt by an adver-
sary to our bounds by decreasing the entropy on the key
(originally n bits) by � bits. For instance, if there is a side-
channel leaking � bits of information on the ASLR key to
the adversary after q observations, then our bound becomes:

Pr[i 2 ⌦(P) ^ o 6= crash]  q · |Valid|
2n�� � q

Depending on how � increases with respect to q and n,
this could have practical relevance for concrete scenarios.
In general, it is difficult to foresee and prevent all possible
side-channels, in particular if they consider time or power
consumption. However we can prevent many side-channels
that are reflected directly in the values sent to the attacker
(such as crashes and termination, or memory leaks such as
Heartbleed) by relying on simultaneous executions of the
victim program.

The use of replicas (similarly to DieHard [26] and
Secure Multi-Execution, SME [19]) can prevent such in-
formation leakages. For instance, in the case of canaries, if
there are at least two replicas with a different canary each,
the probability of an attacker overriding both with the same
values is the probability of both having the same bytes: If
the canary consists of 1 byte, then the probability of that
byte (pseudorandomly generated) being the same in both
replicas r0 and r1 is Pr[cbr0 = cbr1] = 1

28 . If the canary
consists of n bytes, then Pr[

Vn�1
i=0 cbr0

i = cbr1
i] = 1

28n .
This reflectes precisely the idea behind SME, instead

of having a direct mapping for each input of the system
whether it has high or low-level security, the security level
is given by the nature of the input given. Valid outputs are
considered of a high security level and the crash output
due to inconsistent replicas is considered as having a low
security level. Then, for a valid input (high security level),
all its valid outputs are calculated and given to the user
(since they also have a high security level). However, if
its invalid (low security level), with high probability the
program will crash (which will be the result of the low-
level security execution.

We can generalize this idea as depicted in Fig. 2. For
any countermeasure relying on a secret key, we execute two
copies of the program for different keys k and k0. Before
sending the resulting output to the remote adversary, we
compare the resulting outputs o = [P +c]k[i] and o0 = [P +
c]0k[i]. We assume that both programs use otherwise the same
seeds for randomness and if they interact with the system
they read the same values (such as the system’s clock, values

qX

j=1

1

2n � j

!
·

rX

l=1

|Valid|
2m � j

!
 q

2n � q
· r · |Valid|

2m � r
)

which is still a negligible function in n, m.

5.2.1. Concrete bounds. In practice, for 32-bit architectures
without virtualization:

qX

j=1

1

232 � j

!
·

rX

l=1

|Valid|
232 � l

!
 q

232 � q
· r · |Valid|

232 � r

5.3. PointGuard ⌦ ISR

We model the composition c = PointGuard ⌦ ISR as
follows:

Proc. [P + c](i)
If i 2 ⌦(P) then

k1
$ {0, 1}n

k2
$ {0, 1}m

ra i.payload[0]
If Decryptk1(ra) 2 Valid then

rad Decryptk1(ra)
If Decryptk2(M(P, rad)) 2 ISA then

o [M(P, rad)]
else

o crash
else

o crash
else

o [P](i)
return o

This composition has the advantage that it is attack
resistant against both code injection attacks, ROP and JOP
attacks, because ISR defends against executing injected
code and PointGuard defends against overwriting the return
address. We can also perform a similarly attack resistant
composition between ISR and ASLR, or ISR and Canaries,
or even composing more than two countermeasures. How-
ever, we do not show these compositions here due to space
restrictions. We can calculate the following bound for Point-
Guard ⌦ ISR:

Pr[i 2 ⌦(P) ^ o 6= crash]

 Pr[Decryptk1
(i.payload[0]) 2 Valid

^ Decryptk2
(M(P, Decryptk1

(i.payload[0])) 2 ISA]

 |Valid|
2n

· |ISA|
2m

Note that the attacker has to not only enter a validly
encrypted return address with key k1 but also to inject a
validly encrypted sequence of instructions at that address.

6. Side-channels

An attacker can use side-channel attacks to get informa-
tion about a secret key by exploiting physical observations
such as time, power consumption, noise, etc. For instance,
the byte-based attack for canaries (Sec. 4.1) exposes infor-
mation through the termination covert channel. Either the
program crashes and the current canary byte is known to
be incorrect, or it does not crash and the attacker can start
guessing the next byte.

We can formally plug the leakage � learnt by an adver-
sary to our bounds by decreasing the entropy on the key
(originally n bits) by � bits. For instance, if there is a side-
channel leaking � bits of information on the ASLR key to
the adversary after q observations, then our bound becomes:

Pr[i 2 ⌦(P) ^ o 6= crash]  q · |Valid|
2n�� � q

Depending on how � increases with respect to q and n,
this could have practical relevance for concrete scenarios.
In general, it is difficult to foresee and prevent all possible
side-channels, in particular if they consider time or power
consumption. However we can prevent many side-channels
that are reflected directly in the values sent to the attacker
(such as crashes and termination, or memory leaks such as
Heartbleed) by relying on simultaneous executions of the
victim program.

The use of replicas (similarly to DieHard [26] and
Secure Multi-Execution, SME [19]) can prevent such in-
formation leakages. For instance, in the case of canaries, if
there are at least two replicas with a different canary each,
the probability of an attacker overriding both with the same
values is the probability of both having the same bytes: If
the canary consists of 1 byte, then the probability of that
byte (pseudorandomly generated) being the same in both
replicas r0 and r1 is Pr[cbr0 = cbr1] = 1

28 . If the canary
consists of n bytes, then Pr[

Vn�1
i=0 cbr0

i = cbr1
i] = 1

28n .
This reflectes precisely the idea behind SME, instead

of having a direct mapping for each input of the system
whether it has high or low-level security, the security level
is given by the nature of the input given. Valid outputs are
considered of a high security level and the crash output
due to inconsistent replicas is considered as having a low
security level. Then, for a valid input (high security level),
all its valid outputs are calculated and given to the user
(since they also have a high security level). However, if
its invalid (low security level), with high probability the
program will crash (which will be the result of the low-
level security execution.

We can generalize this idea as depicted in Fig. 2. For
any countermeasure relying on a secret key, we execute two
copies of the program for different keys k and k0. Before
sending the resulting output to the remote adversary, we
compare the resulting outputs o = [P +c]k[i] and o0 = [P +
c]0k[i]. We assume that both programs use otherwise the same
seeds for randomness and if they interact with the system
they read the same values (such as the system’s clock, values

qX

j=1

1

2n � j

!
·

rX

l=1

|Valid|
2m � j

!
 q

2n � q
· r · |Valid|

2m � r
)

which is still a negligible function in n, m.

5.2.1. Concrete bounds. In practice, for 32-bit architectures
without virtualization:

qX

j=1

1

232 � j

!
·

rX

l=1

|Valid|
232 � l

!
 q

232 � q
· r · |Valid|

232 � r

5.3. PointGuard ⌦ ISR

We model the composition c = PointGuard ⌦ ISR as
follows:

Proc. [P + c](i)
If i 2 ⌦(P) then

k1
$ {0, 1}n

k2
$ {0, 1}m

ra i.payload[0]
If Decryptk1(ra) 2 Valid then

rad Decryptk1(ra)
If Decryptk2(M(P, rad)) 2 ISA then

o [M(P, rad)]
else

o crash
else

o crash
else

o [P](i)
return o

This composition has the advantage that it is attack
resistant against both code injection attacks, ROP and JOP
attacks, because ISR defends against executing injected
code and PointGuard defends against overwriting the return
address. We can also perform a similarly attack resistant
composition between ISR and ASLR, or ISR and Canaries,
or even composing more than two countermeasures. How-
ever, we do not show these compositions here due to space
restrictions. We can calculate the following bound for Point-
Guard ⌦ ISR:

Pr[i 2 ⌦(P) ^ o 6= crash]

 Pr[Decryptk1
(i.payload[0]) 2 Valid

^ Decryptk2
(M(P, Decryptk1

(i.payload[0])) 2 ISA]

 |Valid|
2n

· |ISA|
2m

Note that the attacker has to not only enter a validly
encrypted return address with key k1 but also to inject a
validly encrypted sequence of instructions at that address.

6. Side-channels

An attacker can use side-channel attacks to get informa-
tion about a secret key by exploiting physical observations
such as time, power consumption, noise, etc. For instance,
the byte-based attack for canaries (Sec. 4.1) exposes infor-
mation through the termination covert channel. Either the
program crashes and the current canary byte is known to
be incorrect, or it does not crash and the attacker can start
guessing the next byte.

We can formally plug the leakage � learnt by an adver-
sary to our bounds by decreasing the entropy on the key
(originally n bits) by � bits. For instance, if there is a side-
channel leaking � bits of information on the ASLR key to
the adversary after q observations, then our bound becomes:

Pr[i 2 ⌦(P) ^ o 6= crash]  q · |Valid|
2n�� � q

Depending on how � increases with respect to q and n,
this could have practical relevance for concrete scenarios.
In general, it is difficult to foresee and prevent all possible
side-channels, in particular if they consider time or power
consumption. However we can prevent many side-channels
that are reflected directly in the values sent to the attacker
(such as crashes and termination, or memory leaks such as
Heartbleed) by relying on simultaneous executions of the
victim program.

The use of replicas (similarly to DieHard [26] and
Secure Multi-Execution, SME [19]) can prevent such in-
formation leakages. For instance, in the case of canaries, if
there are at least two replicas with a different canary each,
the probability of an attacker overriding both with the same
values is the probability of both having the same bytes: If
the canary consists of 1 byte, then the probability of that
byte (pseudorandomly generated) being the same in both
replicas r0 and r1 is Pr[cbr0 = cbr1] = 1

28 . If the canary
consists of n bytes, then Pr[

Vn�1
i=0 cbr0

i = cbr1
i] = 1

28n .
This reflectes precisely the idea behind SME, instead

of having a direct mapping for each input of the system
whether it has high or low-level security, the security level
is given by the nature of the input given. Valid outputs are
considered of a high security level and the crash output
due to inconsistent replicas is considered as having a low
security level. Then, for a valid input (high security level),
all its valid outputs are calculated and given to the user
(since they also have a high security level). However, if
its invalid (low security level), with high probability the
program will crash (which will be the result of the low-
level security execution.

We can generalize this idea as depicted in Fig. 2. For
any countermeasure relying on a secret key, we execute two
copies of the program for different keys k and k0. Before
sending the resulting output to the remote adversary, we
compare the resulting outputs o = [P +c]k[i] and o0 = [P +
c]0k[i]. We assume that both programs use otherwise the same
seeds for randomness and if they interact with the system
they read the same values (such as the system’s clock, values

qX

j=1

1

2n � j

!
·

rX

l=1

|Valid|
2m � j

!
 q

2n � q
· r · |Valid|

2m � r
)

which is still a negligible function in n, m.

5.2.1. Concrete bounds. In practice, for 32-bit architectures
without virtualization:

qX

j=1

1

232 � j

!
·

rX

l=1

|Valid|
232 � l

!
 q

232 � q
· r · |Valid|

232 � r

5.3. PointGuard ⌦ ISR

We model the composition c = PointGuard ⌦ ISR as
follows:

Proc. [P + c](i)
If i 2 ⌦(P) then

k1
$ {0, 1}n

k2
$ {0, 1}m

ra i.payload[0]
If Decryptk1(ra) 2 Valid then

rad Decryptk1(ra)
If Decryptk2(M(P, rad)) 2 ISA then

o [M(P, rad)]
else

o crash
else

o crash
else

o [P](i)
return o

This composition has the advantage that it is attack
resistant against both code injection attacks, ROP and JOP
attacks, because ISR defends against executing injected
code and PointGuard defends against overwriting the return
address. We can also perform a similarly attack resistant
composition between ISR and ASLR, or ISR and Canaries,
or even composing more than two countermeasures. How-
ever, we do not show these compositions here due to space
restrictions. We can calculate the following bound for Point-
Guard ⌦ ISR:

Pr[i 2 ⌦(P) ^ o 6= crash]

 Pr[Decryptk1
(i.payload[0]) 2 Valid

^ Decryptk2
(M(P, Decryptk1

(i.payload[0])) 2 ISA]

 |Valid|
2n

· |ISA|
2m

Note that the attacker has to not only enter a validly
encrypted return address with key k1 but also to inject a
validly encrypted sequence of instructions at that address.

6. Side-channels

An attacker can use side-channel attacks to get informa-
tion about a secret key by exploiting physical observations
such as time, power consumption, noise, etc. For instance,
the byte-based attack for canaries (Sec. 4.1) exposes infor-
mation through the termination covert channel. Either the
program crashes and the current canary byte is known to
be incorrect, or it does not crash and the attacker can start
guessing the next byte.

We can formally plug the leakage � learnt by an adver-
sary to our bounds by decreasing the entropy on the key
(originally n bits) by � bits. For instance, if there is a side-
channel leaking � bits of information on the ASLR key to
the adversary after q observations, then our bound becomes:

Pr[i 2 ⌦(P) ^ o 6= crash]  q · |Valid|
2n�� � q

Depending on how � increases with respect to q and n,
this could have practical relevance for concrete scenarios.
In general, it is difficult to foresee and prevent all possible
side-channels, in particular if they consider time or power
consumption. However we can prevent many side-channels
that are reflected directly in the values sent to the attacker
(such as crashes and termination, or memory leaks such as
Heartbleed) by relying on simultaneous executions of the
victim program.

The use of replicas (similarly to DieHard [26] and
Secure Multi-Execution, SME [19]) can prevent such in-
formation leakages. For instance, in the case of canaries, if
there are at least two replicas with a different canary each,
the probability of an attacker overriding both with the same
values is the probability of both having the same bytes: If
the canary consists of 1 byte, then the probability of that
byte (pseudorandomly generated) being the same in both
replicas r0 and r1 is Pr[cbr0 = cbr1] = 1

28 . If the canary
consists of n bytes, then Pr[

Vn�1
i=0 cbr0

i = cbr1
i] = 1

28n .
This reflectes precisely the idea behind SME, instead

of having a direct mapping for each input of the system
whether it has high or low-level security, the security level
is given by the nature of the input given. Valid outputs are
considered of a high security level and the crash output
due to inconsistent replicas is considered as having a low
security level. Then, for a valid input (high security level),
all its valid outputs are calculated and given to the user
(since they also have a high security level). However, if
its invalid (low security level), with high probability the
program will crash (which will be the result of the low-
level security execution.

We can generalize this idea as depicted in Fig. 2. For
any countermeasure relying on a secret key, we execute two
copies of the program for different keys k and k0. Before
sending the resulting output to the remote adversary, we
compare the resulting outputs o = [P +c]k[i] and o0 = [P +
c]0k[i]. We assume that both programs use otherwise the same
seeds for randomness and if they interact with the system
they read the same values (such as the system’s clock, values

qX

j=1

1

2n � j

!
·

rX

l=1

|Valid|
2m � j

!
 q

2n � q
· r · |Valid|

2m � r
)

which is still a negligible function in n, m.

5.2.1. Concrete bounds. In practice, for 32-bit architectures
without virtualization:

qX

j=1

1

232 � j

!
·

rX

l=1

|Valid|
232 � l

!
 q

232 � q
· r · |Valid|

232 � r

5.3. PointGuard ⌦ ISR

We model the composition c = PointGuard ⌦ ISR as
follows:

Proc. [P + c](i)
If i 2 ⌦(P) then

k1
$ {0, 1}n

k2
$ {0, 1}m

ra i.payload[0]
If Decryptk1(ra) 2 Valid then

rad Decryptk1(ra)
If Decryptk2(M(P, rad)) 2 ISA then

o [M(P, rad)]
else

o crash
else

o crash
else

o [P](i)
return o

This composition has the advantage that it is attack
resistant against both code injection attacks, ROP and JOP
attacks, because ISR defends against executing injected
code and PointGuard defends against overwriting the return
address. We can also perform a similarly attack resistant
composition between ISR and ASLR, or ISR and Canaries,
or even composing more than two countermeasures. How-
ever, we do not show these compositions here due to space
restrictions. We can calculate the following bound for Point-
Guard ⌦ ISR:

Pr[i 2 ⌦(P) ^ o 6= crash]

 Pr[Decryptk1
(i.payload[0]) 2 Valid

^ Decryptk2
(M(P, Decryptk1

(i.payload[0])) 2 ISA]

 |Valid|
2n

· |ISA|
2m

Note that the attacker has to not only enter a validly
encrypted return address with key k1 but also to inject a
validly encrypted sequence of instructions at that address.

6. Side-channels

An attacker can use side-channel attacks to get informa-
tion about a secret key by exploiting physical observations
such as time, power consumption, noise, etc. For instance,
the byte-based attack for canaries (Sec. 4.1) exposes infor-
mation through the termination covert channel. Either the
program crashes and the current canary byte is known to
be incorrect, or it does not crash and the attacker can start
guessing the next byte.

We can formally plug the leakage � learnt by an adver-
sary to our bounds by decreasing the entropy on the key
(originally n bits) by � bits. For instance, if there is a side-
channel leaking � bits of information on the ASLR key to
the adversary after q observations, then our bound becomes:

Pr[i 2 ⌦(P) ^ o 6= crash]  q · |Valid|
2n�� � q

Depending on how � increases with respect to q and n,
this could have practical relevance for concrete scenarios.
In general, it is difficult to foresee and prevent all possible
side-channels, in particular if they consider time or power
consumption. However we can prevent many side-channels
that are reflected directly in the values sent to the attacker
(such as crashes and termination, or memory leaks such as
Heartbleed) by relying on simultaneous executions of the
victim program.

The use of replicas (similarly to DieHard [26] and
Secure Multi-Execution, SME [19]) can prevent such in-
formation leakages. For instance, in the case of canaries, if
there are at least two replicas with a different canary each,
the probability of an attacker overriding both with the same
values is the probability of both having the same bytes: If
the canary consists of 1 byte, then the probability of that
byte (pseudorandomly generated) being the same in both
replicas r0 and r1 is Pr[cbr0 = cbr1] = 1

28 . If the canary
consists of n bytes, then Pr[

Vn�1
i=0 cbr0

i = cbr1
i] = 1

28n .
This reflectes precisely the idea behind SME, instead

of having a direct mapping for each input of the system
whether it has high or low-level security, the security level
is given by the nature of the input given. Valid outputs are
considered of a high security level and the crash output
due to inconsistent replicas is considered as having a low
security level. Then, for a valid input (high security level),
all its valid outputs are calculated and given to the user
(since they also have a high security level). However, if
its invalid (low security level), with high probability the
program will crash (which will be the result of the low-
level security execution.

We can generalize this idea as depicted in Fig. 2. For
any countermeasure relying on a secret key, we execute two
copies of the program for different keys k and k0. Before
sending the resulting output to the remote adversary, we
compare the resulting outputs o = [P +c]k[i] and o0 = [P +
c]0k[i]. We assume that both programs use otherwise the same
seeds for randomness and if they interact with the system
they read the same values (such as the system’s clock, values

qX

j=1

1

2n � j

!
·

rX

l=1

|Valid|
2m � j

!
 q

2n � q
· r · |Valid|

2m � r
)

which is still a negligible function in n, m.

5.2.1. Concrete bounds. In practice, for 32-bit architectures
without virtualization:

qX

j=1

1

232 � j

!
·

rX

l=1

|Valid|
232 � l

!
 q

232 � q
· r · |Valid|

232 � r

5.3. PointGuard ⌦ ISR

We model the composition c = PointGuard ⌦ ISR as
follows:

Proc. [P + c](i)
If i 2 ⌦(P) then

k1
$ {0, 1}n

k2
$ {0, 1}m

ra i.payload[0]
If Decryptk1(ra) 2 Valid then

rad Decryptk1(ra)
If Decryptk2(M(P, rad)) 2 ISA then

o [M(P, rad)]
else

o crash
else

o crash
else

o [P](i)
return o

This composition has the advantage that it is attack
resistant against both code injection attacks, ROP and JOP
attacks, because ISR defends against executing injected
code and PointGuard defends against overwriting the return
address. We can also perform a similarly attack resistant
composition between ISR and ASLR, or ISR and Canaries,
or even composing more than two countermeasures. How-
ever, we do not show these compositions here due to space
restrictions. We can calculate the following bound for Point-
Guard ⌦ ISR:

Pr[i 2 ⌦(P) ^ o 6= crash]

 Pr[Decryptk1
(i.payload[0]) 2 Valid

^ Decryptk2
(M(P, Decryptk1

(i.payload[0])) 2 ISA]

 |Valid|
2n

· |ISA|
2m

Note that the attacker has to not only enter a validly
encrypted return address with key k1 but also to inject a
validly encrypted sequence of instructions at that address.

6. Side-channels

An attacker can use side-channel attacks to get informa-
tion about a secret key by exploiting physical observations
such as time, power consumption, noise, etc. For instance,
the byte-based attack for canaries (Sec. 4.1) exposes infor-
mation through the termination covert channel. Either the
program crashes and the current canary byte is known to
be incorrect, or it does not crash and the attacker can start
guessing the next byte.

We can formally plug the leakage � learnt by an adver-
sary to our bounds by decreasing the entropy on the key
(originally n bits) by � bits. For instance, if there is a side-
channel leaking � bits of information on the ASLR key to
the adversary after q observations, then our bound becomes:

Pr[i 2 ⌦(P) ^ o 6= crash]  q · |Valid|
2n�� � q

Depending on how � increases with respect to q and n,
this could have practical relevance for concrete scenarios.
In general, it is difficult to foresee and prevent all possible
side-channels, in particular if they consider time or power
consumption. However we can prevent many side-channels
that are reflected directly in the values sent to the attacker
(such as crashes and termination, or memory leaks such as
Heartbleed) by relying on simultaneous executions of the
victim program.

The use of replicas (similarly to DieHard [26] and
Secure Multi-Execution, SME [19]) can prevent such in-
formation leakages. For instance, in the case of canaries, if
there are at least two replicas with a different canary each,
the probability of an attacker overriding both with the same
values is the probability of both having the same bytes: If
the canary consists of 1 byte, then the probability of that
byte (pseudorandomly generated) being the same in both
replicas r0 and r1 is Pr[cbr0 = cbr1] = 1

28 . If the canary
consists of n bytes, then Pr[

Vn�1
i=0 cbr0

i = cbr1
i] = 1

28n .
This reflectes precisely the idea behind SME, instead

of having a direct mapping for each input of the system
whether it has high or low-level security, the security level
is given by the nature of the input given. Valid outputs are
considered of a high security level and the crash output
due to inconsistent replicas is considered as having a low
security level. Then, for a valid input (high security level),
all its valid outputs are calculated and given to the user
(since they also have a high security level). However, if
its invalid (low security level), with high probability the
program will crash (which will be the result of the low-
level security execution.

We can generalize this idea as depicted in Fig. 2. For
any countermeasure relying on a secret key, we execute two
copies of the program for different keys k and k0. Before
sending the resulting output to the remote adversary, we
compare the resulting outputs o = [P +c]k[i] and o0 = [P +
c]0k[i]. We assume that both programs use otherwise the same
seeds for randomness and if they interact with the system
they read the same values (such as the system’s clock, values

P+c P+c

o=o’?

k i k’ i

o o’

o

Figure 2. Secure Multi-Execution to close value-based side-channels on
[P + c].

of files, sockets etc.). If they are different, it means that
the output is dependent on the only different input for the
two copies: the secret keys. In this case, we send a crash
message to the adversary and reset the program’s copies
with two fresh keys.

o = o0?

7. Related work

The question on the effectiveness of probabilistic coun-
termeasures against memory-safety vulnerability has been a
matter of discussion in the literature for the past decade.
In [15], Schacham et al. discuss the effectiveness of Adress
Space-Layout Randomization. They noted that in 32 bits
architectures, the entropy achieved by ASLR only slightly
slows down attackers, while causing performance over-
heads. They also discuss the increase in security by re-
randomization, but different from us, they do this informally
and only for ASLR.

Pucella et al. [27] propose to treat the effectiveness of
program diversification (i.e. using probabilistic transforma-
tions) as a probabilistic dynamic type-checking problem.
They illustrate their approach on a C-like language and
ASLR. Their approach is formal but involves the modelling
of low-level details of programs, such as pointers, whereas
our approach abstracts away from concrete programs and
focus on countermeasures. Also, they do not explicitly give
bounds on the probability of an attack for a given program
transformation.

Abadi et al. [28] cast the problem of reasoning on the
effectiveness of ASLR as full-abstraction problem. Differ-
ent from Pucella et al., they consider concrete probability
bounds on attackers, and abstract away from malicious in-
puts by considering arbitrary execution contexts. To this end,
they also construct exemplary high and low level languages,
and limit themselves to the analysis of ASLR.

Closer in spirit to our work is the work of Ganesh
et al. [29]. They propose to use crypto-like definitions to
describe the security guarantees of ISR. However, they relay
on the assumption that the attacker strategy is known in
advance (i.e. code injection) and do not develop a formal
argument for their proofs.

To the best of our knowledge, we are the first to propose
game-based proofs for memory-safety countermeasures and
to apply the generic approach to several countermeasures
and their composition.

8. Conclusions

In this paper we have presented an approach to rea-
son about probabilistic countermeasures against memory-
safety vulnerabilities in a rigorous way using concepts from
cryptographic proofs. We have shown that our modelling
is applicable for a wide range of countermeasures and
their composition. In future work, we plan to model other
diversity inspired countermeasures from the literature and
reason about their guarantees. Moreover we plan to use
existing tool support to rigorously develop computer-aided
proofs of our bounds.

References

[1] Y. Younan, W. Joosen, and F. Piessens, “Runtime countermeasures for
code injection attacks against c and c++ programs,” ACM Computing
Surveys (CSUR), vol. 44, no. 3, p. 17, 2012.

[2] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM conference on Computer and communications security.
ACM, 2007, pp. 552–561.

[3] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh,
“Hacking blind,” in Security and Privacy (SP), 2014 IEEE Symposium
on. IEEE, 2014, pp. 227–242.

[4] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Security and Privacy
(SP), 2013 IEEE Symposium on. IEEE, 2013, pp. 574–588.

[5] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey,
F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer et al., “The matter
of heartbleed,” in Proceedings of the 2014 Conference on Internet
Measurement Conference. ACM, 2014, pp. 475–488.

[6] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM conference on Computer
and communications security. ACM, 2005, pp. 340–353.

[7] B. Zeng, G. Tan, and Ú. Erlingsson, “Strato: A retargetable framework
for low-level inlined-reference monitors.” in Usenix Security, 2013,
pp. 369–382.

[8] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in 2014 IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 575–589.

[9] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An
efficient approach to combat a broad range of memory error exploits.”
in USENIX Security, vol. 3, 2003, pp. 105–120.

[10] C. Cowan, S. Beattie, R. F. Day, C. Pu, P. Wagle, and E. Walthinsen,
“Protecting systems from stack smashing attacks with stackguard,” in
Linux Expo. Citeseer, 1999.

i i

Figure 2. SME inspired replicas to close value-based side-channels on [P+
c].

inputs, that is j 6∈ Ω will be in general independent from
random keys used by the probabilistic countermeasure, thus
this check is transparent for such inputs.

6.3. Hardening probabilistic countermeasures with
replicas

We note that, not only it is possible to effectively close
many side-channels using SME, but we can also make
the probabilistic countermeasures even more effective. In
particular, we make exploitation attacks impossible in the
following way.
Lemma 1. Let [P + c] be a probabilistic countermeasure

against remote attacks. Let a prerequisite for exploitation
that the attacker produces a payload that matches a ran-
dom key. Formally, i.payload[0] = k for a deterministic
oracle payload. Then, for a concrete instance of such a
countermeasure using key k, an input i ∈ Ω(P) such that
[P + c]k[i] 6= crash must crash another instance of the
countermeasure with a key k′ 6= k: [P + c]k′ [i] = crash.

The proof follows simply by the fact that k 6= k′ and
that the payload oracle is deterministic. From this lemma,
it follows:
Corollary 1. Let SME([P + c]) be an implementation of

[P + c] as described in Section 6.2 and in Fig. 2, that
is, it executes two instances of [P + c] in parallel with
random keys k, k′ such that k 6= k′, and outputs crash
whenever [P + c]k 6= [P + c]k′ . Then:

Pr[ASME([P+c]) = i] = 0

where i ∈ Ω(P) and SME([P + c])(i) 6= crash.

The proof of the corollary follows immediately from the
lemma above. Surprisingly, the keys k and k′ can be fully
leaked to the attacker in this setting, since (mathematically)
it is impossible to produce an input that would bypass both
instances of the countermeasure.

Although this is a strong result abstractly speaking, from
the point of view of practical implementations it suffers
from several drawbacks. First, it is questionable whether
executing a program twice will be faster than embedding
a deterministic defense such as a run-time monitor. On
the other hand, depending on how the parallel execution
is implemented, it could be that an attacker could craft an
attack on one instance that disables the check on the second
instance. In principle it is possible to avoid such attacks for
instance using virtualization.

One can argue however that this idea is interesting
in settings where for legacy reasons it is not possible to
recompile the code with memory safety checks and where
there are no hard time constraints on the execution, but a
thorough efficiency and efficacy analysis is left to future
work.

7. Related work

The question on the effectiveness of probabilistic coun-
termeasures against memory-safety vulnerabilities has been
a matter of discussion in the literature for the past decade.
In [14], Schacham et al. discuss the effectiveness of Address
Space-Layout Randomization. They noted that in 32 bits
architectures, the entropy achieved by ASLR only slightly
slows down attackers, while causing performance over-
heads. They also discuss the increase in security by re-
randomization, but different from us, they do this informally
and only for ASLR.

Pucella et al. [28] propose to treat the effectiveness of
program diversification (i.e. using probabilistic transforma-
tions) as a probabilistic dynamic type-checking problem.
They illustrate their approach on a C-like language and
ASLR. Their approach is formal but involves the modeling
of low-level details of programs, such as pointers, whereas
our approach abstracts away from concrete programs and
focus on countermeasures. Also, they do not explicitly give
bounds on the probability of an attack for a given program
transformation.

Abadi et al. [29] cast the problem of reasoning on the
effectiveness of ASLR as full-abstraction problem. Differ-
ent from Pucella et al., they consider concrete probability
bounds on attackers, and abstract away from malicious in-
puts by considering arbitrary execution contexts. To this end,
they also construct exemplary high and low level languages,
and limit themselves to the analysis of ASLR.

Berger et al. [20] propose to randomize the heap layout
and allocation strategy for increased resilience against mem-
ory management bugs that are triggered accidentally. This
line of work has been extended [30] by considering attackers
that deliberately exploit vulnerabilities (using for instance
heapspray attacks). Probabilistic security bounds are then
derived by reasoning on the proposed countermeasures and
successful attack events. Such bounds, although mathemat-
ically justified, are obtained informally (i.e. without using a
formal reasoning language or framework).

In our examples we have emphazised single vs. mul-
tiple key-sampling for randomized countermeasures and

discussed its impact on the bounds. Such a fine-grained
re-randomization for many countermeasures and memory
layouts has been systematically implemented by Curtsinger
and Berger [31].

To the best of our knowledge, we are the first to propose
game-based proofs for memory-safety countermeasures and
to apply the generic approach to several countermeasures
and their composition.

8. Conclusions

In this paper we have presented an approach to rea-
son about probabilistic countermeasures against memory-
safety vulnerabilities in a rigorous way using concepts from
cryptographic proofs. We have shown that our modeling is
applicable for a wide range of countermeasures and their
composition. Moreover we have shown how to close certain
side-channels using replicas, similarly as in Secure Multi-
Execution (SME). Surprisingly, using this technique also
hardens significantly several probabilistic countermeasures,
by making exploitation (theoretically) infeasible. In future
work, we plan to model other diversity inspired countermea-
sures from the literature and reason about their guarantees,
such as DieHarder [30]. Moreover we plan to use existing
tool support to rigorously develop computer-aided proofs of
our bounds.

References

[1] Y. Younan, W. Joosen, and F. Piessens, “Runtime countermeasures for
code injection attacks against c and c++ programs,” ACM Computing
Surveys (CSUR), vol. 44, no. 3, p. 17, 2012.

[2] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM conference on Computer and communications security.
ACM, 2007, pp. 552–561.

[3] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh,
“Hacking blind,” in Security and Privacy (SP), 2014 IEEE Symposium
on. IEEE, 2014, pp. 227–242.

[4] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Security and Privacy
(SP), 2013 IEEE Symposium on. IEEE, 2013, pp. 574–588.

[5] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey,
F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer et al., “The matter
of heartbleed,” in Proceedings of the 2014 Conference on Internet
Measurement Conference. ACM, 2014, pp. 475–488.

[6] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM conference on Computer
and communications security. ACM, 2005, pp. 340–353.

[7] B. Zeng, G. Tan, and Ú. Erlingsson, “Strato: A retargetable framework
for low-level inlined-reference monitors.” in Usenix Security, 2013,
pp. 369–382.

[8] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in 2014 IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 575–589.

[9] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An
efficient approach to combat a broad range of memory error exploits.”
in USENIX Security, vol. 3, 2003, pp. 105–120.

[10] C. Cowan, S. Beattie, R. F. Day, C. Pu, P. Wagle, and E. Walthinsen,
“Protecting systems from stack smashing attacks with stackguard,” in
Linux Expo. Citeseer, 1999.

[11] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-
injection attacks with instruction-set randomization,” in Proc. of the
10th ACM conference on Computer and communications security,
2003.

[12] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “Pointguard tm:
protecting pointers from buffer overflow vulnerabilities,” in Proceed-
ings of the 12th conference on USENIX Security Symposium, vol. 12,
2003, pp. 91–104.

[13] Y. Weiss and E. G. Barrantes, “Known/chosen key attacks against
software instruction set randomization,” in Computer Security Appli-
cations Conference, 2006. ACSAC’06. 22nd Annual. IEEE, 2006,
pp. 349–360.

[14] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomization,” in
Proc. of the 11th ACM conference on Computer and communications
security. ACM, 2004, pp. 298–307.

[15] M. Bellare and P. Rogaway, “The security of triple encryption and
a framework for code-based game-playing proofs,” in Advances in
Cryptology-EUROCRYPT 2006. Springer, 2006, pp. 409–426.

[16] O. Goldreich, “The foundations of modern cryptography,” in Mod-
ern Cryptography, Probabilistic Proofs and Pseudorandomness.
Springer, 1999, pp. 1–37.

[17] V. Ganesh, S. Banescu, and M. Ochoa, “Short paper: The mean-
ing of attack-resistant systems,” in Proceedings of the 10th ACM
Workshop on Programming Languages and Analysis for Security,
PLAS@ECOOP 2015, Prague, Czech Republic, July 4-10, 2015,
2015, pp. 49–55.

[18] G. Barthe, B. Grégoire, and S. Zanella Béguelin, “Formal certification
of code-based cryptographic proofs,” ACM SIGPLAN Notices, vol. 44,
no. 1, pp. 90–101, 2009.

[19] D. Devriese and F. Piessens, “Noninterference through secure multi-
execution,” in Security and Privacy (SP), 2010 IEEE Symposium on.
IEEE, 2010, pp. 109–124.

[20] E. D. Berger and B. G. Zorn, “Diehard: Probabilistic memory
safety for unsafe languages,” in Proc. of the 2006 ACM
SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 2006, pp. 158–168. [Online]. Available:
http://doi.acm.org/10.1145/1133981.1134000

[21] P. Wagle and C. Cowan, “Stackguard: Simple stack smash protection
for gcc,” in Proceedings of the GCC Developers Summit. Citeseer,
2003, pp. 243–255.

[22] A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, and S. Ioannidis,
“Asist: architectural support for instruction set randomization,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 981–992.

[23] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security. ACM, 2011, pp. 30–40.

[24] A. N. Sovarel, D. Evans, and N. Paul, “Where’s the feeb? the
effectiveness of instruction set randomization.” in Usenix Security,
2005.

[25] S. Heule, “How many x86-64 instructions
are there anyway?” https://stefanheule.com/blog/
how-many-x86-64-instructions-are-there-anyway/, accessed: 2017-
01-12.

[26] A. Follner, A. Bartel, and E. Bodden, “Analyzing the gadgets towards
a metric to measure gadget quality,” arXiv preprint arXiv:1605.08159,
2016.

[27] A. ’pi3’ Zabrocki, “Scraps of notes on remote stack overflow ex-
ploitation,” November 2010.

http://doi.acm.org/10.1145/1133981.1134000
https://stefanheule.com/blog/how-many-x86-64-instructions-are-there-anyway/
https://stefanheule.com/blog/how-many-x86-64-instructions-are-there-anyway/

[29] M. Abadi and G. D. Plotkin, “On protection by layout randomization,”
ACM Transactions on Information and System Security (TISSEC),
vol. 15, no. 2, p. 8, 2012.

[30] G. Novark and E. D. Berger, “Dieharder: securing the heap,” in
Proceedings of the 17th ACM conference on Computer and com-
munications security. ACM, 2010, pp. 573–584.

[31] C. Curtsinger and E. D. Berger, “Stabilizer: statistically sound perfor-
mance evaluation,” in ACM SIGARCH Computer Architecture News,
vol. 41, no. 1. ACM, 2013, pp. 219–228.

[28] R. Pucella and F. B. Schneider, “Independence from obfuscation:
A semantic framework for diversity,” Journal of Computer Security,

vol. 18, no. 5, pp. 701–749, 2010.

	1 Introduction
	2 Background
	2.1 Stack smashing attacks
	2.2 System interface
	2.3 Code-based cryptographic proofs

	3 Security of probabilistic defenses as games
	3.1 Security definition
	3.2 Game-based modeling
	3.3 Proofs

	4 Preventing attacks
	4.1 Stack Canaries
	4.1.1 Multiple sampling and single randomization
	4.1.2 Concrete bounds

	4.2 ASLR
	4.2.1 Multiple sampling and single randomization
	4.2.2 Concrete bounds

	4.3 PointGuard
	4.3.1 Multiple sampling and single randomization
	4.3.2 Concrete bounds

	4.4 ISR
	4.4.1 Multiple sampling and single randomization
	4.4.2 Concrete bounds

	5 Composition
	5.1 ASLR Canaries
	5.1.1 Multiple sampling and single randomization
	5.1.2 Concrete bounds

	5.2 PointGuard ISR
	5.2.1 Multiple sampling and single randomization
	5.2.2 Concrete bounds

	5.3 Overview of compositions

	6 Side-channel attacks
	6.1 Reasoning about side-channel leakage
	6.1.1 Concrete bounds

	6.2 Probabilistic countermeasures and replicas
	6.3 Hardening probabilistic countermeasures with replicas

	7 Related work
	8 Conclusions
	References

