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Abstract—Memory corruption vulnerabilities have been
around for decades and rank among the most prevalent vulner-
abilities in embedded systems. Yet this constrained environment
poses unique design and implementation challenges that signifi-
cantly complicate the adoption of common hardening techniques.
Combined with the irregular and involved nature of embedded
patch management, this results in prolonged vulnerability ex-
posure windows and vulnerabilities that are relatively easy to
exploit. Considering the sensitive and critical nature of many
embedded systems, this situation merits significant improvement.

In this work, we present the first quantitative study of exploit
mitigation adoption in 42 embedded operating systems, showing
the embedded world to significantly lag behind the general-
purpose world. To improve the security of deeply embedded
systems, we subsequently present μArmor, an approach to
address some of the key gaps identified in our quantitative
analysis. μArmor raises the bar for exploitation of embedded
memory corruption vulnerabilities, while being adoptable on the
short term without incurring prohibitive extra performance or
storage costs.

I. INTRODUCTION

Embedded systems are everywhere, from simple networking

equipment to satellite systems. With the rise of cyber-physical

systems and the Internet of Things (IoT), these systems are

set to proliferate throughout all aspects of everyday life. Due

to their ubiquitous and often sensitive and critical nature,

embedded systems pose many security and privacy concerns.

Unfortunately, proper attention to security in the embedded

world tends to be scarce in practice. This tendency becomes

clear from various studies [1], [2] revealing security flaws

in a wide variety of embedded systems. These flaws are far

from hypothetical. One example is the high-profile attack on

embedded systems known for having been used to construct

the IoT-powered botnet Mirai [3]. Yet embedded systems

security is seen as lagging behind what we have come to expect

of our general purpose (e.g., desktop and server) systems [4].

Embedded binary security, in particular, is an area where

exploitation of vulnerabilities is significantly easier than on

general-purpose systems. This is exemplified by a recent

incident where a previously unknown group calling themselves

the Shadow Brokers released a cache of exploits which they

claimed belonged to the supposedly state-sponsored Equation
Group [5] threat actor. Among this cache was a set of exploits

for high-end firewall equipment, none of which had to bypass

any exploit mitigations. Despite these threats, and the general

perception of embedded systems binary security as lagging,

we do not yet have a clear understanding of the existing

gap in security technologies available for embedded systems

compared to general-purpose computers.

In this paper, we study this problem and focus on three

major bare-minimum and well-known exploit mitigation tech-

niques. More specifically, we focus on Executable Space
Protection (ESP, also known as NX, DEP, or W ⊕X policy),

Address Space Layout Randomization (ASLR) and stack ca-
naries to identify the gap in security technologies specifically

in the memory corruption and exploitation domain. These

exploit mitigation methods are almost universally available

on general-purpose computers. We investigate whether such

mitigations are available in 42 major embedded Operating

Systems (OS). We found that half of them provide such

mitigations and the majority of them belong to the group of

so-called high-end embedded OSes. However, when it comes

to lower-end embedded OSes that are mostly being used in

so-called deeply embedded systems, exploit mitigations are

almost absent. The deeply embedded systems as described by

Koopman et al. [6] are a subset of embedded systems which

usually rely on 8-, 16- or (at the higher end of the spectrum)

32-bit micro-controllers. These systems tend to come in the

form of a micro-controller unit (MCU) or more extensive

System-on-Chip (SoC) devices, embedding both the core as

well as memory and peripheral devices into a single chip.

We investigated 78 common [7] embedded microprocessors

and microcontrollers to understand whether this universal lack

of exploit mitigations is caused by lack of hardware feature

support (i.e., Memory Management Unit (MMU), Memory

Protection Unit (MPU), or Hardware-supported ESP).

While the lack of exploit mitigations for bare-metal em-

bedded systems (i.e., devices without an OS) is addressed in

recent research [8], no research suggests a solution for deeply

embedded systems that are running multi-stack, multi-threaded

and real-time capable operating systems. This lack of solutions

comes with risks that are expected to increase. According to

VDC Research [9], the IoT has caused developers for deeply

embedded systems to move away from bare-metal embedded

systems towards deeply embedded systems running an OS.

Based on our quantitative analysis on the lack of exploit
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mitigation support on deeply embedded OSes and considering

the recent research by Celements et al. [8] which addresses

bare-metal deeply-embedded systems, we introduce μArmor, a

set of LLVM passes that harden deeply embedded systems that

are running an OS. Our goal is to bring exploit mitigation base-

lines from general-purpose computers to the most constrained

end of the embedded spectrum. More specifically, μArmor

adds several exploit mitigation strategies to such systems. We

have built a prototype implementation of this concept and

evaluate the overhead imposed by μArmor in terms of code

size, data size, memory usage, and runtime overhead. Our

empirical results indicate that the induced overhead is very

low and suitable even for deeply embedded systems.

In summary, we make the following contributions:

• We perform a comprehensive, quantitative study of ex-

ploit mitigation adoption in 42 embedded operating sys-

tems. This analysis clearly shows that embedded systems

severely lag behind general purpose ones.

• We perform a systematic identification of the challenges

faced by embedded exploit mitigation adoption efforts.

Based on this analysis, we identify two major open prob-

lems and subsequently introduce a solution to address

them.

• We propose, implement and evaluate μArmor, an exploit

mitigation baseline design for deeply embedded systems

running a multi-stack, multi-threaded, real-time capable

operating system. Additionally, as part of μArmor, we

present μSSP, a stack canary scheme with a modular

violation policy handler allowing for the preservation of

the system’s availability.

II. MITIGATIONS BASELINE

The term embedded systems covers a large number of

different devices that are dedicated to a specific purpose. In

this work, we focus on so-called deeply embedded systems [6],

a subset of embedded systems which usually rely on 8-, 16-

or (at the higher end of the spectrum) 32-bit micro-controllers.

These systems tend to come in the form of a micro-controller

unit (MCU) or more extensive System-on-Chip (SoC) devices,

embedding both the core as well as memory and peripheral

devices into a single chip. Such a high level of integration

allows for low production cost and simplifies production, but at

the same time constrains capabilities with regards to memory

size, speed and power consumption. Deeply embedded systems

often lack user interfaces or have uncommon ones and tend to

run extremely minimal OSes (often with real-time capabilities)

or no OS at all (bare-metal).

We are interested in defining the absolute minimum set

of mitigations which should be reasonably expected to be

present in all modern embedded systems. Because of the

sheer diversity of embedded systems, we do not select our

baseline by strict criteria. Instead, we require them to be

adaptable across the embedded spectrum and not rely on

any specialized hardware feature not commonly present in

Commercial off-the-shelf (COTS) embedded hardware. The

minimum embedded exploit mitigation baseline we selected

comprised of ESP, ASLR, and stack canaries. These mitiga-

tions were selected because they are complementary and have

been integrated into virtually all modern general-purpose OSes

and development toolchains, including those widely used in

the embedded world. As such they are well understood and

can reasonably be considered to be the absolute minimum in

modern exploit mitigations.

III. QUANTITATIVE ANALYSIS OF EXPLOIT MITIGATION

METHODS IN EMBEDDED SYSTEMS

In this section, we present a quantitative evaluation of

exploit mitigation adoption (as per our baseline outlined in

Section II) and dependency support among popular embedded

operating systems and hardware. The results of our quantita-

tive evaluation reflect the current embedded state-of-the-art,
allowing us to identify clear gap-areas and new opportunities

to improve the security of such systems.

A. Embedded OS Mitigation and Dependency Support
We evaluated 42 popular embedded operating systems to

present an overview of the current state of embedded OS

mitigation adoption. Our selection aims to be a represen-

tative sample of embedded operating systems and includes

those listed by the UBM Embedded Markets Study [7], and

various studies into embedded operating systems [10], [11],

[12] as well as some of the most popular mobile operating

systems [13].
We evaluated these 42 embedded OS for exploit mitigation

and dependency support through a combination of vendor sur-

veys, documentation consultation, and experimental validation.

An overview of the results (including the list of OSes) is

shown in Tables I and II, while aggregated results are shown

in Tables III and IV.
Note that we consider a mitigation or feature supported

iff it is supported by the OS for at least some (but not

necessarily all) platforms. Since this is a quantitative as-

sessment, it neither evaluates the quality of the implemen-

tation nor whether the feature is enabled by default and as

such the assessment is an optimistic one. We mark an OS

as providing a CSPRNG (Cryptographically Secure Pseudo-

Random Number Generator) iff provided PRNG (Pseudo-

Random Number Generator) functionality is advertised as

such or can be reasonably assumed to provide secure random

number generation functionality.

B. Embedded Hardware Feature Support
1) Von Neumann vs Harvard: Before we can discuss the

hardware features support for exploit mitigations in embedded

systems, we first need to consider that there are essentially

two main processor architectural styles: Harvard and Von
Neumann. The Harvard CPU architecture has separated in-

struction and data busses and thus allows operations to run

simultaneously, while physically separating signals and storage

for code and data memory. In contrast, the Von Neumann CPU

architecture has only one bus which is used for both data

transfers and instruction fetches, thus any value in memory

can be executed or interpreted as data, respectively.
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TABLE I: Detailed Embedded OS exploit mitigation adoption.

Red for Mobile embedded OSes, white for regular embedded

OSes and gray for deeply embedded OSes.

OS ESP ASLR Canaries OS ESP ASLR Canaries
BlackBerry OS � � � Android∗ � � �
iOS∗ � � � Win 10 Mob.∗ � � �
Sailfish OS∗ � � � Tizen∗ � � �
Ubuntu Core∗ � � � Brillo∗ � � �
Yocto Linux∗ � � � Windows Embedded∗ � � �
OpenWRT∗ � � � Junos OS∗ � × �
μClinux∗ � × � CentOS∗ � � �
NetBSD∗ � � � IntervalZero RTX∗ � × �
ScreenOS × × × Enea OSE × × ×
QNX � � � VxWorks � × ×
INTEGRITY � × × RedactedOS 2 × × ×
Cisco IOS × × × eCos × × ×
Zephyr � × � ThreadX × × ×
Nucleus × × × NXP MQX × × ×
Kadak AMX × × × Keil RTX × × ×
RTEMS × × × freeRTOS × × ×
Micrium μC/OS1 � × × TI-RTOS × × ×
DSP/BIOS × × × TinyOS × × ×
LiteOS × × × RIOT × × ×
ARM mbed � × × Contiki × × ×
Nano-RK × × × Mantis × × ×∗ Embedded OS based on Windows, Linux or BSD.

1 A μC/OS-II kernel version with ESP support is available via a
Micrium partner.

2 Due to the sensitive nature of RedactedOS, we have received it
on the condition of anonymity for the vendor. RedactedOS is a

real-time OS which is primarily being used for aerospace
applications.

TABLE II: Detailed Embedded OS exploit mitigation de-

pendency support for Memory Protection (MPROT), Virtual

Memory (VMEM) and Random Number Generator (RNG).

Red for Mobile embedded OSes, white for regular embedded

OSes and gray for deeply embedded OSes.

OS MPROT VMEM RNG OS MPROT VMEM RNG
Android∗ � � � iOS∗ � � �
Win10 Mob.∗ � � � BlackBerry OS � � �
Tizen∗ � � � Sailfish OS∗ � � �
Ubuntu Core∗ � � � Brillo∗ � � �
Yocto Linux∗ � � � Windows

Embedded∗ � � �
OpenWRT∗ � � � Junos OS∗ � � �
μClinux∗ � � � CentOS∗ � � �
NetBSD∗ � � � IntervalZero

RTX∗ � � �
ScreenOS � � � Enea OSE � � ×
QNX � � � VxWorks � � ×
INTEGRITY � � � RedactedOS � � �
Cisco IOS × × � eCos × × ×
Zephyr � × × ThreadX � × ×
Nucleus � × × NXP MQX � × ×
Kadak AMX × × × Keil RTX � × ×
RTEMS × × × FreeRTOS � × ×
Micrium μC/OS � × × TI-RTOS � × ×
DSP/BIOS � × × TinyOS � × ×
LiteOS � × × RIOT � × ×
ARM mbed � × × Contiki × × ×
Nano-RK × × × Mantis × × ×∗ Embedded OS based on Windows, Linux or BSD.

TABLE III: Overview of Embedded OS Exploit Mitigation

Support.

OS vs. Mitigation ESP ASLR Stack Canaries

All evaluated OSes 20/42 13/42 17/42

Non-Mobile 16/36 8/36 12/36

Non-Linux/Windows/BSD 7/27 1/27 3/27

Deeply Embedded 3/20 0/20 1/20

2) Hardware Feature Support: The embedded world fea-

tures a wide range of different processor architectures and core
families with different capabilities. To establish an overview of

common embedded hardware capabilities, we make a selection

of several core families and map out their architectural style

and MPU, MMU, and hardware ESP support capabilities.

We evaluated 78 different core families for hardware de-

TABLE IV: Overview of Embedded OS Exploit Mitigation

Dependency Support.

OS vs. Mitigation Memory Protection Virtual Memory OS CSPRNG

All OSes 34/42 21/42 20/42

Non-Mobile 29/36 16/36 15/36

Non-Linux/Win/BSD 20/27 5/27 6/27

Deeply Embedded 13/20 0/20 1/20

pendency support. 57 of core family SoCs were based on Von

Neumann architecture and 21 of them were based on Harvard

architecture. An overview of the supported feature detailed

results reported in Tables V and VI. Our selection of core

families aims to be a representative sample of core families
belonging to major architectures and vendors in the embedded

space across industry verticals and includes, among others, the

most popular core families listed by recent UBM Embedded

Markets Studies [7] and EDN reader surveys [14].

TABLE V: Core Family dependency support in Harvard (H)

and Von Neumann (N) architectures. We consider a feature

supported if it is supported by all members of a given core

family and absent if it is not supported by any of them. Any

variation with regards to dependency support is denoted with

∼ and omitted from aggregated results.

Core Family Arch. MPU MMU ESP
ARM
ARM1 N × × ×
ARM2 N × × ×
ARM3 N × × ×
ARM6 N × × ×
ARM7 N × × ×
ARM7T N ∼ ∼ ×
ARM7EJ N × × ×
ARM8 N × � ×
ARM9T N ∼ ∼ ×
ARM9E N ∼ ∼ ×
ARM10E N × � ×
ARM11 N ∼ ∼ �
ARM Cortex-A N × � �
ARM Cortex-R N � × �
ARM Cortex-M N ∼ × �
PIC
PIC10 H × × ×
PIC12 H × × ×
PIC16 H × × ×
PIC18 H × × ×
PIC24 H × × ×
dsPIC H × × ×
MIPS32
PIC32MX N × × ×
PIC32MZ EC N × � ×
PIC32MZ EF N × � �
PIC32MM N × � �
PowerPC
PPC e200 N ∼ ∼ �
PPC e300 N × � �
PPC e500 N × � �
PPC e600 N × � �
PPC 403 N × × ×
PPC 401 N × × ×
PPC 405 N × � �
PPC 440 N × � �
PPC 740 N × � �
PPC 750 N × � �
PPC 603 N × � �
PPC 604 N × � �
PPC 7400 N × � �

The core families in our selection belong to the follow-

ing embedded architectures: ARM, MIPS32, PIC, PPC, x86,
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TABLE VI: Core Family dependency support in Harvard (H)

and Von Neumann (N) architectures II

Core Family Arch. MPU MMU ESP
x86
Intel Atom Z34XX N × � �
Intel Quark X10XX N × � �
Intel Quark μC1 N × � �
SuperH
SH-1 N × × ×
SH-2 N × × ×
SH-3 N × � ×
SH-4 N × � ×
AVR
ATtiny H × × ×
ATmega H × × ×
ATxmega H × × ×
AVR32
AVR32A N � × ×
AVR32B N × � ×
8051
Intel MCS-51 H × × ×
Infineon XC88X-I H × × ×
Infineon XC88X-A H × × ×
m68k
NXP M683XX N × × ×
NXP ColdFire V1 N × × ×
NXP ColdFire V2 N × × ×
NXP ColdFire V3 N × × ×
NXP ColdFire V4 N × � ×
NXP ColdFire V5 N × � ×
TriCore
Infineon TC11xx H × ∼ ×
Infineon AUDO Future H × × ×
C166
Infineon XE166 N � × �
Infineon XC2200 N � × �
MSP430
MSP430x1xx N × × ×
MSP430x2xx N × × ×
MSP430x3xx N × × ×
MSP430x4xx N × × ×
MSP430x5xx N × × ×
MSP430x6xx N × × ×
MSP430FRxx N � × ×
Blackfin
Analog Blackfin2 N � × ×
ARC
Synopsys ARC EM H ∼ × ×
Synopsys ARC 600 H ∼ × ×
Synopsys ARC 700 H × ∼ ×
RL78
Renesas RL78/G1x H × × ×
Renesas RL78/L1x H × × ×
RX
Renesas RX200 H ∼ × ×
Renesas RX600 H ∼ × ×

1 Intel Quark Microcontrollers (D1000/C1000/D2000)
2 Although documentation mentions an MMU, it does not support
address translation (and thus does not allow for virtual memory)

which is why we consider it an MPU for our purposes.

SuperH, AVR, AVR32, Intel 8051, Motorola 68000, TriCore,

MSP430, C166, Blackfin, ARC, Renesas Electronics RL78

and RX.

C. Quantitative Analysis Results

Among the embedded OSes surveyed, we can distinguish

two major clusters in terms of capabilities and purposes:

• High-End: These OSes are aimed at the higher end of the

embedded spectrum and offer virtual memory capabilities

as well as often being POSIX-compliant. This includes

mobile OSes (e.g., Android and iOS), lightweight ver-

sions of OSes common in the general-purpose world

TABLE VII: Overview of hardware dependency support in

Von Neumann core families.

Von Neumann Mitigation Support Support

MPU 6/51 (11.8%)

MMU 24/51 (47.1%)

Hardware ESP 22/51 (43.1%)

(such as Linux, Windows or BSD) as well as OSes like

QNX or VxWorks.

• Low-End: These OSes are aimed at deeply embedded
systems, often have real-time capabilities and do not offer

virtual memory support. As such, there is usually no

separation between user- and kernelspace and instead of

isolated processes, there tends to be just a kernel running

a limited set of tasks. Examples are Real-Time Operating

Systems (RTOSes) such as ThreadX, RTEMS, Micrium

μC/OS and TinyOS.

From the results in Tables III and IV, we can observe that

all mobile OSes have support for every exploit mitigation in

our baseline and so do most Linux, BSD, and Windows-based

OSes. Outside of those, however, almost all other OSes (apart

from QNX) lack support for any mitigations whatsoever. We

can also see that while memory protection support is almost

universally present, virtual memory and OS CSPRNG support

is almost universally lacking in the low-end OSes aimed at

deeply embedded systems. From these observations we can

conclude that exploit mitigation adoption (and underlying

dependency support) is generally present only on the high-end
embedded OSes which derive from Linux, BSD or Windows.

When it comes to the hardware core families surveyed, we

can see that less than half of the (Von Neumann) core families
in our selection have MMU support. A small minority of core
families has MPU support (MPU was supported in 6 out of 51

in Von Neumann architecture), leaving just under half of the

Von Neumann core families in our selection without necessary

hardware support for memory protection and over half without

the hardware support required for virtual memory. This lack of

MPU and MMU support makes sense for the more constrained

end of the spectrum such as MCUs, which only have support

for integrated memory and no support for external memory.

Similarly, under half of Von Neumann core families in the

selection have hardware ESP support, meaning ESP can only

be implemented via software emulation on these systems.

As observed by Barr [15], UBM Embedded Markets

study [7] and other observers [16], the embedded world is

seeing a trend towards deployment of 32-bit CPUs (and for

the most high-end embedded systems even 64-bit CPUs [17])

over the traditionally used 8- or 16-bit CPUs. Since most pop-

ular 32-bit architectures are Von Neumann, this has security

implications, though these are possibly offset by the fact that

certain modern CPU architectures offer hardware ESP support

(e.g., ARMv6+, MIPS32r3+, x86, etc.).

Based on the above observations, we can conclude that

there is a gap when it comes to deeply embedded systems.

Only among the high-end Linux, BSD and Windows-based

OSes there are significant exploit mitigation adoption and
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when it comes to low-end OS capabilities, the lack of virtual

memory and cryptographically secure pseudorandom number

generator (CSPRNG) support present obstacles to ASLR and

stack canary adoption.

IV. CHALLENGES FOR EMBEDDED SYSTEMS

To explain the gaps in embedded exploit mitigation adoption

and implementation discussed in Section III, we now discuss

the challenges faced by embedded systems developers for

integrating mitigation within their software. Based on this

discussion, we will identify a series of open problems in the

field of embedded exploit mitigations and outline the design

criteria for exploit mitigations and OS CSPRNGs for deeply
embedded systems. Generally we can divide the reasoning

behind lack of exploit mitigation within embedded system to

the following groups:

1) Development Practices & Cost Sensitivity

2) Resource Constraints

3) Safety, Reliability & Real-Time Requirements

4) Hardware & OS Limitations

We discuss these open problems to understand why a mitiga-

tion is not available even though the required hardware features

exist or why hardware features are missing in practice.

A. Development Practices & Cost Sensitivity

Embedded systems development practices and design cul-

tures are different [18] from those in desktop or web appli-

cation development. Compared to the general-purpose world,

the embedded world is heavily fragmented [19] among many

different vendors and suppliers and technologies themselves

are fragmented into competing standards without clear market

leaders and individual solutions for specific problems. For

example, a typical embedded product is put together as the

result of a hardware vendor selling a chip, deployed with an

operating system and some drivers, to an embedded systems

manufacturer (the Original Equipment Manufacturer (OEM))
who integrates it into the embedded system in question (adding

some hardware peripherals, writing some software) and often

resells it to a brand-name company who adds a user- or

machine-to-machine interface and put it on the consumer

market. This fragmentation leads to the following issues:

• Lowest Common Denominator Vendors at the top of the

chain such as chip or embedded operating system vendors

often cater to very diverse customers and as such are

bound by the demands (in terms of capabilities, overhead

and cost increases) of their most constrained customers.

• Fragmented Security Requirements No single entity

oversees the entire software development life-cycle and

as such, there is no coherent, single set of security

requirements.

• Patching & Maintenance Issues In many cases no single

entity has the ability to patch or upgrade every piece of

software on a given embedded device once it’s shipped.

• Incentive Issues While there might be a strong case

for certain security measures when considering the end

product as a whole, there is usually little incentive on part

of individual vendors and manufacturers who are just a

single link in a much bigger chain. Embedded systems

markets are often characterized [20], [21] by a heavy

focus on time-to-market (earlier market introduction tends

to mean deeper market penetration and hence higher

potential revenue) and novel features: since embedded

systems are designed for a specific purpose rather than

general-purpose computing, vendors often differentiate

themselves on the basis of price and specific features

rather than generic capabilities unrelated to the specific

utility of the end product. As a result, there is little

incentive for integrating security measures if these are

not already present by default.

• Cost Sensitivity Embedded systems are often very cost

sensitive [4], they tend to be produced in large quantities

and as such even small cost increases per unit rapidly

amount to large overall production cost increases. In

addition, for the cheaper products a cost increase on

part of a single component soon amounts to a higher

percentage of total system cost, making it harder to justify

such a cost increase, especially with something that is

often so hard to quantify as improved security.

Finally, any cost savings might aid in gaining a market

advantage for price sensitive products. As such there

usually is a preference for cheaper, simpler hardware such

as chips with few features and limited room for over-

head. This matters from a security perspective because it

makes many hardware-based security measures infeasible

(because of the associated per-unit cost increases) and

means designers and implementers of embedded security

measures have to deal with limited hardware capabilities

and resource constraints.

B. Resource Constraints

Generally, embedded systems face significant resource con-

straints [21] since they are designed with a specialized,

dedicated purpose in mind rather than aiming to provide

general-purpose capabilities. As such, all resources considered

superfluous to this task are eliminated to reduce production

cost which results in limitations on code and data mem-

ory, processing power and hardware capabilities. Embedded

software, in turn, is designed to be efficient and have a

minimal footprint in order to meet these constraints given

the limited room for overhead. These constrains are including

code storage size, memory size, processing power, and power

consumption. An example of impact of mentioned constrains

on exploit mitigation is power consumption. This constraint

immediately conflicts with security measures that introduce

power consumption overhead (e.g., due to being computation-

ally intensive or requiring “power hungry” hardware).

In the context of this work we concern ourselves with four

major resource constraint areas:

1) Code Storage Size: This constraints limit code size

overhead and the introduction of additional functionality.

Many embedded systems are diskless and do not have

permanent storage, storing code in flash memory of a
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few KB or MB instead. Those systems that do have

permanent storage use something like a few KB of

EEPROM, usually to store configuration data only since

the infrequent changing of code means it is more eco-

nomical to arrange this via flashing a firmware update, or

are far more limited than hard disk capacities of desktop

or server systems (e.g., using SD cards of a few GB).

2) Memory Size: This constraints limit memory usage

overhead and often rule out the possibility of memory-

intensive computations. Embedded systems, particularly

deeply embedded systems, often do not have external

memory but rely only on a few KB or MB of on-chip

internal (S)RAM. Those systems that do have external

memory are often limited to anything from a few dozen

MB up to one or two GB.

3) Processing Power: While there is a trend towards usage

of more powerful 32-bit processors [15], [7], [16] run-

ning at clock speeds ranging from 100 MHz to around 1

GHz (the average in 2015 being 397 MHz according to

[7]) and there are plenty of embedded segments where

even more serious computing power is a must, many

embedded systems continue to use simpler 8- or 16-bit

processors with clock speeds ranging from 8 to 32 MHz.

Such a lack of processing power inhibits deployment of

computationally intensive security measures and certain

cryptographic algorithms.

4) Power Consumption: Many embedded systems have

serious power consumption constraints [21], [4] as a

result of being battery operated, having to last months,

years or indefinitely on a single battery while others

might get recharged more frequently. As such, this

constraint conflicts with security measures that introduce

significant power consumption overhead (as mentioned

above).

C. Safety, Reliability & Real-Time Requirements

Embedded systems tend to have specific requirements relat-

ing to safety, reliability, and real-time computation [6]:

a) Safety & Reliability: Some embedded systems have

stringent safety and reliability requirements which would

require certification of any security measures upon their

introduction and require them to be robustly reliable (e.g.,

maintain availability). This means, for example, that exploit

mitigations for these embedded systems will have to avoid

invocation of alert policies that violate safety and reliability

(such as abruptly terminating critical software upon detection

of attacks [22], [23]).

b) Timeliness: Many embedded systems are subject to

varying degrees of hardness real-time requirements and use

real-time operating systems (RTOS) to accommodate this. As

such, security measures for those systems will need to respect

those requirements [22]. However, such requirements might

inherently conflict with certain exploit mitigation designs

or their dependencies. Consider, for example, ASLR and its

dependency on virtual memory. Traditionally, the use of virtual
memory in real-time operating systems has been avoided due

to timing analysis complications [24]. Virtual memory poses

predictability problems regarding worst-case execution time
(WCET) analysis largely because of two issues [24], [25]:

1) Address Translation: Mapping virtual to physical ad-

dresses is commonly done using a translation look-aside
buffer (TLB): a memory cache that is part of the MMU

and stores recent address translations. However, address

translation timings are hard to predict, because a) not

all mappings are cached in the TLB leading to cache

misses requiring a subsequent page table lookup and b)

the TLB is shared between different processes.

2) Paging: Since physical memory is shared between dif-

ferent processes and any physical page may be selected

for replacement by the paging algorithm, predicting

whether a virtual memory reference results in a page

fault is hard. In addition, paging makes memory access

timings dependent on TLB and cache contents increas-

ing unpredictability. Finally, page faults may incur sig-

nificant overhead rendering a system non-responsive for

too long.

Various hardware/software-based proposals for real-time com-

patible virtual memory exist [24], [25], but to the best of

our knowledge, none of these have seen adoption by popular

RTOSs due to significant performance penalties or hardware

cost increases.

D. Hardware & OS Limitations

As a result of the embedded cost sensitivity and resource

constraints discussed above, embedded hardware and operating

systems are often lacking the features upon which modern

security measures depend. We will briefly discuss the impli-

cations of these limitations for the future embedded adoption

of the exploit mitigations in our baseline as well as identify

some related open problems.
1) MPUs, MMUs & Hardware ESP: As shown in Ta-

ble VII, under half of surveyed embedded core families have

hardware ESP support. While 32-bit processors are clearly

gaining increasing traction within the embedded world and

are even displacing 8- and 16-bit processors [15], smaller 8-

bit processors continue to dominate a significant portion of the

embedded space. While many modern 32-bit processors tend

to be Von Neumann and while many popular architectures

in this category have hardware ESP support (e.g., ARMv6+,

MIPS32r3+) there are others which do not. Even though

for many systems based on those smaller 8- and 16-bit

processors it’s quite reasonable to migrate to popular Harvard

architectures (e.g., AVR, 8051, PIC, etc.), many modern 32-bit

processors tend to be Von Neumann and while many popular

architectures in this category have hardware ESP support (e.g.,

ARMv6+, MIPS32r3+) there are others which do not have

such support. Considering that older Von Neumann processors

will continue to be produced and integrated into new systems,

this will leave a segment of embedded devices without hard-

ware ESP support which is an open problem. Additionally,

existing software ESP solutions (e.g., PaX’s NOEXEC) only

support a limited number of OS and architecture combinations.
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As such, low-overhead software ESP support for a wide

range of common embedded operating systems and processor

architectures is currently an open problem. Additionally, while

Table IV shows that the majority of embedded operating

systems offer memory protection support, not all embedded

hardware offers the required underlying features to allow the

OS to make use of this support. Table VII shows only 47% of

all surveyed core families have MMU support and only 12%

have MPU support, which leaves 41% unable to accommodate

memory protection. Due to cost sensitivity as discussed in

Section IV-A, embedded systems manufacturers are unlikely

to migrate to costlier higher-end processors with MPU/MMU

support mainly for security reasons and as such this leaves us

with the open problem.

2) Virtual Memory: As discussed earlier, real-time require-

ments and lack of MMU support adversely affect embedded

virtual memory adoption. While Table IV shows that 50% and

44% of all analyzed systems and all non-mobile embedded

operating systems offer virtual memory support, this drops to

a mere 19% if we eliminate the Linux-, BSD- and Windows-

based ones. When it comes to deeply embedded systems,

virtual memory support is absent altogether. One also needs to

take into account that even if an embedded OS offers virtual

memory support, disk-less embedded systems cannot use this

to extend RAM since this would requiring swapping to disk.

All these constraints are so intrinsically tied to the embedded

space that it is highly unlikely that we will see universal

virtual memory adoption and as such the lack of alternatives to

ASLR suitable for embedded systems without virtual memory

remains an open problem.

3) Advanced Processor Features: Many modern security

measure proposals rely on advanced processor features to off-

set otherwise unacceptable overhead penalties. Such features

range from support for trusted computing (e.g., ARM Trust-
Zone), complication of kernel-mode exploitation, isolation of

code and data regions in memory and pointer bounds checking

to features utilized to support Control-Flow Integrity (CFI) as

well as cryptographic hardware acceleration.

When it comes to embedded systems, the problem with

security measures which rely on such advanced processor

features is that they are only available on the newest and

most high-end architectures. Even among the more high-end

embedded-oriented processors such as the Intel Atom or the

ARMv8-based CPUs the vast majority of these features is un-

supported. Additionally, such advanced processor features are

not likely to be adopted by any embedded-oriented processors

other than the most high-end ones anytime soon either, consid-

ering the corresponding cost increase. As such, any proposal

for embedded security measures seeking widespread adoption

will need to avoid relying on such advanced processor features.

4) OS CSPRNGs: Secure randomness plays a fundamental

role in the wider security ecosystem, not only for cryp-

tographic purposes but also as a dependency upon which

exploit mitigations rely. Since the design and implementation

of a CSPRNG is not a trivial affair, the provision of secure

randomness can be considered an important OS service. But

as can be seen in Table IV, OS CSPRNG support is far from

universal in embedded operating systems. This is particularly

visible in the non Linux-, BSD- and Windows-based operating

systems and even more so in those aimed at deeply embedded
systems. Porting existing OS CSPRNG designs from the

general-purpose world to the embedded world, even if it is

from a GP-oriented version to an embedded-oriented version

of the same operating system, is far from trivial for various

reasons which we describe in the following.

a) OS & Hardware Diversity: As discussed earlier in

this work, the embedded world is heavily fragmented. The

fact that embedded operating systems often seek to cater to

platforms with much more divergent capabilities than their

general-purpose counterparts means it is hard to identify

universally available, suitable entropy sources. So while there

exists a sizeable body of work around the design of embedded

random number generators, these designs are generally very

domain-specific as they rely on entropy sources (e.g., sensor

values [26], radio and GPS data [27]) present only in specific

embedded devices.

b) Resource Constraints: The resource constraints dis-

cussed in Section IV-B also impact embedded PRNG design.

Limited processing power, memory and code size constraints

translate to a need for lightweight cryptography [28]: small,

fast algorithms which still offer the appropriate degree of se-

curity. In addition, power consumption constraints necessitate

a PRNG design that avoids constant entropy collection, es-

pecially considering many battery-operated deeply embedded
devices spend most of their time in standby modes waiting for

event- or time-based activation to preserve battery life.

c) Low Entropy Environment: Perhaps the biggest hurdle

in embedded PRNG design is the fact that embedded systems

are generally a low entropy environment. Since they are de-

signed for specific, limited tasks. In the general purpose world,

where one can assume most systems have user peripherals and

disks one can use the associated system events (e.g., keystroke

timings, mouse movements) as a source of entropy. But for

most embedded systems, being headless and/or disk-less as

well as having no user interaction, this is not an option.

Ideally, this problem would be solved by having om-

nipresent, on-chip True Random Number Generator (TRNG)
available but considering embedded cost sensitivity issues this

is not realistic. So in practice, one sees a lot of workarounds of

dubious quality, which tend to lead to security issues of their

own. Common and insecure approaches are to use personal-
ization data (e.g., device MAC addresses or serial numbers)

as seed entropy [29] or rely on manufacturer-supplied initial

entropy, sometimes in the form of a so-called seed file. But

care needs to be taken here that these seed files are unique

per device, unpredictable and secret. This approach still leaves

various problems for embedded systems such as dealing with

disk-less nodes and not being applicable to the first system

boot (which is often when embedded devices generated their

long-term cryptographic keys).
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V. SUMMARY OF OPEN PROBLEMS

Based on the mentioned constraints and our quantitative

results, we can identify two pressing open problems relating

to embedded exploit mitigation adoption namely: exploit
mitigation and OS CSPRNG design for deeply embedded

systems.

A. Deeply Embedded Exploit Mitigation Criteria

We can distill the following criteria for deeply embedded
exploit mitigations based on the observations in Section IV:

1) Limited Resource Pressure: Mitigations should limit

pressure on constrained resources to a minimum and

provide low worst-case (rather than average-case) over-

head upper bounds. As observed by Szekeres et al. [30],

exploit mitigations are only likely to see widespread

industry adoption if the average-case imposed code size,

memory and runtime performance overhead is between

at most 5 and 10%.

2) Hardware Agnostic: Mitigation designs should be hard-

ware agnostic to widen deployability across the embed-

ded hardware. This rules out any dedicated hardware

proposals and any reliance on specific hardware features

that are not commonly available in deeply embedded

systems. This does not include hardware features com-

monly but not universally available such as hardware

ESP.

3) Availability Preservation: Mitigations should offer

multiple measures to take upon detection of an attack

that allows for different degrees of availability preser-

vation, ranging from those that allow an attack to take

place without interfering to those that reduce availability

disruption to a minimum. The rationale behind the

former is that if availability is of prime importance,

the worst-case scenario for an exploited vulnerability is

to disrupt this availability and as such an unhindered

but reported attack that gains control of the system and

keeps it up is preferable over a prevented attack that

brings it down in the process.

4) Real-Time Friendly: Mitigations should not vio-

late real-time requirements and as such avoid non-

deterministic constructs. As discussed earlier, this rules

out designs relying on virtual memory.

5) Easy (RT)OS Integration: Mitigations should be easy

to integrate into existing (RT)OS without requiring

significant redesign of the operating system itself to

widen deployability across the embedded OS and reduce

integration cost.

B. OS CSPRNG Design for Deeply Embedded Systems

We can distill the following criteria for non-domain specific
deeply embedded OS CSPRNGs based on the observations we

made in Section IV:

1) Lightweight Cryptography: The CSPRNG will have to

be based on lightweight cryptographic primitives [28] to

accommodate code & data memory as well as processing

power constraints. Any OS CSPRNG design targeting

deeply embedded systems should be deployable on a

representative hardware platform and only utilize a small

fraction of available resources.

2) Entropy Gathering Limitations: The CSPRNG will

have to be designed in such a way as to not rely

on constant runtime entropy gathering to reduce power

consumption. This means entropy collection will have

to be rapid and preferably take place mostly during sys-

tem startup, given that many battery-operated embedded

systems are in standby or powered off between small

periods of event- or time-triggered activity.

3) Non-Domain Specific Entropy Sources: The CSPRNG

will have to draw upon entropy sources that are both

suitable in terms of entropic quality as well as nearly

universally present in deeply embedded systems. Ideally,

such entropy sources have high throughputs so sufficient

entropy is rapidly available at system startup and runtime

entropy gathering can be limited. While there is noth-

ing preventing CSPRNG augmentation with additional

platform- or device-specific entropy sources (e.g., sensor

values), these should not be the primary sources nor

should the choice of entropy sources be left up to the

system integrator.

VI. μARMOR DESIGN

In this section, we propose μArmor, an exploit mitigation

and OS CSPRNG baseline design for deeply embedded sys-
tems in the form of LLVM passes. μArmor seeks to address

the relevant gap areas based on the results from our quanti-

tative analysis. μArmor is targeted at those deeply embedded

systems which satisfy the following conditions:

• Feature either a (modified) Harvard architecture CPU or

Von Neumann one with an MPU with hardware ESP

support.

• Run a low-end deeply embedded OS (e.g. Zephyr, FreeR-

TOS, TinyOS) or kernel with a single address space and

without virtual memory support. The OS is allowed to be

multiple-stack, multi-threading, and real-time capable.

A. Attacker Model

We assume an attacker who is capable of exploiting memory
corruption vulnerabilities within the target deeply embedded

OS. Attacker wants to use such vulnerabilities to execute

arbitrary code or invoke arbitrary system functionality. We

assume that the attacker attempts to exploit a vulnerability over

a networking protocol (e.g., Ethernet or WiFi). We assume the

attacker does not have access to the specific firmware image

of the target device, but she may have access to the firmware

image of another instance of the system. Finally, μArmor does

not seek to protect against data-flow hijacking or data-only
attacks.

B. High-Level Design

μArmor incorporates three mitigations measures in order to

match the functionality of the baseline outlined in Section II:

μESP, μScramble, and μSSP in the form of LLVM passes.
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In addition, it includes μRNG in order to provide required OS

CSPRNG support.

C. μESP Design

μESP is the Executable Space Protection (ESP) component

of μArmor and unlike other ESP implementations is explicitly

designed for MCUs running single address space OSes. μESP
assumes the OS can be modified for ESP-compliance, i.e.,

it allows for separation of code and data memory regions

as well as avoiding code constructs such as dynamically

generated code, stack-stored trampolines, etc. μESP explicitly

sets the hardware ESP non-executable bit for every memory

region belonging to a non-code region, while not setting it for

those owned by code region. Also, it ensures that no write

permissions are set for memory regions belonging to a code

region to avoid code modification attacks.

Furthermore, dynamic data memory objects (e.g., stack and

heap) are ensured to be fully placed in a data memory region,

and the stack is instructed to grow away from other data

regions. Since most stacks grow downward, by placing the

stack at the bottom of data memory, an overflow will cause

an exception either because it is a code region in RAM (thus

caught by μESP permissions) or because we try to write

outside of RAM. In a multi-stack environment, individual

stacks overflowing into each other could be captured by

placing a guard at the end of each stack if MPU granularity

and region count allows for this.

Finally, after setting up permissions, μESP will mark any

code regions responsible for MPU interaction or flash rewriting

(e.g., in the bootloader) as non-executable. The reason behind

such change is to avoid code-reuse attacks targeting these

regions for permission-changing payloads or ret2bootloader
attacks [31], [32], [33] and will disable further changes to the

MPU by making the relevant control registers non-writable.

D. μScramble Design

μScramble is a compile-time code diversification scheme

which imposes minimal runtime overhead. Compile-time di-

versification allows us to leverage the high-level information

available to the compiler, target multiple hardware platforms

implicitly, avoid the need for disassembly and binary analysis

as well as operate in an automatic fashion (as part of the reg-

ular compilation process) transparent to software developers.

Note that the choice between diversification at compile-time

requires infrastructures from the vendor. However, we believe

that making μScramble as a compile-time code diversifi-

cation is reasonable due to results discussed on Section IV

and major resource constraints exist within deeply embedded

systems.

Since the goal of μScramble is to thwart code-reuse

attacks, we aim to either eliminate gadgets, randomize them

or make it infeasible to guess their location in memory.

μScramble seeks to achieve this by diversifying code in

a fine-grained manner at compile-time. Additionally, since

μScramble needs to be semantics-preserving and to take into

account embedded resource constraints regarding code size,

memory usage and performance overhead we have created the

diversification transformations listed below for μScramble:

a) Register-Preservation Reordering: Most architectural

calling conventions specify which registers are callee-saved

and which are considered scratch registers. Compilers take

note of all registers used within a given subroutine and will

ensure that those which are callee-saved are stored to the stack

during the function prologue and restored from it during the

epilogue. Such sequences are one of the most common targets

for code-reuse gadgets due to their ability to act as register-

setters terminated by a return instruction. Since the exact order
in which these registers are saved to and restored from the

stack does not matter, we can randomize it and thus break

gadget chain assumptions about what values end up in what

registers.

b) Dead Code Insertion: μScramble supports two

types of dead codes namely, no-operation (NOP)-equivalent

instructions that do not present opportunities for unaligned
instruction gadgets and trap instructions which activate a

violation policy handler upon execution (something which

never happens during regular execution). The latter has the

benefit of raising alerts while any attempt to brute-force

gadgets is in progress.

c) Function Reordering: Unlike common function re-

ordering techniques [34], here due to embedded systems

limitation, we randomize only the function order and as such

the degree of diversification introduced is determined by the

number of functions present in the target code.

The above transformations affect both code topology and

code itself by randomizing the offsets of a) instructions with

respect to a function address, b) functions with respect to the

image base and c) one function with respect to another func-

tion as well as randomizing the order of register preservation

code. Due to the fine-grained nature of our diversification we

reduce memory object correlation and offer better protection

against information leaks and brute-force attacks than coarse-

grained schemes.

E. μSSP Design

μSSP is a component of μArmor which ensures proper sep-

aration of data and pointers within a given local stackframe.

μSSP works by placing the latter below the former so that

stack overflows cannot target code or data pointers residing

on the stack while the stack canary shields the stackframe

metadata (e.g., saved frame pointer, return address). μSSP also

complies with regular GCC Stack Smashing Protection (SSP)

function coverage parameters and is capable of protecting all

kernel- and application-code that runs after early kernel and

C support initialization.

On the operating system side, μSSP uses a single master

canary generated once at system boot for all OS tasks and

threads. Since on deeply embedded systems without virtual

memory there is no memory isolation for OS tasks nor a

separation between kernel- and userspace, periodic canary

renewal would lead to synchronization conflicts for a shared

canary. Our solution for this problem would be assigning a
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dedicated master canary for each thread (or possibly only

OS tasks) as well as one for the kernel and renewing ca-

naries upon thread startup. The problem here, however, is

that without virtual memory different threads utilize shared

code which would require the compiler to figure out which

code is used exclusively by a given thread and which code

is shared, assigning a single common master canary for all

shared code to prevent synchronization problems. This limits

renewal effectiveness to such a degree, especially compared

to incurred overhead cost, that we simply opt for the single

master canary approach. In addition to that, the single address

space nature (and accompanying lack of privilege separation)

of most deeply embedded OSes would render a multi-canary

scheme rather irrelevant as well.

As far as canary generation is concerned, μSSP assumes the

presence of either an OS CSPRNG (e.g., μRNG described in

Section VI-F) or a TRNG (True Random Number Generator).

We provide OS CSPRNG support as part of μRNG.

The final components of μSSP is its modular canary vio-

lation handlers. Deeply embedded exploit mitigations should

offer multiple courses of action to be taken upon attack detec-

tion to allow for different degrees of availability preservation.

We provide (in case the OS do not support it) different type

of handlers which are discussed in Section VII-D.

F. μRNG Design

μRNG is our modification of a compact, software-only

CSPRNG design for ARM Cortex-M by Van Herrewege et

al. [35] with a 128 bit security strength level. It utilizes the

lightweight Keccak [36] sponge function as a CSPRNG [37].

For obvious reasons, we do not create our own CSPRNG

function. However, μRNG is not a simple reimplementation

of Keccak [35]. μRNG is extended to function as an OS

CSPRNG by adding reseed control suitable to constrained

embedded systems. More specifically, it avoids the constant

runtime polling for reseeding, typical in most OS CSPRNG

designs which puts a strain on power consumption. The main

purpose of μRNG in the context of this work is to serve as

a dependency for exploit mitigations (such as stack canary

mechanisms) but depending on chosen security strength, it is

perfectly suitable as a general-purpose CSPRNG. While, for

the sake of convenience, this work describes and implements

μRNG in the context of our representative platform, the μRNG
design is not restricted to any OS or platform in particular.

In μRNG entropy accumulation is done by Keccak sponge

absorption functionality while random number generation

is done by squeezing the Keccak sponge, allowing us to

use the same algorithm for both purposes. μRNG uses the

Keccak-f[200] permutation with rate and capacity param-

eters r = 64 and c = 136 respectively. Note that μRNG
is fully reseeded every 1GB of output which results in a

Keccak internal state of 25 bytes and generation of 64-bit

pseudo-random numbers per squeeze operation. We initially

seed μRNG with at least 256 bits of entropy and ensure

reseeding is done with at least 256 bits of entropy.

When designing reseed control we need to take into account

the applicability of passive and active state recovery at-

tacks [37]. In case of the former, the attacker cannot influence

seed data while in case of the latter the attacker can. As per the

original design by Van Herrewege et al. [35] upon which μRNG
is based, μRNG provides the required security against passive
state recovery attacks as long as reseeding occurs at least every

r ∗ 2
r
2 = 64 ∗ 232 = 32GB of PRNG output and against

active attacks as long as reseeding happens at least every

28 ∗ r = 256 ∗ 64 = 2KB of output. Since our attacker model

explicitly assumes a remote attacker, incapable of influencing

our entropy sources remotely, we only take passive state

recovery attacks into account. We have to consider a trade-

off between overhead and security with respect to reseed

frequency: ideally reseeding is done regularly to keep as much

entropy in the PRNG as possible at all times but frequent

entropy gathering puts pressure on embedded resources in

terms of memory and power consumption. μRNG has two

options for reseed control:

• Consistent: Reseed control here is integrated into the

PRNG output function, ensuring at least 1 bit of entropy

is accumulated for every 64 bits of PRNG output, thus

ensuring a full 256-bit reseed every 2KB of output.

• Periodic: Reseed control is integrated into the PRNG

output function as well, together with a 32-bit reseed

counter which keeps track of the number of bytes output,

but actual reseed functionality is only invoked after the

counter exceeds a certain threshold value T. Reseed

functionality is designed to run for at most S seconds

(to facilitate worst-case timing estimates) and accumulate

entropy while resetting the reseed counter.

Additionally, μRNG uses non-domain specific entropy

sources that can be found on most embedded devices. We

can divide these sources into two groups:

a) Initialization: Initial entropy is gathered during early

boot and should be rapidly available in sufficient quantity

upon system startup to avoid the so-called boot-time entropy
hole [38]. We follow [35] in using SRAM Startup values
(SUVs) as our primary source of initial entropy. Using SRAM

SUVs as a source of initial entropy allows us to have an

entropy source that is present on most embedded devices,

instantly available in (very) early boot and differs from boot

session to boot session as well as from device to device.

As discussed in the literature [39], [40], [35], the amount

of entropy in modern microcontroller SRAM tends to be

around 5% of its total size at normal operating temperatures.

This means that, on average, μRNG would require at least
2∗128
0.05∗8 = 640 bytes of SRAM to guarantee a security strength

level of 128 bits, a reasonable restriction for most modern

microcontrollers.

b) Reseeding: Reseed entropy is gathered upon invoca-

tion of reseed control functionality and should provide either

at least 1 bit of entropy per invocation (in case of consistent
reseed control) or an appropriate throughput rate (in case of

periodic reseed control).
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TABLE VIII: μESP Memory Permission Policies

Memory Permissions
Code (sensitive) RO+XN
Code (other) RO+X
Data RW+XN
Peripherals RW+XN
SCB Config RO+XN
MPU Config RO+XN

• Clock Jitter & Drift: The various oscillators (e.g.,

RC, Ring or VC oscillators) acting as microcontroller

clock signal sources are never completely stable and are

influenced by factors such as supply voltage, temperature,

etc.

• ADC Noise: Many embedded systems are outfitted with

analog-to-digital converters (ADCs) we can use it as

an entropy source by sampling the least significant bit

of ADC output corresponding to floating inputs. It is

worth mentioning that general suitability of ADC Noise

as cryptographic entropy source is unevaluated and as

such we recommend against integration unless proper

device-specific evaluation indicates suitability.

VII. μARMOR IMPLEMENTATION

In the following, we describe implementation aspects for all

μArmor components.

A. Representative Platform

μArmor is not intrinsically tied to any particular OS or

hardware configuration. However, for our implementation we

choose Zephyr [41] RTOS on a TI LM3S6965 microcon-

troller, which is based on a 50 MHz ARM Cortex-M3 out-

fitted with 256 kB flash, 64 kB SRAM and an MPU. We

chose Zephyr because it is an actively developed, open-source

OS with a permissive license aimed at resource-constrained

embedded devices and is supported by the Linux Foundation
and major chip vendors such as Intel, NXP, and Synopsys.

We picked the TI LM3S6965 microcontroller because it is

supported by Zephyr and is representative of a typical deeply
embedded system with limited resources. As noted above, the

μArmor protection scheme is implemented as LLVM passes.

B. μESP Implementation

We consider the following two common approaches to

deal with code and data memory in embedded systems: (i)

program code is located in and executed from flash and data

is copied to RAM and (ii) both program code and data are

copied from flash to RAM by a first stage bootloader and

further code (e.g., the OS kernel) is executed from RAM.

For μESP this corresponds to the permission policies outlined

in Table VIII. The sensitive code is a code which handles

rewriting flash memory, copying data from flash to RAM and

setting up memory permissions and is made non-executable

after execution. The MPU Config refers to MPU configuration

registers which are made read-only after memory permissions

have been set up and the SCB config refers to the System
Control Block (SCB) configuration registers.

TABLE IX: TI LM3S6965 MPU μESP Settings, execute-
from-flash

Region No. Description Perms. Size
0 Default RW + XN 4 GB
4 SCB RO + XN 64 B
5 MPU RO + XN 64 B
6 Code (other) RO + X 256 KB
7 Code (sensitive) RO + XN *

TABLE X: TI LM3S6965 MPU μESP Settings, execute-
from-RAM

Region No. Description Perms. Size
0 Default RW + XN 4 GB
2 SCB RO + XN 64 B
3 MPU RO + XN 64 B
4 Code (other, RAM) RO + X * MB
5 Code (sensitive, RAM) RO + XN *
6 Code (other, flash) RO + X 256 KB
7 Code (sensitive, flash) RO + XN *

With the Cortex-M3’s MPU available on TI LM3S6965
we can enforce μESP policies by making use of its support

for up to 8 memory regions. Memory regions can cover the

full 4 GB address space and come with size and permission
(in the form of XN and data access flags) attributes. Memory

regions start addresses must be size-aligned (ie. a 2 KB region

must start at an address that is a multiple of 2 KB). We do

not make use of the available privilege modes because we

do not want to assume OS compatibility with them and as

such our permissions apply to both privileged and unprivileged

modes. Based on the policies in Table VIII, we construct a

μESP configuration for the TI LM3S6965 in Tables IX and

X representing settings for execute-from-flash and RAM code
relocation scenarios respectively.

We start with a default region, using the lowest region

number, which covers the entire address space with RW+XN
permissions. If two memory regions overlap on the MPU,

region attributes fall back to the region with the highest

region number. We can use this feature to limit the number of

regions we have to specify and define overlapping regions for

exceptions to default data memory. SRAM and peripherals are

covered by this default region as well. We define a region for

code (covering all of flash memory) with RO+XN permissions

and use a higher region as an XN overlay for any sensitive
code (except the final line which locks the MPU) to be made

non-executable after system initialization.

For the scenario where code is executed from RAM, we

provide identical regions to be placed wherever in RAM the

bootloader relocates code to. Note that since aliased address

ranges need to be covered by the same permissions, this might

mean memory regions could need sizes bigger than the actual

amount of on-chip SRAM.

In addition to the above we have to consider the fol-

lowing security-sensitive memory regions: Interrupt Vector
Table (IVT) and System Control Block (SCB). The IVT holds

exception vectors such as the stack pointer reset value and start

address (loaded upon system reset) as well as interrupt handler

addresses. The IVT would be an interesting overwriting target

for attackers but by default it lives completely within the lower
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region of flash memory and as such is covered by the RO+X
permissions of our code region. It is possible, however, to

relocate the vector table using the Vector Table Offset Register
(VTOR) in the System Control Block (SCB). If the vector

table is relocated to RAM along with other code as part of

a bootloader, this is not an issue because it will be covered

by the relevant code region. But to protect the system from

forcing a malicious relocation as part of an exploit (among

other things), we mark the SCB as read-only. If some SCB
functionality should be writable during runtime, μESP uses

the MPU’s sub-region feature which divides a region into 8

equally large sub-regions (provided the region size is at least

256 bytes) that can be disabled individually thus falling back

to default RW+XN permissions. If so desired, one could merge

the SCB and MPU memory regions into a single region using

disabled sub-regions to cover any addresses within the range

which should have different permissions.

C. μScramble Implementation

The μScramble diversification transformations were im-

plemented as LLVM passes which we describe in the follow-

ing.

a) Register-Preservation Reordering: This transforma-

tion is implemented as a MachineFunctionPass which

obtains the callee-saved registers of a function using

getCalleeSavedRegs, shuffles their order using the

LLVM PRNG and sets the new order.

b) Dead Code Insertion: This transformation is imple-

mented as a MachineFunctionPass which identifies the final

basic block of a given function and generates dead code-stubs.

We allow developers to specify what type of dead code-stub

(NOP or trap) they wish to generate with a compiler flag. NOP-

stubs consist of a single, repeated, architecture-dependent NOP
instruction to ensure minimal gadget usefulness.

Trap-stubs consist of branch instructions to a violation
policy handler, in our case we use the same handler used for

μSSP violations described below.

c) Function Reordering: This transformation is imple-

mented as a ModulePass which retrieves the current modules

function list and shuffles it using the LLVM PRNG. The linker

will ensure functions are organized in the randomized order

in the produced firmware image. All randomization operations

used in μScramble draw upon the LLVM PRNG which

draws upon a developer-supplied true random seed. Since this

PRNG is deterministic this means a given firmware build can

be reproduced from the seed as is done by Gionta et al. [42].

D. μSSP Implementation

We implemented μSSP as an augmentation of Zephyr’s SSP

implementation. Since Zephyr uses the GCC SSP model it

already meets μSSP’s compiler-side criteria. On the OS side,

it stores a single master canary value as a global variable

in .bss and initializes it at boot (as part of the _Cstart
function, after hardware initialization but before the main

thread is activated) by drawing from the sys_rand32_get
API.

We augmented this SSP implementation by adding sup-

port for a terminator-style canary bitmask, ensuring an OS

CSPRNG is available for secure canary generation and imple-

menting a modular canary violation handler.

• Passive: The violation handler simply returns to the

violating function.

• Fatal: The violation handler try to terminate the violating

thread and continue running the system.

• Thread Restart: To properly handle thread restarts we

maintain a global list (a hash table) of thread restart

handlers associated with thread IDs. We require the thread

ID be registered together with the restart handler upon

thread start and de-registered upon thread termination.

Upon invocation of the violation handler, the violating

thread’s ID is looked up in the restart handler list,

the associated restart handler is fetched, the thread in

question is terminated and the restart handler is invoked.

• System Restart: We invoke the sys_reboot API with

the SYS_REBOOT_COLD argument to perform a system

restart.

• System Shutdown: This approach depends on SoC power

management subsystem implementations. In the absence

of such functionality we default to terminating all running

threads.

E. μRNG Implementation

We implemented μRNG as a driver for the Zephyr
random API. μRNG output can be requested with the

sys_rand32_get API which squeezes the μRNG keccak
object to produce 64 bits (the rate minimum) of PRNG

output, the upper and lower halves of which are xor-summed

together to produce a 32-bit random number as per API

specifications. Since our μRNG implementation uses SRAM

SUVs as its initial entropy source, it is important that this

entropy collection takes place as early as possible to reduce

SRAM contamination (from code storing variables, using

the stack, etc.) as much as possible. We chose to integrate

μRNG initialization in Zephyr’s __start routine which is the

firmware code entrypoint and used as the reset handler
in the ARM Cortex-M’s vector table. Note that almost

all RTOSes provide such initialization routine. This ensures

SRAM is untouched before our μRNG initialization code is

invoked.

VIII. μARMOR EVALUATION & LIMITATIONS

A. Overhead Evaluation

We evaluate the overhead imposed by μArmor in terms of

code size, data size, memory usage, and runtime increases.

Code and data size figures represent increases in code (in

flash) and constants (in SRAM) respectively. Memory usage

increases represents a worst-case SRAM overhead imposition

(by use of dynamic data structures) at any point during exe-

cution. We instrumented application code to measure runtime

performance using a hardware high precision counter. Runtime

performance figures represent increases in the number of
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clockcycles consumed for a given amount of code to run,

reported as the average of 25 runs.

We evaluate μESP, μSSP, μRNG separately in Tables XII,

XIII and XIV and μScramble in Tables XI. Note that

evaluation results for memory overhead is based on worst-

case estimate and the results for runtime overhead are from

average of 25 runs. To get an idea of the overhead on realistic

applications we chose three sample Zephyr IoT applications

stressing different subsystems: Additionally, due to space

restrictions, we eliminated in Table XI the results for the data

size, memory, and runtime overhead with respect to application

and runtime since there was no difference before and after

using μScramble.

• philosopher: An implementation of the dining

philosophers problem using multiple preemptible and

cooperative threads of differing priorities [43].

• net/echo_server: An IPv4/IPv6 UDP/TCP echo

server application [44].

• net/telnet: IPv4/IPv6 telnet service providing a shell

with two shell modules: net and kernel [45].

TABLE XI: μScramble Overhead with respect to Applica-

tions (A) and Resources (R) in average of 25 variants.

App % CS1

(A)
% CS
1 (R)

App % CS
(A)1

% CS1

(R)
Application Test
lift 1.5 0 cover 1.2 0
powerwindow 2.2 0.1 duff 3

test3 0.4 0.1

Kernel Sequential
binarysearch 3.8 0 adpcm_dec 1.1 0
bitcount 2.3 0 adpcm_enc 1.3 0
bitonic 4.2 0 ammunition 1.1 0.1
bsort 3.5 0 anagram 1.8 0
complex_updates 1.6 0 audiobeam 1.6 0
countnegative 3.4 0 cjpeg_transupp 1.2 0
fac 4 0 dijkstra 1.9 0
fft 2.6 0 epic 1.6 0
filterbank 1 0 fmref 1 0
fir2dim 1.5 0 gsm_dec 1.3 0
iir 2.2 0 h264_dec 0.8 0
insertsort 1.9 0 huff_dec 1.8 0
jfdctint 1.3 0 huff_enc 1.6 0
lms 1.4 0 mpeg2 1.1 0.1
ludcmp 0.9 0 ndes 1 0
matrix1 3 0 petrinet 0.2 0
md5 1.9 0 rijndael_dec 0.3 0
minver 0.8 0 rijndael_enc 0.3 0
pm 0.8 0 statemate 0.5 0
prime 1.8 0
quicksort 0.9 0
recursion 4.6 0
sha 1.8 0
st 2 0
basicmath 0.7 0

1 Percentage of Code Size (CS) Overhead

We evaluate μESP, μSSP, and μRNG against the above

representative applications compiled for the TI LM3S6965
with GCC as provided by the Zephyr SDK. We evaluate

μScramble against a different set of applications since the

overhead imposed by μScramble on a single application is

non-deterministic and is dependent to parameters such as the

number of functions. Thus we evaluate μScramble against a

set of 50 benchmarks and applications from the TACLeBench
suite [46]. TACLeBench consists of self-contained programs

without external or OS dependencies and is drawn from

well-known (embedded) benchmarking suites such as DSP-
Stone [47], MRTC WCET [48], SNU-RT [49], MiBench [50],

MediaBench [51], NetBench and HPEC [52]. The benchmarks

in question are drawn from various embedded domains ranging

from automotive and networking to security and telecommuni-

cations and are sub-divided into application, kernel, sequential
and test groups implementing realistic applications, small

kernel functions, large sequential functions and artificial stress

tests respectively.

TABLE XII: μESP Overhead Evaluation with respect to (wrt)

application and resources

Wrt. Application %Code %Data %Memory %Runtime
philosopher 1.2 0 × (0 B) 0
echo_server 0.2 0 × (0 B) 0
telnet 0.2 0 × (0 B) 0

Wrt. Resources
philosopher 0 0 0 ×
echo_server 0 0 0 ×
telnet 0 0 0 ×

TABLE XIII: μSSP Overhead Evaluation

Wrt. Application %Code % Data %Memory %Runtime
philosopher 30.5 0 × (48 B) 0
echo_server 26.4 0 × (84 B) 0.7
telnet 27.3 0 × (84 B) 0.7

Wrt. Resources
philosopher 0.9 0 0 ×
echo_server 5 0 0 ×
telnet 5 0 0 ×

TABLE XIV: μRNG Overhead Evaluation

Wrt. Application % Code % Data %Memory %Runtime
philosopher 10.2 0.4 × (52 B) 0
echo_server 1.4 0.1 × (52 B) 0
telnet 1.5 0.1 × (52 B) 0

Wrt. Resources
philosopher 0.3 0 0 ×
echo_server 0.3 0 0 ×
telnet 0.3 0 0 ×

We are not interested in average memory usage overheads

but rather in worst case figures because of potentially un-

acceptable SRAM pressure. Using stack depth analysis em-

bedded developers get an indication of the maximum amount

of memory used by the stack in their application. We have

decided to obtain a stack depth estimate in between the usual

lower bounds derived from experimental observation and the

upper bounds derived from static analysis. This estimate is de-

rived from multiplying the longest identified call chain in the

program Control Flow Graph (CFG) by the overhead imposed

by a single canary. Note that we report overhead figures both

with respect to the original unprotected application and with

respect to total device resources.

Based on the reported figures above, we can conclude code

size overheads stay below 5% with respect to the application

for all components except μSSP and μRNG and are less than

or equal to 5% with respect to total device resources for all

components. Data size, memory usage and runtime overheads

all stay well below 1% both with respect to the application

as well as with respect to total device resources. μSSP code
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size overheads are clearly the heaviest overhead imposition

of all metrics and components. μSSP introduces roughly

4 instructions of prologue and 5 instructions of epilogue

overhead amounting to 36 bytes per protected function. While

the average code overhead with respect to the unprotected

application is 28.1%, we can see overhead in terms of total

resource pressure remains equal to or below 5%.

B. Security Evaluation and Limitations

1) μESP Security: μESP protects against both code injec-

tion and code modification by enforcing a separation between

code and data memory, forcing an attacker to use a code-

reuse payload. By locking the MPU and rendering μESP
and bootloader code non-executable after it has been run,

μESP protects against code-reuse attacks that seek to cir-

cumvent μESP by means of permission-changing payloads

or ret2bootloader attacks [32], [33] that seek to rewrite flash

memory with attacker-injected code.

2) μScramble Security: To get an idea of the en-
tropic quality of μScramble transformations we performed

a coverage analysis consisting of taking our selection

from the TACLeBench suite and generating 1000 different

μScramble-diversified variants for each benchmark. We then

harvest all gadgets from each variant using a ROPGadget [53]

and determined, for each gadget in each variant, in how many

other variants the gadget still resides at the same address. We

then obtained the average and maximum gadget survival rates.

These gadget survival rates give us an indication as to the

quality of μScramble’s coverage of the target gadget space.

The detailed results of this analysis are reported in Table XV.

TABLE XV: μScramble Coverage Analysis.

Set Avg.
GS1

Max.
GS1

Set Avg.
GS1

Max.
GS1

Application Application
lift 2 9 cover 29.8 143
powerwindow 1.2 10 duff 1.6 7

test3 0 0

Kernel Sequential
binarysearch 1.4 13 adpcm_dec 0.5 4
bitcount 63.3 180 adpcm_enc 0.6 5
bitonic 85.15 166 ammunition 3.6 147
bsort 58.5 171 anagram 0.6 4
complex_updates68.1 199 audiobeam 4 79
countnegative 2 11 cjpeg_transupp32 96
fac 2.5 4 cjpeg_wrbmp 1.4 3
fft 1.2 5 dijkstra 1.3 5
filterbank 59.9 209 epic 0 0
fir2dim 70.5 210 fmref 0.5 3
iir 2.5 8 gsm_dec 1.3 43
insertsort 101.5 202 h264_dec 100 181
jfdctint 97 193 huff_dec 18.8 91
lms 64.2 193 huff_enc 5.8 55
ludcmp 55.4 166 mpeg2 0 0
matrix1 68.8 203 ndes 0.6 2
md5 0.6 7 petrinet 2 2
minver 1.3 5 rijndael_dec 2.5 16
pm 12.5 97 rijndael_enc 3 11
prime 0.9 5 statemate 16.4 97
quicksort 1.5 9
recursion 91.6 188
sha 2.3 6
st 0.8 3
basicmath 1 4

1 Gadget Survival

The results of our analysis demonstrate that the highest av-

erage gadget survival rate is 101.5 (for insertsort) and the

highest maximum gadget survival rate is 210 (for fir2dim)

while most remain well below those numbers. This means

that in a worst case scenario, a single gadget survives across

roughly 10.15% of variants on average and across 21% of

them at most, requiring brute-force for all other variants. Thus

an attacker constructing a code-reuse payload from a given

firmware variant cannot expect any gadget in this payload to

work beyond 10.15% of target devices. Attacker also needs to

consider that the gadget survival variants of different gadgets

do not necessarily intersect. As such, prospects for gadget
chain survival are even worse and brute-force search space

scales with respect to payload length as well.

3) μSSP Security: The security offered by μSSP is inher-

ently constrained by the limits of stack canaries: they only

protect against stack buffer overflows targeting stackframe
metadata and not against other types memory corruption

vulnerabilities nor against stack buffer overflows targeting

local code or data pointers. That being said, μSSP draws upon

an OS CSPRNG (in the form of μRNG) to generate canaries

with 32 or 24 bits of entropy (depending on whether they

are configured to be terminator style or not) which are, as

such, not susceptible to either the insecure randomness issues

or the system-side information leaks affecting the original

Zephyr SSP canaries in the absence of a TRNG. Since the

master canary value is refreshed upon system boot, the system
restart, Fatal and system shutdown violation policies are not

susceptible to bruteforce approaches at all. The thread restart
policy is susceptible to bruteforce attacks. All approaches,

however, raise at least an alert upon invocation. We believe

that given our attacker model, 32 bits of entropy is sufficient

for a bruteforce attack to be infeasible.

C. Limitations

In the following, we discuss limitations of our approach and

the prototype implementation. First, μArmor requires either a

(modified) Harvard or Von Neumann CPU featuring an MPU

with hardware ESP support. We believe that this limitation

is within reasonable bounds for our system to be considered

hardware agnostic, since it only excludes older Von Neumann

architectures for which there is currently no way to enforce

low-overhead ESP.

Second, the μScramble component only diversifies code
memory and only provides per-device diversity: it does not

diversify data memory nor does it diversify on a per-boot
or per-application run basis. Finally, the μRNG component

requires on-chip SRAM or otherwise requires an alternative

source of initial entropy.

IX. RELATED WORK

A relevant stream of work has explored software diversifica-

tion. For example, AVRAND [54] is a boot-time software only

diversification scheme that randomizes binary code at a per-

page granularity level. The AVRAND imposes an average code

size increase of 20% and requires sizable meta-data storage
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in EEPROM. Note that AVRAND requires re-flashing flash

memory upon randomization which reduces embedded device

lifespan. MAVR is a boot-time diversification scheme [55]

for UAV control system. However, MAVR is not hardware

agnostic since it requires (costly) hardware modifications.

Note that both MAVR and AVRAND require re-flashing flash

memory upon randomization which reduces embedded device

lifespan. Abbasi et al. [56] introduced μShield , a CFI system

for embedded COTS binaries with configurable protection

policies to cope with limited resources in embedded systems.

However, μShield addresses high-end embedded devices. An-

other stream of work explored firmware integrity verifica-

tion for embedded systems. For example Doppelganger [57]

protects embedded systems from firmware modification via

software symbiotes, a specific integrity verification trap which

is invoked every time it gets executed. However, Doppelganger

can only verify the static part of the firmware.

Finally, Clements et al. recently proposed EPOXY [8],

to protect bare-metal deeply embedded systems. There are

several key limitations to the EPOXY [8] work that set it

apart from μArmor. First, μArmor targets a class of deeply

embedded systems not addressed by EPOXY: those running an

OS. EPOXY was designed to protect single-stack bare-metal

embedded systems and is not suitable for deployment on multi-

stack RTOS systems without significant re-engineering (e.g.,

such as with regards to scalability of safe-stack overhead, inte-

grating privilege overlays transparently with OS mechanisms).

Second, EPOXY privilege overlay security model could

be broken by an attacker returning to any legitimate call-site

where the privilege elevation handler is invoked. Consider,

for example, the Algorithm 1:

Algorithm 1 EPOXY Privilege Overlay Issue

1: Begin REQUEST PRIVILEGED EXECUTION

2: Save Register and Flags State

3: if In Unprivileged Mode then
4: Execute SVC 0xFE (Elevate Privileges)

5: end if
6: Restore Register and Flags

7: Execute Restricted Operation

8: Set Bit 0 of Control Register (Reduces Privileges)

9: END

Here an attacker could return to line 2 where supervisor call

(SVC 0xFE) would invoke the custom EPOXY SVC Handler

(see related EPOXY code at [58]). The handler would check

whether the interrupt source was correct regardless of un-

privileged control-flow leading up to it and as such would

elevate privileges allowing the attacker to execute the restricted

operation in line 7. Code diversification would not help much

because many restricted operations are located at static or

easily obtainable addresses (e.g., extracted from the IVT).

Third, EPOXY code diversification approach is less fine-

grained than that of μArmor since it only randomizes function

order but does not diversify function sizes (and thus leaves

gadget offsets with respect to function addresses intact) nor

does it reorder register preservation code. As such, EPOXY

code diversification is more vulnerable to information leaks

than μArmor.
Finally, unlike μArmor, EPOXY does not protect against

ret2bootloader style attacks [31], [33], [32] because it leaves

sensitive bootloader code that cannot be relocated executable

after system initialization As a result, an attacker can return to

potentially sensitive code areas allowing for re-flashing code

memory or disabling the MPU.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the first quantitative study

of exploit mitigation adoption in a representative selection of

embedded operating systems, showing the embedded world

(deeply embedded system in particular) to significantly lag be-

hind the general-purpose world. The resulting ease of exploita-

tion of memory corruption vulnerabilities and notoriously

prolonged vulnerability exposure windows in the embedded

world are cause for concern. We have presented how hardware

and OS limitations and performance constraints contribute to

an imposing series of constraints for developers of embedded

exploit mitigations to overcome. To address this situation we

have presented μArmor, an exploit mitigation baseline design

for deeply embedded systems. We have shown that μArmor

holds up favorably in terms of overhead imposition and offered

security.
We see two main trajectories for future work on embed-

ded binary security: long-term and short-term solutions. The

former trajectory aims to develop robust techniques tackling

the problem at the root and requires changes along the whole

development chain. Examples are embedded-oriented safe

languages and secure and scalable patching solutions.
The short-term trajectory should aim to develop solutions

which reduce the impact of embedded memory corruption

vulnerabilities and which can be rapidly adopted.
Finally, we should also seek for more advanced mitigations

for embedded systems in order to continue raising the bar and

close the mitigation security gap between general-purpose and

embedded systems.
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