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Abstract—Buggy and flawed third-party libraries increase
their host app’s attack surface and put the users’ privacy at
risk. To avert this risk, libraries have to be kept updated to their
newest versions by the app developers that integrate them into
their projects. Recent researches revealed that the prevalence
of outdated third-party libraries in Android apps is indeed
a rampant problem, but also suggested that there is a great
opportunity for drop-in replacements of outdated libraries, which
would not even require cooperation by the app developers to
update the libraries. However, all those conclusions are based on
static app analysis, which can only provide an abstract view.

In this work, we extend the updatability analysis to the
runtime of apps. We implement a solution to update third-party
libraries with drop-in replacements by their newer versions.
To verify the feasibility of this developer-independent update
mechanism, we dynamically test 3,000 real world apps for
3 popular libraries (78 library versions) for runtime failures
stemming from incompatible library updates. To investigate the
updatability of libraries in-depth, exploration enhanced dynamic
testing is adopted to monitor the runtime behaviors of 15 apps
before and after library updating. From our test, we find that
the prior reported updatability rate is under real conditions
overestimated by a factor of 1.57–2.06. Through root cause
analysis, we find that the underlying problems prohibiting easy
updates are intricate, such as deprecated functions, changed
data structures, or entangled dependencies between different
libraries and even the host app. We think our results not only
put a more realistic light on the library updatability problem in
Android, but also provide valuable insights for future solutions
that provide automatic library updates or that try to support the
app developers in better maintaining their external dependencies.

I. INTRODUCTION

Third-party dependencies are frequently imported into ap-

plications to quicken the app development process. Compared

with writing functional code from scratch, such as HTTP

communication, image loading, or advertising, an existing

well-encapsulated third-party package is a preferable choice

for app developers. However, such external dependencies are a

double-edged sword. Since third-party libraries are developed

by other organizations and the app developers know little to

nothing about the libraries’ internals, the attack surface of

the host app is unavoidably increased if an included library

contains vulnerabilities. Previous studies have highlighted this

problem for Android [4], [8], [14], [34] and have shown that

vulnerable third-party dependencies are actively used in apps,

e.g., a surprising ≈70% [33] of vulnerable free apps owe their

vulnerabilities to integrated libraries.

The most straightforward countermeasure against such vul-

nerabilities are updates: a third-party library vendor would

release a fixed version and then the applications that include

the vulnerable library version can be fixed by updating the

library as soon as possible. Unfortunately, most of the library

updates cannot be delivered to applications in such a smooth

way. Recent studies of third-party library updates [22], [30]

show that most of the developers do not deem library updates

as a reason for app version increment. Developers tend to

preserve the outdated library versions to avoid additional

efforts for resolving incompatibility with the newer library

versions. Investigation of vulnerable apps’ lifetimes [16], [31]

also reveals the lack of incentives for non-functional updates.

Considering this situation, an automated updating mechanism

could be a way out of this dilemma [22]. Purely based on

the API compatibility between versions of the same library,

it was estimated that with such automated library updates

85.6% of libraries have at least one higher version available for

update and 48.2% could even be updated to their latest version

without any additional host code adoption. The problem is that

the updatability rate is derived from static app analysis results,

which can only provide a glimpse into automated library

updates from a theoretical and syntactic perspective. It ignored

potential factors for version incompatibility that can come into

one’s mind immediately, such as obsolete APIs, intra-function

changes, or secondary dependencies. So far, no ground truth

exists about the existence and severity of those additional

factors. To bridge this gap, we try to answer in this paper

the open questions ”What is the actual library updatability?”,

”Do the updated libraries exhibit incompatibilities that prevent
an easy drop-in replacement of library versions?” and ”What
are the primary causes for those incompatibilities?”.

To answer those questions, we opt in this paper for studying

apps’ runtime behavior before and after applying drop-in

replacements of API-compatible library updates. The best ap-

proach to do so could be 1) an implementation of an automatic

library updating solution and 2) behavioral profiling of apps’

runtime for both the original app and the one with library

updates deployed. Several existing works have dug into the

problem of patching vulnerabilities in existing applications,

such as Appsealer [37], PatchDroid [28], or Instaguard [19].

Unfortunately, none of them specifically focuses on library

code. PatchMan [36] considered libraries, but only takes

system libraries into account. Most importantly, however, the

setting for a library updatability solution, which has to con-
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sider multiple update candidate versions, code changes beyond

”simple” function-level changes, and potentially entangled de-

pendencies (see Section VI-B), differs a lot from vulnerability

patching solutions (e.g., a static rewriting solution cannot deal

with entangled dependencies, or in-memory patching is limited

to very local, small changes). Thus, none of the existing

solutions is applicable as a suitable solution to the automated

library updatability problem.

To extend the status quo and investigate in-depth the pro-

posed drop-in replacement of API-compatible library versions,

this paper presents a two-stage experiment. In this experiment,

an automatic drop-in replacement library update framework

based on classloader customization is put forward in the first

stage, and then, in the second stage, dedicated, dynamic tests

are carried out to evaluate the runtime behavioral differences

between the original app and the one with an updated library.

To the best of our knowledge, this work is the first to in-

vestigate the semantic problems and consequences for Android

library updatability in a real-world setting in contrast to the

previously estimated numbers purely on syntactic updatability.

Our study focuses on three popular, previously studied libraries

(OkHttp, Facebook SDK, Facebook Audience). Our dynamic

analysis results revealed that at runtime 4.08% (success rate

95.92%) of the tested updates experienced crashes after the

drop-in library update. We discovered that multiple factors

impede the automatic integration of a compatible library

version. Through a source code study of crashed library

versions, we discover incompatibilities beyond the public API,

including deprecated public methods, changed data structures

and library initializations that are only documented in the

library changelogs, or entangled dependencies between the

updated library and other libraries or the host app. Further

analyzing the source code of 1,430 versions of 44 libraries

showed that those discovered impeditive factors are preva-

lent in all kinds of other libraries and the claimed library

updatability rate by prior works [22] should be adjusted.

To provide a clear understanding of the library updatability,

we re-calculate the updatability rate on a set of 332,432

apps after considering all those discovered factors. The com-

parison result shows that for OkHttp and Facebook SDK
the picture is rather bleak, and their updatability rates sink

93.40%↘45.45% and 94.06%↘53.69% in the worst case,

respectively, in comparison to previous estimates. Thus, our

work confirms the technical feasibility of an automatic drop-

in replacement for library updates, but our test results also

clearly show the existence of impeditive factors that prevent a

drop-in library update from working correctly in practice. We

think that our results provide valuable insights for the design

of projected library update solutions that are independent of

the app developer (e.g., drop-in replacements at the market

or on-device) as well as for solutions that want to support

app developers in maintaining up-to-date dependencies (e.g.,

through an IDE extension).

To summarize our contributions:

1) API-compatibility based library update framework: To

measure the realistic gap for drop-in library updates on An-

droid, we first need a library update framework that follows the

state-of-the-art proposal in prior work [22]. This work is first

to present the design and implementation of a drop-in based

Android library update framework. With this framework, a

new library version can be opted into the original app at app

launching time and be used as a replacement for the previous

library version, which enables us to hunt library update-related

runtime mal-functions further.

2) App runtime behavior profiling: Using our library up-

dating approach, two kinds of dynamic tests are carried out

on real-world apps to not only validate the feasibility of

our updating solution but also study the actual feasibility of

drop-in library updates and re-evaluate the results of static

app analysis in existing work [22]. By profiling the runtime

behaviors of apps before and after library updates, we detect

the occurrence of malfunctions introduced by the library

update despite the library versions being API-compatible.

3) In-depth study of the obstacles for functional drop-
in replacements: By analyzing the malfunctioning cases, we

discovered several factors brought by library evolution that

prohibit the drop-in replacement of a target library to be func-

tional. Based on those discovered factors, a follow-up study

is conducted to evaluate the prevalence of those impeditive

cases in other libraries. Our results show that those impeditive

factors are important considerations for future solutions that

target automatic library updates or that support app developers

in their task of updating libraries.

Outline: In Section II, we give a brief introduction

to Android’s software update ecosystem and background on

library updating. We motivate our work more explicitly in

Section III. Section IV describes our two-stage experiment to

practice and evaluate API-compatibility based drop-in library

updates. The experiment findings together with a follow-up

study of library source code are presented in Section V. In

Section VI, we discuss our work and future prospects. We

conclude our paper in Section VII.

II. ANDROID SOFTWARE UPDATING AND TESTING

A. Android Software Update Ecosystem

The official sources for updates for Android software can be

differentiated into four classes: App developers, Android Open

Source Project (AOSP) by Google, upstream Linux kernel, and

system-on-chip (SoC) manufacturers. The updates from those

sources can be delivered to end users and take effect in their

corresponding software stack layer through different update

routines as shown in Figure 1.

The Android platform is highly diversified and fragmented.

The updates from the lower layers are distributed in an

arduous and time-consuming way. All the updates from AOSP,

Linux kernel, and SoC manufacturers should be delivered

to device manufacturers first. After being integrated into the

manufacturers’ specific systems, some of those updates can be

pushed to the end users by device manufacturers, and some of

them should also go through a carrier technical acceptance test

at the network operator side before being delivered to users.

Existing work [32] has pointed out that device manufacturers
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Fig. 1. Android Software Update Ecosystem

are the bottleneck in this update chain. Despite the founding

of the Android Update Alliance [12], phone vendors generally

lack the incentives to provide updates frequently, resulting in

a long update latency or, even worse, no updates at all.

The update routine for user applications is, in contrast,

pretty straightforward. The app developers submit new app

versions to Google Play, then the target app on end devices will

be reinstalled and replaced with the updated version [11]. The

app updates can be delivered to user devices efficiently without

any intermediate bottleneck. It is noteworthy that the updating

of third-party libraries, which we are concerned with in this

paper, follows a similar mode to the low layer components.

New versions of third-party libraries are released by the library

developers first, and after integrating the new versions into

the application code by app developers, those libraries can be

sent to end users together with upgraded apps through Google

Play. Despite the ”new library versions available” warning

provided by the built-in Lint plugin [6] of Android Studio—

the most commonly used IDE for Android app development—

the integration of the updated library is highly dependent

on the app developer incentives, and currently, there is no

official automatic mechanism to ease this process. Google

Play rejects apps (updates) that include libraries with known

security vulnerabilities to force the developers to update those

libraries through their app security improvement program1, but

this mechanism only works for a small, limited set of libraries,

e.g., Apache Cordova. A lot more vulnerable libraries are still

exempted from this vetting process.

B. Software Patching Techniques

Apart from going through the standard update chain de-

scribed earlier, an Android software can also be fixed by third-

party patches and application autonomous hotfixes.

Third-Party Patching reduces the vulnerability window of

software as much as possible. Since the patches or patching

framework are released by neither software developers nor

official sources, they are not bound to the standard release

procedure and can be deployed to fix software more effi-

ciently. Patchdroid [28] applies in-memory patching tech-

niques to update both userspace native code and Dalvik

bytecode at runtime. Embroidery [38] uses both static and

dynamic rewriting techniques to patch vulnerabilities in the

Android framework and kernel. To be resilient against Android

1https://developer.android.com/google/play/asi

fragmentation and ensure system functionality across devices,

Embroidery rewrites binaries at code-line granularity. With

reference hijacking [36] the underlying system libraries are

patched by redirecting library references to security-enhanced

alternatives. InstaGuard [19] takes advantage of debugging

features to enforce rules that block the vulnerability exploita-

tion and avoid injecting new code while patching. KARMA [20]

establishes a multi-level adaptive patching model to filter

malicious input to the kernel. Appsealer [37] alters an app’s

intermediate representation to mitigate component hijacking

attacks through a patched app version. None of the above

solutions focuses on patching third-party libraries inside user

apps. OSSPATCHER [23] targets at third-party libraries, but

only open-sourced C/C++ libraries are concerned. There are

also more works [24], [26] that automatically generate patches

from source code. However, they do not apply to libraries

included in applications that are usually not open sourced.

Most recent work [25] rewrites app code to provide a library

updating and sharing solution which is distinguished from our

incompatibility root cause investigation purpose.

Application Autonomous Hotfix is a technique for self-

healing apps where fixes to the app code are applied at runtime

by the application itself. Some hotfix frameworks [1], [2],

[9] have been put forward to ease the distribution of minor
patches. In those solutions, an official patch is first delivered

to the app, and then the patch code is dynamically loaded

into memory instead of outdated code. There is no need to

reinstall the target app. With autonomous hotfixes, small fixes

can be distributed to users swiftly without any user disturbance

or central distribution point (e.g., Play). Unfortunately, those

hotfix plugins are required to be integrated by app developers

and the patches should be released by them as well, which

highly depends on developer incentives and is not applicable

to efficiently update libraries within already existing apps.

However, the flexibility of those dynamic code integration

techniques and plugin techniques [5] is quite inspiring and

our third-party library updating solution is established based

on them.

Patching vs. updating: Most of the patching solutions use

techniques, such as static rewriting, in-memory function patch-

ing, or vulnerable path blocking, to mitigate vulnerabilities.

However, the scenario for library updatability includes but

is not limited to rolling out those pinpointed code fixes that

are prevalent in patching scenarios. Library updates usually

concern not only intra-function changes, but also inter-function

changes, secondary dependency updates, and resource file

changes, especially when upgrading across multiple versions.

For this reason, a full library drop-in replacement update

exceeds highly localized patching as described in the existing

works. Prior work [36] also applies full library replacement

for system libraries. However, the statically integrated third-

party libraries in apps, in contrast, vary from app to app

and in their versions, which prohibits a central, system-wide

replacement of a third-party library. Furthermore, our paper

studies the problem of library updatability and not specifically

of ”patching security vulnerabilities” since for the mobile
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library ecosystem, prior work [22] reports that security and

privacy patches are unfortunately commonly mingled with

minor/major releases, and unfortunately very few library de-

velopers report security and privacy relevant changes in their

logs. There is an expected high dark figure of ”silent patches.”

Thus, patching security and privacy issues of libraries currently

boils down to keeping library dependencies up-to-date. Our

work tries to investigate the root causes of incompatibilities

in this process for auto-updates.

C. Android Test Input Generation

To evaluate the app behavior and identify differences caused

by a library update we rely on Android test input generation

techniques, which can be broadly classified according to their

underlying exploration engine into random, model-based, and

systematic. Testing tools with random exploration engines

create semi-random chains of events to explore the app’s

behavior. This type of strategy is employed by Monkey [10],

Android’s default test generator, which we used in our large-

scale experiment, as well as DroidMate [18], the open source

test generator we used in our runtime behavior profiling.

While these approaches are unlikely to perform complex tasks,

such as adequately logging in to an account, they have been

shown to perform effective explorations [21]. To overcome

the limitations of random testing in our analysis, we extend

DroidMate with a plug-in that contains specific, non-random

actions for relevant screens (e.g., login, registration) and allows

us to reach more functionality.

Model based tools infer models from apps using static

and/or dynamic analysis and use them to generate test cases.

Tools in this category include GUIRipper [13], which dynam-

ically traverses an app’s GUI and creates a state machine

model, and SmartDroid [39], which uses static analysis to

identify paths that should be dynamically explored. Droid-

Mate [18] relies mainly on dynamic analysis. It extracts an

app model during analysis and uses it for re-identification of

UI elements, reducing re-exploration of known UI elements

and guiding the test towards new ones.

Systematic testing tools employ different algorithms to ex-

haustively test apps or to generate tests which trigger specific

behaviors. Sapienz [27], for example, combines search-based

algorithms with random fuzzing to improve test coverage,

while IntelliDroid [35] uses symbolic execution to create

sequences of events to trigger specific behaviors. While these

approaches may lead to more accurate and useful explorations

in specific scenarios, their reliance on static information miti-

gates their applicability in scenarios where the app under test

heavily relies upon external sources (e.g., web content), native

code, or obfuscation (like reflection or encryption). In this

category, and closely related to this work, is Brahmastra [17],

which rewrites the app binary to jump-start specific third-

party code. While this approach significantly increases the

probability of reaching third-party code that is accessed deep

within the application, it modifies the app behavior, which

would affect the accuracy of our results.

Fig. 2. A typical scenario for API-compatibility based updatability.

III. MOTIVATION

Considering the alarming rate of outdated libraries and

the inefficient third-party library updating chain explained in

Section II-A, we put our focus in this paper on evaluating

the runtime library updatability situation under an automatic

third-party library updating framework, as well as tracing the

root causes for potential side-effects brought by updating.

Typical scenario for API-compatibility based updatability:
Existing studies have highlighted thrilling API compatibility

across different library versions. Here, we describe a typical

scenario based on Derr’s et al. work [22] and their LibScout
tool (see Figure 2). App A contains library L in version a with

invocations Call1 and Call2. If interfaces Call1 and Call2 still

exist in the successor version Lb, but only partially exist in

version Lc (e.g., parameters or types of a method have changed

or a method was removed), LibScout reports library Lb as

compatible with library La inside App A but not Lc.

Implementation of an automated library update framework:
To investigate the updatability and catch potential incom-

patibilities beyond the theoretical results of prior works, we

need a library update framework that follows the methodology

proposed in the existing studies. In our paper, we follow

the proposal of Derr’s et al. study [22]. Given the scenario

above, an implementation of an automated library update

framework should try to update library L from version a
to version b. Another precondition of this API-compatibility

based library updating solution is that the update should be a

drop-in replacement and no host code adoption performed. The

library upgrade could be done before or after app build without

new host code adoption. In our work, we focus on a post-

build upgrade, because compared with a pre-build upgrade,

which is done through IDE plugins by app developers, a post-

build upgrade is more flexible and can deliver the updated

library version promptly, circumventing the upgrading bottle-

neck brought by the developer-dependence. Considering the

complexity of the library updating scenario, which can include

changes, such as inter-function code changes, secondary de-

pendencies, or resource files, a naive static rewriting solution

would cause an immediate crash/misbehavior (e.g., app failed

to log into Facebook when the app’s signature was changed by

static rewriting), which is then detrimental to exploring update

incompatibilities. To try our best to eliminate unnecessary

interferences and explore incompatibilities as reliably as we

can while upholding conditions proposed in prior work [22],

here we borrow the idea of opting in codes by classloader

customization from existing frameworks [1], [5] and carefully

design a dynamic library drop-in replacement framework (with

18



Fig. 3. Overview of Library Update Framework with three modules Update
Execution Environment, Update Handler, and LibCenter.

secondary dependencies included) to support automatic library

upgrading across both minor and major versions.

Automated library update testing: The API-compatibility

based library updatability results presented in previous

work [22] are based on static app analysis, which can only

reflect a theoretical and syntactic situation. To understand the

actual feasibility of an API-compatibility based library update,

further runtime testing is necessary. The most established

dynamic app testing is automated user interface (UI) testing,

which performs a series of UI operations on the target app.

By doing so, the app behavior can be profiled, and potential

failures and dysfunctional behavior after library updating be

discovered by comparing the runtime profiles of the original

and the updated app. It is noteworthy that the feasibility of

our library update framework can be confirmed in this context

since behavioral correctness is a strict baseline for our testing.

IV. TWO-STAGE UPDATING EXPERIMENT

The goal of our study is to evaluate if a simple drop-in

replacement update is a viable option to solve the problem of

outdated libraries on Android. In this section, we describe a

two-stage experiment to test apps’ runtime behaviors before

and after a library update. In the first stage, we apply an

automated library updating framework that we developed

according to the proposal of prior work [22]. This framework

allows replacing an outdated library inside an app with a

newer version without additional host code adoption. During

the second stage, two automated user interface (UI) tests are

performed to evaluate the behavioral correctness of target apps

after drop-in replacements of library updates. This approach

allows us to report on the gap between the theoretical updata-

bility rate in the literature and the actual runtime rate and its

impeditive factors.

A. Stage-1: Automated Library Update Framework

To support automated library updating without host code

adoption, this work implements a dynamic updating frame-

work that takes advantage of the class domain isolation and

dynamic code loading features of Android’s classloader hier-

archy. The outdated libraries are automatically updated at app

load-time by loading the new library from a well-defined place

by a customized classloader, and in this process no additional

code adoption is required for the host app’s code.

The framework is composed of three modules as shown

in Figure 3: Update Execution Environment, Update Handler,

and LibCenter. Update Execution Environment is established

on a customized build of Android, which is extended with

components to support library updates. Update Handler is

a customized classloader chain together with auxiliary com-

ponents for applying library updates at app load-time. This

customized classloader chain isolates the loading of library

code and host components at runtime. As a result, the library

update can be opted-in as a replacement of the original library

by solely altering the library class loading path. LibCenter is

the centralized library management module. All the library

updates and included library information for installed apps

are maintained by it. It is also the user interface for update

configuration. Through this app, the library update for a

target app can be configured and delivered to the target app.

Together those three modules enable automatic distribution

and application of library updates without developer support

and ease our testing by allowing us to flexibly roll-out library

updates to the installed apps-under-test.

1) Update Execution Environment: To update a library of

an app, the updated version should be available to the app.

However, we have to abstain from modifying the app to avoid

malfunctions due to induced bugs and also to adhere to the

proposed methodology we are testing. Thus, the system should

opt in the updated version before app initialization, which

we accomplish through an update execution environment as

an extension to vanilla Android. This environment consists

of two key components (see also Figure 3): I an update

status manager to maintain a global update status of apps;

and II an app entrance diversification component to enable

library updating for an app. The internals of update execution

environment are illustrated in Figure 4.

I Update Status Management Component manages the

update status for each app and allows us to control if an

app runs with its original or an updated library version. Its

UpdateStatusService is a dedicated system service that records

each app’s update status according to update events sent by

LibCenter and unifies the update operations from system-

side in the II App Entrance Diversification Component and

the update configuration from user-side in LibCenter. Client

processes can reach the service over Binder IPC via a cus-

tom manager, UpdateStatusManager (O3), to set and get the

update status for each app. LibCenter sets the status of target

apps (O1) and II App Entrance Diversification Component
retrieves (O2) at app load-time the status for the loading app

to determine which library update actions should be taken.

II App Entrance Diversification Component is the actual

update deployment site and takes care of loading the up-

dated library version into the application process. As can be

seen in Figure 4, App Entrance Diversification Component
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Fig. 4. Update Execution Environment: App Entrance Diversification Com-
ponent is a customized ActivityThread to run the target app.

is implemented as a customized app launching process with

an additional Application class interface. The Application
class is the first class loaded in each app’s process life-

cycle. Initialization of the app and of the included library

is usually executed inside the Application class to ensure

they take effect at an early stage in the process’ lifetime.

Through this Application class, we added a new app entrance

to an Update Application (Section IV-A2) to the original app

launching process so as to control which library version should

be loaded during app launching based on the updating status

gained from the I UpdateStatusService, which was set via

LibCenter. With this modified launch process, the target app

can switch between the original library version (O4) or the

updated version (O5). In case of a library update, Update
Handler continues the app launch process.

2) Update Handler: As shown in Figure 5, Update Handler
is a bridge connecting host app and library update and is re-

sponsible for activating a library update for the app. To ensure

any app on our modified Android can activate library updates,

we integrated Update Handler into the Android framework

as a static library that is automatically loaded into all app

processes. Update Handler is composed of an I Update
ClassLoader Chain for separating the target library code

loading from the rest of the app code loading, an II Update
Resources Loader to attach resources of the updated library to

the original app, and an III Update Application to activate

Update ClassLoader Chain and Update Resources Loader
before the initialization of the app-under-test.

I Update ClassLoader Chain is a customized classloader

chain specifically for dynamic library updating. Android in-

herited Java’s parent-delegation mode in which a series of

classloaders are chained together and each non-root class-

loader will delegate a class loading request to its parent

classloader first before loading the requested class by itself.

Only the root classloader will try to load the target class

by itself directly. This parent-delegation mode separates the

Fig. 5. Update Handler: Left part is the ClassLoader Chain for original
Android while right part shows Update ClassLoader Chain and the involved
components for library updating. (Suffix * indicates ClassLoader)

loaded code into different security domains according to

their path, which prohibits a low priority classloader from

exposing high priority code. For instance, PathClassLoader
is in charge of loading installed application classes (class

path in /data/app/package.name) and cannot load non-

installed packages (e.g., class path in /sdcard/). Same class

loaded by different classloaders is treated as different classes

and cannot be cast to each other. In our design, classes from

the updated library version should be loaded instead of the

original outdated ones. However, the app package, including

both the app code and libraries code, is a fixed bundle and

the classes inside a user application are in general loaded by

Android’s default PathClassLoader. To suppress the loading

of the originally contained library and opt-in the classes of

the updated library, a new classloader chain is introduced

in our design to isolate the loading of the updated library

from the host application. Different with existing classloader

customization based patching solutions [1], [7] which replace

all outdated classes to updated ones directly, our solution

constructs an isolated container for the interaction between

updated library and its updated dependencies. Thus, both of the

original and updated secondary dependencies are preserved in

this design while updating the target library (first dependency)

so as to provide better updating compatibility for cases where

host codes involve invocations to secondary dependencies.

Figure 5 shows how the two classloaders are customized for

this new classloader chain.

UpdateClassLoader is an extension of BaseDexClass-
Loader, which is capable of loading dex files from a des-

ignated path. It is responsible for loading updated libraries

without additional app code merging (H1 in Figure 5). This

update-specific classloader is independent of the update, i.e., as

soon as a newer library version becomes available, that version

can be integrated with the host app by simply replacing the

library file for updates and without touching the app package

itself. However, objects created by different classloaders are

not available to each other, which could complicate the interac-

tion between the library and host application. To alleviate this
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problem, UpdateClassLoader has to be a node in the system

classloader chain. It is linked as a child to ProxyClassLoader,

the newly created classloader for application code.

ProxyClassLoader is an extension of PathClassLoader,

which can only load installed applications files. Apart from

loading the updated library’s classes, the original host appli-

cation should also be loaded. The app code is simply loaded

by the default PathClassLoader. However, the original library

code is intertwined with the host components inside the orig-

inal app package (i.e., dex file). The original library code will

also be loaded automatically by PathClassLoader when being

invoked by the host components. To create a clear boundary

between the host components and the library code that should

be replaced with the updated version, ProxyClassLoader is

constructed to delegate the loading of all updated library

classes to UpdateClassLoader. To minimize the impact of this

modification, ProxyClassLoader is initialized on the basis of

the original PathClassLoader. Everything of PathClassLoader
is preserved (H2) except for an additional class name filter

when loading classes. When the class to load is from the target

library, the name filter in ProxyClassLoader will distinguish

the library package prefix in the class name and the loading

request for this class is delegated to UpdateClassLoader (H3),
which will finish the class loading (H1). This way, the original,

tightly integrated library will be replaced at app loading time

with the newer library version.

II Update Resources Loader integrates the resources of

the updated library (H4) into the app. Though not all libraries

require additional resources, still a large fraction does in

order to enhance their functionality, e.g., Facebook SDK re-

quires resources to customize the login button. Since Android

resources are labeled with a 32-bit ID, there could be ID

conflicts between the original app resources and resources

of the drop-in library. Our solution is to compile the library

update within a wrapper application (com.wrapper) as a shared

library, so the generated resource IDs will not be constants

and can be reassigned to a separate range at runtime. To

enable the usage of resources inside the added library update,

its resources should be attached to the app space through

addAssetPathAsSharedLibrary interface. Since the assigned

IDs for the new resources might differ from the resource IDs

used with the library code, we rewrite all of the individual

library R classes with values in the merged resource file from

wrapper package. After that, the new resources are available to

both the library code and host application and no ID collision

can happen between the original and the new library resources.

III Update Application is a customized Application class.

The main idea is to ensure the updated library is activated

before any host application code takes control. Considering

that some library initialization is by default done in app’s

Application class, the activation of the new library should be

handled before that. The most convenient and least intrusive

solution is to hook the application initialization process by

replacing the original app Application class with Update
Application class that is described in Section IV-A1. After

the replacement, the system will treat it just as the origi-

nal Application class and finish the application initialization

process. In this initialization process, a request for library

updates will be sent to LibCenter from the target app’s process

space (H5). LibCenter will return an authorized URI that can

be used to copy the library package and configuration files

to the target app’s storage (H6). Furthermore, the creation

and initialization of both I Update ClassLoader Chain
and II Update Resources Loader are also accomplished

here based on the files retrieved from LibCenter. Last but

not least, the newly generated classloader chain is enabled

and the application can be launched as usual. To minimize

system modifications in integrating the new classloader chain,

we follow the classloader hooking approach used in former

works [1], [5].

3) LibCenter: LibCenter acts as a centralized library repos-

itory from which library updates are retrieved. All pre-

compiled library packages and metadata are stored here. Using

LibScout2 as part of LibCenter, we collect all installed apps’

metadata including information about used libraries and library

compatibility information based on the library API calls from

the host apps. LibCenter uses that information together with

user preferences set via LibCenter’s UI to create linking

information about which API-compatible library update can

be exposed to the Update Handler in target apps through an

Update Provider (see Figure 3).

Precompiled Updates are a set of wrapper applications

containing different versions of different libraries. Once an

update is activated, its corresponding wrapper application will

be copied to the app’s process space so the updated library

version inside the wrapper is available to the target app

(see description earlier). The generation of wrappers for each

library version is automated using Gradle with a template

app. By altering the dependency library information in the

build.gradle file of the template app, Gradle can synchronize

the specific library version from its central repository and

build the final wrapper application for this library version.

There are two advantages in wrapping the updated library

in an application with Gradle. First, considering that those

target libraries also need their own dependencies, e.g., OkHttp
depends on okio, we automatically bundle the target library

together with its dependencies to avoid conflicts between the

newly added library and the original library dependencies.

Second, by wrapping the library bundle into an apk file,

the resource file R.java can be generated and automatically

arranged with aapt3, which is necessary when invoking library

calls that need resources. Here we compile libraries as shared

libraries to avoid resource ID conflicts as described earlier.

Update Configurations are a set of files that describe the

generated wrapper packages. As mentioned in Section IV-A2,

information such as library class prefix and resource classes

are necessary for correctly loading library code and resources.

Update Configurations carry all the requested information of

2https://github.com/reddr/LibScout
3https://android.googlesource.com/platform/frameworks/base/+/master/tools/aapt
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a library update and are sent to the target app together with

the library package.

User Interface allows personalized settings for library up-

dates, e.g., the target app, target library, and update version

and is used by us to set up our test scenarios.

Update Linking Rules are created to dispatch a proper

library update to a target app. They depend on both the

LibScout generated library API compatibility metadata and

user preferences (e.g., targeted library version). Library API

compatibility metadata records the relationship between the

host application and target libraries gained from offline library

detection. For example, in the scenario described in Figure 2,

a profile for the relation between app A and library L version

a will be created in a form of quintuple [A, A’s version, L, a,
[b]], where [b] is the list of API-compatible library versions.

User preference designates the target app and library as well as

the target library version. Combining the quintuple and user

preference for an app, LibCenter can link a specific library

update to the target app. This linking information will be

used by Update Provider for exposing the correct wrapper

application to the target app.

Update Provider is simply a FileProvider to share files, here

wrapper applications, between target apps and LibCenter. It

uses Intents containing the URI for the corresponding wrapper

application in response to requests by Update Handler to allow

Update Handler to retrieve the library update from LibCenter.

B. Stage-2: Automated User Interface Tests

In the second stage of this experiment, we choose top

ranking libraries as our case studies for library updates and

run multiple dynamic tests on real-world apps from Google

Play that include those libraries in order to have a close look at

apps’ runtime behaviors after API-compatible library updates.

To ensure the comprehensiveness of this experiment, firstly, we

carried out a large-scale dynamic test to provide a macro-view

of not only the feasibility of our update framework but also of

immediate malfunctions, like crashes, in target apps brought

by those drop-in library replacements. Second, we execute a

more intensive test to explore more app functionality so as to

trigger more hidden malfunctions introduced by the updates,

e.g., changed side-effects of library methods, although a full

anomaly detection is beyond the scope of this paper.

1) Target Libraries & Apps: Different libraries have differ-

ent integration approaches with their host apps. We carefully

select three libraries, with 78 library versions in total, from

different library categories [3] as target libraries: OkHttp from

Development Tools, Facebook SDK from Social SDKs and

Facebook Audience from Ad Networks. Those three libraries

are the most popular libraries from reputable companies which

are well-maintained and include secondary dependencies. In-

stead of targeting more libraries, the experiment setting here is

more to utilize limited dynamic testing in highlighting a lower

bound on the existence of incompatibilities when considering

various library versions. To compile a list of apps that contain

those libraries, we run LibScout on an app repository contain-

ing 332,432 free apps crawled from Google Play with 128

Fig. 6. Monkey Evaluation Results for Apps including OkHttp, Facebook
SDK, Facebook Audience

library profiles for three libraries from the LibScout project.

We found 379,429 library-app pairs. LibScout can not only

provide a list of apps that contain a target library but also the

detailed API usage of the library. To make the evaluation more

comprehensive, we extend LibScout with a ranking module

to cluster apps into different sets based on the library APIs

invoked in the host app components. For dynamic testing, we

select 3,000 apps, 10 apps from each of the top 100 frequently

used API sets for each target library. There are 78 library

versions (25 from OkHttp, 33 from Facebook SDK, 20 from

Facebook Audience) in our final data set.

2) Monkey Test: Our update execution environment is

deployed on Android v7.0. We test our framework on two

Pixel C devices that are flashed with our customized system.

In this large-scale evaluation, we try to update each library

to the latest, API-compatible version. To measure the hit rate

of (updated) libraries during testing, we used soot4 to inject

log statements into the frequently invoked interfaces of each

library. To better scale the dynamic testing, we chose the open

source monkey-troop tool5 to install test apps and execute them

using Google’s official application exerciser, Monkey [10], on

both devices in parallel and automatically. In each monkey

run, 500 random events will be explored. During this process,

the execution log is recorded for measuring the library hit rate.

Ground truth: Considering that some apps could be mal-

functioning for reasons like failed download, obsolete APIs for

our test platform, buggy design, etc., we first run monkey-troop

on the original apps. Only if the first run executes successfully

without errors, those apps remain in the test app set and are

considered for library updates.

Test results: UI exploring results for the 3 libraries are

shown in Figure 6. The uppermost graph describes the update

result for OkHttp library, where 781 of 804 supported tested

apps passed Monkey without a crash, giving a success rate

4https://github.com/Sable/soot/wiki/Tutorials
5https://github.com/Project-ARTist/monkey-troop
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97.14%. Among all those apps supported, 60.95% of them

hit the updated library. For Facebook SDK library, 813 of

880 supported target apps did not crash during monkey ex-

ploration, resulting in a 92.39% success rate, and 61.48% of

those supported cases hit the library. The result for Facebook
Audience is quite similar with a 98.31% success rate for

the 890 supported apps and a 62.58% hit rate. From all

those results, we can see a success rate of 95.92% in total,

which is close to ideal. However, the overall hit rate of

61.69% is not very inspiring. More than 38 percent of apps

passed Monkey without hitting the library. The reason could

be, for instance, that the library is integrated at a hidden

position, which cannot be hit easily (e.g., the target library

is only invoked after purchasing a product successfully), or

the Monkey failed to explore the specific path (e.g., clicking

at a specific position on screen to jump to another page). Those

are the common limitations of large-scale dynamic testing with

random exploration by Monkey and have already been noticed

in various existing works. To complement our results, a more

in-depth but also time-intensive testing based on DroidMate

is conducted to evaluate the internal misbehaviors of the host

app after library updating.

3) DroidMate Test: In our second test, we focus on measur-

ing the impact of updating a library onto the apps’ behavior.

Changes in behavior between the original app and the one

with library update might indicate more intricate errors than

crashes (e.g., changes in side-effects of library methods). For

this experiment, we selected a random subset of 15 apps—

5 for each library—from the monkey test and performed a

comparative analysis of its behavior before and after updating.

We consider as app functionality its source code blocks—

including libraries—executed at runtime and as behavioral

change a variation of the blocks reached before and after

updating (for instance, exception handling routines would

cause a deviation of the behavior).

To reach deeper functionality and obtain a more accurate

impact measurement, we developed a plug-in for the open

source DroidMate [18] platform6 to bypass restrictions of the

monkey analysis, such as lack of login/registration informa-

tion. We performed this second test using four Pixel C devices

and four emulators, also configured as Pixel C. Both sets of

devices used the same customized version of Android v7.0

from the monkey-based testing. To ensure the accuracy of the

results, each app was entirely tested either on a Pixel C device

or on an emulator. We instrumented each test app, including

libraries, with ARTist7 [15] and obtained a list of all possible

blocks, which we use as ground truth. This list may be an

over-approximation of the actual possible behavior, as some

blocks may be unreachable due to app’s usage or to our test

configuration. During the test execution, we logged all reached

blocks—except for those belonging to the targeted library

which by design would differ between tests—and monitored

the log for a library reached tag to ensure that the target library

6https://github.com/uds-se/droidmate
7https://github.com/Project-ARTist

was hit. We discarded runs that did not reach the library.

Test design: For each app, we executed the original app and

the updated one until we obtained 10 executions of each that

have reached the library. We opted for 10 runs to mitigate the

variability caused by the random exploration as well as by

non-deterministic content such as advertisements, while also

achieving a reasonable time trade-off for testing duration. Each

execution consists of 500 events on valid UI elements, such

as clicks, long clicks, and swipes, where valid UI elements

are those that are visible, enabled, and can be clicked on the

screen. Our DroidMate plug-in executed predefined actions on

login and registration screens—entering user name, entering

password, and clicking the login button—and explored the

remaining screens with DroidMate standard biased-random

approach, which prioritizes UI elements that have not been

previously interacted with in order to increase chances for

discovering new path and code coverage. For evaluation, we

grouped the executions output in two clusters: original (O) and

updated (U ). For each cluster we computed the set of reached

blocks (BO and BU ), that is, the set of blocks that were

reached by at least one run. To measure the behavior change

between the original and updated app, we compared the inter-

section between these clusters (BI = BO ∩ BU ) against the

set of blocks reached in the original runs (|BO −BI |). If this

difference is greater than 3×standard deviation of the average

coverage among the elements in BO (|BO−BI | > 3×σ(O))—
which covers 99.7% of the values assuming the coverage

variation follows a normal distribution—we considered that

there was a behavioral change.

Test results: The test results are shown in Table I. For

each app we evaluated the overall block coverage, i.e., the

percentage of blocks from both the app and its libraries, which

could be reached during testing, as well app code coverage,

i.e., considering only blocks belonging to the same package

as the app. We use this coverage as an indication of the test

depth and relevance.

Our DroidMate plug-in achieved, on average, 37% overall

block coverage on the original apps and 36% on the updated

ones, with a minimum of 12.66% and a maximum of 60.86%.

Considering only app block coverage, it achieved 35% cover-

age on both app versions, with a minimum of 11.76% and a

maximum of 60.50%, which falls within the range of expected

coverage for state-of-the-art test generators [21].

Using the 3 standard deviation tolerance as a metric, only

the SnapOdo app, which uses the Facebook SDK, displayed

a behavioral change. A manual inspection of the exploration

results of the updated version showed that this app was no

longer able to log in to Facebook, which in turn restricted the

number of reachable blocks for exploration. LOOM CLUB also

showed a significant coverage difference (5%), however, due

to the highly non-deterministic nature of the app, this same

difference was observed within the runs of its original version

and thus was characterized as exploration noise.
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TABLE I
RESULTS OF IN-DEPTH ANALYSIS WITH DROIDMATE PLUG-IN. COMPARISON BETWEEN CODE COVERED FOR ORIGINAL AND UPDATED APP.

App Original Updated
Name Version Library App Overall St.Dev. App Overall Change

Shalom Shalom Radio 2.0 OkHttp 18.59% 17.81% 3.17% 19.36% 16.76% No
Maurin Hyundai 3.0.4 OkHttp 13.33% 48.93% 1.06% 13.33% 48.93% No
Blur Effect Keyboard 1.185.1.102 OkHttp 31.36% 37.36% 2.87% 33.58% 35.85% No
UK Online FM 1.0 OkHttp 48.35% 60.86% 0.71% 48.35% 60.46% No
Sanimedius Apotheke 2.1.10 OkHttp 56.58% 37.94% 3.07% 57.89% 37.90% No
LOOM CLUB 4.785 Facebook 23.62% 29.03% 2.26% 20.25% 23.98% No
Farmacia Charo Ferrá 0.01 Facebook 11.76% 36.80% 4.16% 11.76% 34.62% No
SnapOdo 0.1.0 Facebook 11.76% 51.61% 1.24% 11.76% 46.53% Yes
Close Up 2.2 Forest Facebook 58.60% 54.38% 0.17% 57.67% 54.26% No
Stevenson Student Activities 5.63 Facebook 42.72% 48.29% 0.46% 42.55% 46.91% No
Metal Tombstone 4.1 Pea Green FacebookAudience 60.50% 19.88% 0.12% 61.00% 19.65% No
Personal Tracker 1.5 FacebookAudience 54.72% 30.54% 1.14% 64.15% 30.78% No
Paris Metro Map 1.1 FacebookAudience 23.08% 25.72% 2.81% 23.08% 25.83% No
Burak Yeter Songs 1.4 FacebookAudience 50.00% 50.00% 0.00% 50.00% 50.00% No
Maquillaje Halloween 2017 13.0.0 FacebookAudience 24.49% 12.66% 1.55% 24.23% 12.56% No

TABLE II
CATEGORIZED EXCEPTIONS REPORTED BY MONKEY TEST.

Exception Category #App %Failure Library Version Updated (#) Error Message Example

AbstractMethodError 17 73.91% OkHttp 3.0.0-RC1 – 3.9.0 (17)

java.lang.AbstractMethodError:
abstract method ”void
okhttp3.Callback.onResponse(okhttp3.Call,
okhttp3.Response)”

ClassNotFoundException 4 17.39% OkHttp
3.2.0 – 3.9.0 (2) 3.3.0 – 3.9.0 (1)
3.3.1 – 3.9.0 (1)

java.lang.NoClassDefFoundError: Failed res-
olution of: Lokhttp3/internal/Platform

FacebookException 52 77.61% Facebook

4.0.1 – 4.26.0 (1) 4.1.0 – 4.26.0 (2)
4.2.0 – 4.26.0 (1) 4.3.0 – 4.26.0 (1)
4.5.0 – 4.26.0 (1) 4.6.0 – 4.26.0 (8)
4.7.0 – 4.26.0 (1) 4.8.0 – 4.26.0 (1)
4.8.2 – 4.26.0 (8) 4.9.0 – 4.26.0 (15)
4.16.0 – 4.26.0 (1) 4.17.0 – 4.26.0 (12)

java.lang.RuntimeException: A valid Face-
book app id must be set in the An-
droidManifest.xml or set by calling Face-
bookSdk.setApplicationId before initializing
the sdk

This table only lists library related exception cases.
#App: the number of failed apps that reported this exception.

%Failure: the percentage of apps that failed for this exception among all the monkey failures of this library.

V. ROOT CAUSE ANALYSIS

Our two-stage experiment in Section IV demonstrates the

occurrence of app runtime behavioral deviations after API-

compatible library updates and shows that library updating is

not as straightforward as the existing work [22] claimed it to

be. In this section, we deep-dive into the failure cases in our

tests to study the factors that impede library updating.

A. Findings from Monkey Testing

We analyze the Monkey logs of the failed apps and catego-

rize all failures according to the reported exception messages.

Though we did a pre-run on Monkey for each app to filter out

those apps with innate faults, a flawed app can still survive the

first run and crash in the second run because of the random

behavior triggered by Monkey. Since we are not working on

app debugging, investigating the failure reasons for all failure

cases would be a wild-goose chase. Here, we concentrate

only on the failures that have an obvious relationship with

updating libraries. We consider all the failures that contain

library specific keywords in their exception messages. Table II

provides an overview of those failure instances.

It can be observed that both OkHttp and Facebook SDK have

interesting exceptions at runtime after updating them, while

we discovered nothing of interest for Facebook Audience.

For OkHttp, 17 apps failed because of AbstractMethodError
and 4 apps failed because of ClassNotFoundException, which

together make 91.30% of all failure cases for OkHttp. Library

Facebook SDK has 52 apps throwing FacebookException,

which equals 77.61% of all failures for that library.

1) AbstractMethodError: This exception is thrown when an

abstract method is called but the definition of a target class,

here class okhttp3.Callback, is incompatible with the currently

executing method. All of the 17 crashes happened when

updating OkHttp from version 3.0.0-RC1 to 3.9.0. Version

3.0.0-RC1 is the first version with the 3.x API. This is

a breaking upgrade that even changed their package name

from com.squareup.okhttp to okhttp3. Version 3.9.0 is the

latest OkHttp version in our library repository. With all those

background information and our test setting that libraries are

always updated to their newest version among all the com-

patible versions, this is a strong indication for incompatible

changes between those two library versions.
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1 // version 3.0.0-RC1 release date: 2016-01-02
2 public interface Callback {
3 void onFailure(Request request, IOException e);
4 void onResponse(Response response) throws IOException;
5 }
6
7 // version 3.0.0 release date: 2016-01-13
8 public interface Callback {
9 void onFailure(Call call, IOException e);

10 void onResponse(Call call, Response response) throws
IOException;

11 }
12
13 // version 3.9.0 release date: 2017-09-03
14 // the same as 3.0.0

Listing 1. Evolution trace of okhttp3.Callback class.

Source code analysis: Library OkHttp is open source, and

we investigate the source of okhttp3.Callback and find its

evolution trace, which is shown in Listing 1. We find that

in version 3.0.0, OkHttp modified the interfaces defined in

Callback by taking an additional Call object as a parameter

for both onFailure and onResponse interfaces to facilitate

invocations to the Call object inside the Callback as described

in its changelog. This change remained up to the newest

version. This kind of mismatch should be detected as an

incompatibility between versions, and its update should be

disallowed in our test settings. However, LibScout detects

library invocations via root package matching. Since interface

implementations are usually named under a host package

prefix (e.g., com.host.package.Callback), they are at-

tributed as a host call by LibScout when invoking onResponse
interfaces of a Callback host implementation and escape from

the library compatibility check. To eliminate this kind of false

positive cases, LibScout should also take the library’s public

interfaces into consideration. In this case, all of the 17 apps

will be non-updatable under these new constraints. Also, the

claimed update rate by earlier work should be updated.

2) ClassNotFoundException: This exception is thrown

when a classloader failed to load the target class by name

in the classloader chain. While updating OkHttp from various

versions to the newest one, four apps were reported as a crash

because of a failure in finding class okhttp3.internal.Platform
in the path of the library update.

Source code analysis: We discovered that Platform
class in versions before 3.4.0-RC1 of OkHttp is named

as okhttp3.internal.Platform, which conflicts with the

one named okhttp3.internal.platform.Platform in version

3.9.0. From the exception stack, we know that those

failed apps all include OkHttp Logging Interceptor
(okhttp3.logging.HttpLoggingInterceptor) library, which

is a sibling library of OkHttp and uses it as a dependency.

As mentioned before, LibScout uses a root package matching

to detect library invocations. That way, invocations between

sibling libraries like OkHttp Logging Interceptor and OkHttp,

whose method signatures start with the same root package,

will be misreported as a library internal call. Thus, changes

in interfaces exposed to sibling libraries will be missed by

LibScout. Even finding such cases with auxiliary information

besides the library API is hard, for instance, the OkHttp

1 // version 4.18.0 November 30, 2016
2 public static synchronized void sdkInitialize(...){}
3
4 // version 4.19.0 January 25, 2017
5 @Deprecated
6 public static synchronized void sdkInitialize(...) {
7 ...
8 // We should have an application id by now if not throw
9 if (Utility.isNullOrEmpty(applicationId)) {

10 throw new FacebookException("A valid Facebook app id
must be set in the AndroidManifest.xml or set by
calling FacebookSdk.setApplicationId before
initializing the sdk.");

11 }
12 ...
13 }
14
15 // version 4.26.0 August 24, 2017
16 // the same as 4.18.0

Listing 2. Evolution trace of sdkInitialize method.

changelog for the whole okhttp family does not mention

an internal Platform class renaming, since this class is not

supposed to be invoked from outside this library family.

To update the library based on API compatibility more

effectively, a more fine-grained matching filter for sibling

libraries and internal public interfaces should be applied

to the lib usage detection logic of LibScout, which would

very likely decrease the reported rate for updates to the max

version. For example, in this case, 3 out of 4 apps could still

be updated to the intermediate library version 3.3.1, the last

version before Platform renaming.

3) FacebookException: This exception is a Facebook cus-

tom exception that is thrown when an internal error hap-

pened in Facebook SDK. In our test set, 52 Facebook SDK
failure apps reported an application ID missing error during

SDK initialization after update to version 4.26.0 (the newest

Facebook SDK version in our repository) and the original

library versions vary from 4.0.1 to 4.17.0. Thus, the Facebook
SDK initialization must have changed with some version after

4.17.0. We look into the Facebook SDK upgrade guide and

find a description about upgrading 4.18.0 to 4.19.0:

”The Facebook SDK is now auto-initialized on Application
start. If you are using the Facebook SDK in the main process
and don’t need a callback on SDK initialization completion,
you can now remove calls to FacebookSDK.sdkInitialize.”

Source code analysis: To verify if this modification is

the main reason of failures, we check the source code of

Facebook SDK and discover that before version 4.19.0, the

Facebook SDK is usually initialized manually via interface

FacebookSdk.sdkInitialize (see Listing 2). The application ID

could be set either in AndroidManifest.xml file or setAp-
plicationId method. The ID could be set either before or

after sdkInitialize. However, starting from version 4.19.0,

interface sdkInitialize is labeled as deprecated, and now it

is called by Facebook SDK automatically without explicit

code invocation in host components. Deep within the ini-

tialization code, we find that the application ID must be

set before invoking sdkInitialize as shown in Listing 2 or

otherwise an exception is thrown. Thus, the application ID

should be set as early as possible to avoid any failure. In
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1 // file assets/www/js/services.js
2 facebookConnectPlugin.api(’/me?fields=about,bio,
3 email,name,first_name,last_name&access_token=’ +

authResponse.accessToken, null, ...);

Listing 3. Graph Request in SnapOdo.

fact, to support automatic initialization, Facebook imported

a new ContentProvider component FacebookInitProvider in

4.19.0. ContentProvider components can be initialized at the

beginning of app launching ahead of any other components. By

invoking FacebookSdk.sdkInitialize in FacebookInitProvider,

the Facebook SDK can be initialized at a very early stage. In

a standard Facebook SDK integration, FacebookInitProvider in

Facebook SDK’s custom library AndroidManifest.xml file will

be merged with the app’s AndroidManifest.xml file during app

building, and the application ID should be configured in An-
droidManifest.xml file to ensure the application ID is available

during FacebookInitProvider initialization at app launching

time. Changes to the AndroidManifest.xml are excluded from

our test settings, and all the original library SDK configuration

is kept as in the original app. Thus, some apps with lower

library versions that set the application ID after invoking

sdkInitialize will fail with the newer library versions.

B. DroidMate Finding

To explore the incompatibility of libraries beyond crashes,

we investigate the case for which we found a deviation in

the runtime behavior in the DroidMate test after updating the

Facebook SDK library. The Facebook SDK of app SnapOdo
is updated from version 4.15.0 to the latest version 4.26.0

and after that failed to login to the facebook account. From

the official changelog, we know that a Graph API upgrade

occurred in version 4.16.1. According to the changelog of

Graph API version 2.8, some deprecations happened, including

the removal of a ”bio” field on the User node. In Android

apps, GraphRequest is usually created by either JavaScript or

Java code integration with some fields defined in the graph

path string. We decompile the SnapOdo package and find

the GraphRequest creation in a JavaScript file as shown in

Listing 3. The usage of the ”bio” field is incompatible with

the new Graph API used in newer Facebook SDK versions

and leads to the login failure in this app. This case reflects

potential updating obstacles beyond API-compatibility. For

both integration options, field ”bio” works just as a part of a

string parameter that is definitely out of the range of LibScout
detection.

C. Case Study

From those failure cases, we noticed that even though

the APIs of different library versions are compatible, some

internal execution logic changes could prohibit a simple drop-

in update. We use the factors discovered in case of the

Facebook exception as a case study and perform a large-

scale analysis to evaluate the prevalence of such impeding

factors for drop-in replacements in other libraries. It is worth

noting that 1) Facebook SDK labeled interfaces which are not

recommended to use after some updates with a ”deprecated”
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Fig. 7. Number of public deprecated APIs in libraries source code and the
number of them that exist in more than 5 versions.
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Fig. 8. Number of public deprecated APIs that exist in more than 5 versions
and that are used in apps (total vs. with ”deprecated” label).

annotation instead of removing them directly, which puts

them outside of LibScout’s API compatibility analysis; 2) a

drop-in update cannot change the configurations defined in

AndroidManifest.xml file, which could be different between

different versions.

Deprecated methods: We carried out a statistical analysis

of the source code of 1430 different versions of 44 open

source libraries that we gathered from maven repository. We

extend javadocextractor8, which is a wrapper of javaparser9,

to check the occurrence of deprecated interfaces in libraries.

We find that 32 of 44 (72.73%) libraries have deprecated

methods. Among all those libraries with deprecated interfaces,

24 of them have deprecated interfaces present in more than 5

versions, which indicates the prevalence and permanence of

deprecated methods. Figure 7 lists the deprecated API details

for 10 libraries. To quantify the impact of those deprecated

methods in real-world apps, we compared those deprecated

interfaces that exist in more than 5 library versions with

library invocation calls detected by LibScout from a more

extensive app repository which contains 9,902,533 profiles for

2,041,017 apps. Since an interface is usually used before being

deprecated, we also distinguished the usage situation for both

non-deprecated versions and deprecated versions. Our results

show that 20 of 24 libraries, 158 APIs in total, are detected as

used in real-world apps. In those 20 libraries, 15 of them with

8https://github.com/ftomassetti/javadoc-extractor
9https://github.com/javaparser/javaparser
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TABLE III
LIBRARY MANIFEST CHANGES ACROSS DIFFERENT VERSIONS.

Manifest Entries #Changed Cases #Library Concerned

Activities 16 ACRA, CleverTap, Facebook-Audience, Facebook, HockeyApp, Paypal, braintree-payments, leakcanary, vkontakte
Services 7 ACRA, MapBox, Parse, braintree-payments
Content Providers 2 ACRA, Facebook
Broadcast Receivers 3 CleverTap, vkontakte
Permissions 10 ACRA, CleverTap, Facebook-Audience, HockeyApp, Parse, Paypal, braintree-payments, leakcanary

TABLE IV
RULES TO IDENTIFY INCOMPATIBLE UPDATES WHEN CONSIDERING OUR DISCOVERED FACTORS.

Library Side Effect Original Version Update Version Features

OkHttp AbstractMethodError = 3.0.0-RC1 > 3.0.0-RC1 Existing host implementation of okhttp3.Callback
OkHttp ClassNotFoundException < 3.4.0-RC1 >= 3.4.0-RC1 Using library LoggingInterceptor together with OkHttp.

Facebook Sdk FacebookException < 4.19.0 >= 4.19.0
Invoking sdkInitialize without either invoking setApplicationId or
defining applicationId in AndroidManifest.xml.

Facebook Sdk Login Failed < 4.16.1 >= 4.16.1 Using field ”bio” in graph requests.

TABLE V
RESULTS OF LIBRARY UPDATABILITY RE-ESTIMATION(* INDICATES RE-ESTIMATION RESULTS).

Library #Apps #Updatable #Latest Updatable *#Updatable *#Latest Updatable

OkHttp 104,046 97,176 (93.40%) 45,962 (44.17%) 94,550 (90.87%) 37,934 (36.46%)
Facebook Sdk 199,007 187,191 (94.06%) 145,817 (73.27%) 187,189 (94.06%) 134,035 (67.35%)
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Fig. 9. Number of apps that use public deprecated APIs (exist in more than
5 versions) and their usage (total vs. with ”deprecated” label).

94 (59.49%) APIs in total, are used under deprecated status.

Figure 8 shows the target API usage details and highlights the

deprecated usage for 15 libraries. The amount of apps affected

by deprecated APIs is also remarkable. In our results, 561,671

app profiles are reported containing target API calls, while

47,966 of them include those calls under deprecated status.

Figure 9 lists the number of apps that include target APIs under

deprecated status for 15 libraries. From the results above, we

can see that most of the libraries have deprecated methods.

A deprecated method is supposed to be removed in the near

future, but based on our results, those methods usually remain

for an extended period, which gives developers the chance

to keep using outdated code and also brings false positives to

API-compatible library updating. The prevalence of deprecated

cases further shows that a plain drop-in replacement cannot

work as good as expected.

Manifest changes: Usually, library developers define nec-

essary components and permissions in library manifest files

which will be automatically merged with the app’s manifest

file when building the app with Gradle. This process could be

opaque to app developers. In a drop-in replacement library

updating, those manifest modifications, e.g., FacebookInit-
Provider registration in our test, will be ignored since no app

rebuilding is performed. This can impede the library updating

as we have discovered for the Facebook SDK. To gain insights

on the extent of this problem, we gathered 362 Android

Archive packages (i.e., manifest plus code) for 15 libraries and

analyze the component and permission changes in manifest

files across different versions. The result is shown in Table III.

Among all 15 libraries, 16 Activity changes happened in

9 libraries, 7 Service changes happened in 4 libraries, 2

ContentProvider changes in 2 libraries, 3 BroadcastReceiver

changes in 2 libraries, and 10 permission changes in 8 libraries.

In other words, 11 out of 15 libraries have at least one entry

modified between versions. These frequent changes indicate a

high potential for incompatible drop-in replacements despite

API compatibility.

D. Library Updatability Re-Estimation

Our dynamic testing results reveal that failed library updates

come from both flaws in the LibScout tool and library internal

changes. Our case study confirms the prevalence of those

factors across different libraries. The API-compatibility based

updatability rate reported by LibScout should be adjusted.

Here, we set OkHttp and Facebook SDK libraries as two typ-
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ical examples and re-estimate the API-compatible based up-

datability rate after considering the discovered factors. We use

the same app set as in our automated UI tests (332,432 apps in

total). First, we gathered the theoretical API-compatible based

updatability rate according to the compatibility definition of

LibScout [14]. Then, we create rules to identify apps with

incompatible library updates when considering our findings,

as shown in Table IV. Lastly, we scan app profiles and filter

out all the apps that match one of the rules. Method call

information like sdkInitialize and setApplicationId is gath-

ered by LibScout already, we only need to extend it with

host interface implementation checking, manifest metadata

(applicationId), and JavaScript analysis results (field ”bio”).

Considering field ”bio” can be added to graph requests through

not only JavaScript but also Java code, we take advantage of

the Artist [15] tool to filter any field ”bio” usage in graph re-

quest construction relevant string flows. The final re-estimation

results are shown in Table V. We find that the updatability

rate varies between 93.40% to 90.87% for OkHttp and stays

(94.06%) for Facebook SDK. However, the updatability rate

to the latest version varies more significantly between 44.17%

and 36.46% for OkHttp and between 73.27% and 67.35% for

Facebook SDK. The re-estimation result exhibits a decrease of

the updatability rate compared to plain LibScout, in particular,

the latest version updatability rate, when taking our discovered

impeding factors into consideration. With runtime app behav-

ior profiling, we find that a drop-in replacement for library

updates is technically possible, but if a functioning continuous

updating model is expected, the joint efforts from library

developers, app developers, and LibScout tool developers are

necessary to address those factors.

VI. DISCUSSION

We discuss the limitations and prospects of our study.

A. Research Sample

We used three libraries from different categories for our

study. Although those are popular libraries, their results might

not generalize and cover all kind of potential problems.

However, our work still revealed important issues of library

updates and shows that API-compatibility alone is not a good

indicator for library updates. Further, we investigated 1.4k

other library versions and 2M real word apps for identical

problems and could confirm the prevalence of those problems,

which we think makes them representative. Moreover, scaling

the analysis to larger-scale and more intricate problems is

naturally limited by the small-scaling of dynamic testing.

Future work could investigate certain problem classes in a

focused way.

B. Entangled Dependencies

A crucial observation of our tests is entangled dependencies

between different libraries and even the host app. For instance

Figure 10: both the app and the library La depend on library

Lb. When updating La, not only Callha but also Callab should

be taken into consideration. A more complicated case is that

Fig. 10. An example of entangled dependencies inside an app.

the host application creates an object from secondary depen-

dency Lb and passes it to La as a parameter. It is not supported

by our classloader customization based test framework. API

static analysis result from our test samples shows that 1.7% of

library APIs could be affected by this problem and also two

failure cases in the unknown crashes of the dynamic test are

confirmed to be related to this problem. This exceptional case

is the limitation of our framework setting, but we here only

focus on incompatibility cases brought by library updating.

The crash cases reported in Section V are not affected by this

exceptional case. Apart from that, our framework ensures that

all dependencies are correct for host app and updated library

respectively since the original library and its dependencies

are still in the app. Obviously, the numbers reported in

previous Section V-D are an optimistic estimate when no

direct dependency conflicts occur. The situation for entangled

dependencies in real-world might be far from desirable. We

looked into the impact of dependencies on library updatabil-

ity. We crawled library dependency information from Maven

Repository10 and limit a library’s possible update to only

versions that share the same dependency set with the original

one. Compared to a purely API-compatibility based update,

this API/dependency-based update shrinks the updatability rate

significantly. The rate for the same 332,432 apps reduces

by 47.95% (93.40%-45.45%) for OkHttp, 40.37% (94.06%-

53.69%) for Facebook SDK, and 36.38% (99.94%-63.56%)

for Facebook Audience. This multiple dependency situation is

not a corner case. Static analysis of those apps shows that

57.50% of the apps that integrate OkHttp have invocations

to OkHttp’s dependencies in either their host code or other
libraries and even 96.03% for Facebook SDK and 97.76% for

Facebook Audience. Hence, whether a lib can be updated in

reality might also be constrained by further dependencies by

other libs or app code to its own dependencies and, hence, in

case of a conflict, prevent an update of the target lib without

doing extensive updates of other libraries (potentially creating

a ”dependency hell”).

C. Framework and UI-based Testing Limitations

Although very carefully designed to avoid errors/crashes of

the apps and libraries due to erroneous drop-in replacements,

we cannot entirely exclude that some of the crashes of apps

come from our framework, since it is unrealistic to debug all

the failed apps from our testing. However, our investigation

focused on those crashes with clear problems stemming from

the library integration and internal changes. Further, we only

test control flows starting at Activities and achieve with this

10https://mvnrepository.com/
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on average 35% app block coverage. Thus, our results form a

lower bound on the potential problems of the tested libraries.

The emphasis of our work is on confirming the existence

of API-compatibility based update problems and identifying

advice for future library update tool developers/researchers

about what impedes library updatability.

D. Efforts from Multiple Parties

The main idea of this work is evaluating ways of (sup-

porting developers in) maintaining dependencies, starting with

evaluating the feasibility of drop-in updates and discussing the

relevance of our results for library updatability. Our discovered

problems are intricate, and hence any support for automatic

lib updates or even tools that help developers in making a

judgment of the library updatability have to consider those

non-trivial problems, e.g., clear connections to changelogs,

changed data structures, or code annotations. Multiple parties

are involved in the library update chain and there is a call for

action to better support lib updates in the mobile ecosystem,

including better tools for app developers to judge and realize

library updates or a call to system vendors to rethink the static

linking of libraries in favor of more dynamic approaches (e.g.,

on Linux) that not only can profit compartmentalization of

third-party code [29] but also its updatability.

E. Updating in Automated App Testing

In our DroidMate test, we observed a case of a highly

non-deterministic app that resulted in exploration noise. The

reason for the non-determinism is that the app has a lot of

random actions, for example, loading different advertisements

in different runs. Considering that our update framework opts

in library updates as a replacement of the original library

without any actual app code modification, we plan to inves-

tigate the possibility of migrating our lightweight framework

to blacklisting unwanted libraries in automatic app testing.

VII. CONCLUSION

Outdated third-party libraries are prevalent in apps. To

alleviate the unpleasant situation, prior work suggested an

API-compatibility based library update solution using drop-

in replacements of outdated libraries. In this paper, we study

the library updatability using such drop-in updates. We imple-

mented a library update framework for Android and used it on

3,000 real-world apps for 3 popular libraries. Using dynamic

testing of those apps, this gave us insights into the runtime

behavior of an API-compatibility based updating solution. To

discover more intricate incompatibility cases, an automated

user interface testing was carried out on 15 apps both before

and after library updates. Our tests revealed intricate factors

that prevent a drop-in replacement of libraries. Studying the

source code of libraries that failed to update and using static

app analysis, we confirm the prevalence of those problems

in other libraries. Our re-estimation of prior estimates of the

library updatability rate under consideration of the discovered

impeding factors shows a decrease in the rate by more than

half due to entangled library dependencies. This work is

the first to confirm the existence of API-compatibility based

update problems and can provide valuable insights for future

library update tool developers/researchers on what should be

taken into account when updating libraries.
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