
DroidEvolver: Self-Evolving Android Malware
Detection System

Ke Xu∗, Yingjiu Li∗, Robert H. Deng∗, Kai Chen†‡ and Jiayun Xu∗
∗School of Information Systems, Singapore Management University

†SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences
‡School of Cyber Security, University of Chinese Academy of Sciences

{kexu, yjli, robertdeng, jyxu.2015}@smu.edu.sg, chenkai@iie.ac.cn

Abstract—Given the frequent changes in the Android frame-
work and the continuous evolution of Android malware, it is
challenging to detect malware over time in an effective and scal-
able manner. To address this challenge, we propose DroidEvolver,
an Android malware detection system that can automatically
and continually update itself during malware detection without
any human involvement. While most existing malware detection
systems can be updated by retraining on new applications with
true labels, DroidEvolver requires neither retraining nor true
labels to update itself, mainly due to the insight that DroidEvolver
makes necessary and lightweight update using online learning
techniques with evolving feature set and pseudo labels. The
detection performance of DroidEvolver is evaluated on a dataset
of 33,294 benign applications and 34,722 malicious applications
developed over a period of six years. Using 6,286 applications
dated in 2011 as the initial training set, DroidEvolver achieves
high detection F-measure (95.27%), which only declines by 1.06%
on average per year over the next five years for classifying
57,539 newly appeared applications. Note that such new appli-
cations could use new techniques and new APIs, which are not
known to DroidEvolver when initialized with 2011 applications.
Compared with the state-of-the-art overtime malware detection
system MAMADROID, the F-measure of DroidEvolver is 2.19
times higher on average (10.21 times higher for the fifth year),
and the efficiency of DroidEvolver is 28.58 times higher than
MAMADROID during malware detection. DroidEvolver is also
shown robust against typical code obfuscation techniques.

I. INTRODUCTION

Both Android applications and Android framework evolve

continually over time for various reasons such as capability

enhancements and bug fixes [34]. As a result, it has been

increasingly difficult to build Android malware detection

systems that are trained with old Android applications and

are effective and scalable in detecting malware from new

applications after operating for a period of time. The rapid-

aging of the existing Android detection systems raises an

acute concern in both industry and academia. As it was

reported in BlackHat 2016 [21], the recall rate of a malware

detection system developed in Baidu drops by 7.6% in six

months. In the research literature, a recent effort was made to

make malware detection resilient to API changes through API

abstraction [24]; however, the aging of malware detection has

not been fully addressed.

To make malware detection accurate overtime, most mal-

ware detection systems need to be retrained timely and repet-

itively with new applications. Such solutions, however, face

several challenges. First, it is difficult to determine when to

retrain a malware detection system. If the system is retrained

too frequently, it results in a waste of resources for retraining

without providing novel information to enrich the detection

system [19]; otherwise, the detection system cannot capture

some new malware in a timely manner. Second, a retraining

process requires manual labeling of all processed new appli-

cations, which is constrained by available resources [19]. The

high cost of manual labeling usually induces a loose retraining

frequency [31]; consequently, the detection performance is

compromised. Lastly, most existing malware detection sys-

tems are retrained with cumulative datasets, including both

original training dataset and newly labeled applications. Such

retraining process is expensive and unscalable, especially in

the scenario where the number of new applications grows

rapidly over time.

Addressing these challenges, we propose a novel self-

evolving Android malware detection system, named DroidE-

volver, to make malware detection accurate over time by

making necessary update to its detection models with evolving

feature set. DroidEvolver maintains a model pool of different

detection models that are initialized with a set of labeled appli-

cations using various online learning algorithms. The intuition

of maintaining a model pool is that different detection models

are less likely to be aging at same pace in malware detection

even though they are initialized with the same dataset. In

the detection phase, DroidEvolver makes a weighted voting

among “young” detection models to classify each application

based on its Android API calls. DroidEvolver extracts Android

API calls as detection features because they naturally reflect

the evolvement of both Android framework and applications

and they can be easily extracted from bytecode for efficient

malware detection.

A “young” model for a detected application is determined

according to a Juvenilization Indicator (JI) that is calculated

according to the similarity between the detected application

and a batch of applications that have been classified by the

detection model to the same prediction label. If a detection

model is aging with respect to a detected application, DroidE-

volver updates the model using the detected application and its

classification result (i.e., pseudo label) generated by the model

47

2019 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2019, Ke Xu. Under license to IEEE.
DOI 10.1109/EuroSP.2019.00014

pool. DroidEvolver also updates its feature set to adapt to API

changes discovered from the application.

DroidEvolver uses JI to determine when to update its feature

set and each detection model. A JI can be calculated for each

detection model and each new application being detected. If

a JI falls out of a certain range, the corresponding detection

model is deemed as aging model. A detected application is

identified as drifting application if any model in the model

pool is aging for detecting this application. An aging model

has limitations of classifying a drifting application, which

may include new API calls or new API usage patterns.

DroidEvolver thus updates its feature set and all aging models

once a drifting application is identified.

DroidEvolver requires no true labels of processed appli-

cations for updating its model pool in malware detection.

This evades the necessity of manual labeling of any ap-

plications after the initialization of DroidEvolver, and thus

reduces resource and cost constraints for the evolvement of

DroidEvolver. In the case where a drifting application is iden-

tified, DroidEvolver generates a pseudo label for the drifting

application, and updates all aging models according to the

drifting application and its pseudo label before proceeding to

the next application. In the case where the current application

is not a drifting application (thus no aging model is identified),

all models in the model pool contribute to the classification

result, and no model update is performed.

DroidEvolver is efficient for malware detection over time.

It does not require any retraining with cumulative datasets

periodically after initialization; instead, it evolves efficiently

whenever a single drifting application is identified and pro-

cessed unless all models are aging in such case. To this end,

all detection models in the model pool are initialized using

online learning algorithms [3], which can perform incremental

learning over streaming data. In contrast to batch learning

algorithms, online learning algorithms are more efficient and

scalable, as they avoid not only batch processing with the

original training dataset in the initialization phase but also

periodic retraining with cumulative datasets in the detection

phase. While existing online learning algorithms work with

labeled data only, DroidEvolver makes them work with appli-

cations that are associated with pseudo labels in the detection

phase. Unlike existing online learning-based approaches which

update detection models for each application with true label,

DroidEvolver updates aging models only for each drifting ap-

plication. In the update process, DroidEvolver does not require

any true labels to be associated with the drifting applications;

in this sense, DroidEvolver is more practical than the existing

online learning-based approaches. Consequently, aging models

are juvenilized promptly whenever it is necessary. This further

contributes to the efficiency of DroidEvolver.

DroidEvolver is evaluated rigorously with a series of

datasets, including 34,722 malicious applications and 33,294

benign applications dated from 2011 to 2016. The efficacy

and efficiency of DroidEvolver are compared with MA-

MADROID, which is a state-of-the-art malware detection

system [24] that is resilient to API changes over time. In the

case where DroidEvolver and MAMADROID are trained and

tested with same applications developed in the same time pe-

riod, DroidEvolver significantly outperforms MAMADROID

with 15.80% higher F-measure, 12.97% higher precision, and

17.57% higher recall on average in our experiments. When

evaluated on testing sets that are newer than training sets by

one to five years, the average F-measure of DroidEvolver is

92.32%, 89.30%, 87.17%, 87.46% and 89.97%, respectively.

In comparison, the average F-measure of MAMADROID in

the corresponding cases is 68.01%, 56.09%, 45.88%, 32.85%

and 8.81%, respectively. The overall F-measure of DroidE-

volver is 2.11 times higher than MAMADROID on average for

malware detection over time. The F-measure of DroidEvolver

declines by 1.06% on average per year over five years, while

MAMADROID declines by 13.52% in the same case. In

addition, DroidEvolver maintains its F-measure at a high level

if it is updated by only a small amount of data with true labels,

while MAMADROID’s F-measure declines every year in such

case.

We then evaluate the efficiency of DroidEvolver, and com-

pare it with MAMADROID. The initialization of DroidEvolver

requires linear time, which varies from 3s to 27s as the original

training dataset increases from 10,000 to 50,000 applications,

while MAMADROID takes non-linear time that varies from

26s and 1,207s. In the detection phase, DroidEvolver takes

1.37s on average to process an unknown application, while

MAMADROID requires 39.15s on average in such case.

We also analyse the aging models and drifting applications

identified during malware detection over time. DroidEvolver

identifies 11.23% of new applications as drifting, while each

detection model shows signs of aging for classifying about

30.13% of drifting applications on average. These percentages

remain stable when evaluated with applications developed in

later time periods. In addition, more than 50.00% of detection

models are identified as aging for classifying 49.08% of

drifting applications. These drifting applications are major

sources of misclassifications, and the updates to aging models

make DroidEvolver slow aging in malware detection.

The contributions of the paper are summarized as follows.

We proposed a novel self-evolving and efficient Android

malware detection system DroidEvolver. DroidEvolver is ac-

curate in malware detection not only on the applications that

developed in same time period as the training applications,

but also on the new applications that are developed after

the training applications with new techniques and new APIs.

DroidEvolver is efficient since DroidEvolver leverages online

learning algorithms to update its aging models from individual

drifting applications during malware detection instead of re-

training periodically from a collection of cumulative appli-

cations in a batch manner. Compared with the state-of-the-

art malware detection system MAMADROID, DroidEvolver

achieves significantly higher accuracy and higher efficiency in

our experiments.

The rest of paper is organized as follows. Section II details

the system design of DroidEvolver. Section III introduces the

experimental setting and parameter tunning used in experi-

48

API Call

…
android.util.Log: d()
android.view.ActionMod
e.Callback:
onActionItemClicked()
java.lang.Throwable:
getMessage()
...

Vector Generation Model Pool Construction

Model TrainingFeature Vector

Unknown App

Initialization Phase

Detection Phase

Disassembled Bytecode

Feature ExtractionPreprocessor

Initial
Feature Set

API Call

…
android.util.Log: d()
android.view.ActionMod
e.Callback:
onActionItemClicked()
java.lang.Throwable:
getMessage()
...

Vector Generation

Disassembled Bytecode

Feature ExtractionPreprocessor Classification & Evolvement

Known App (0, 1, 0, …, 1 ,1)((0, 1, 0, …, 1

Vector Space

Online
Learning

Algorithms
Initial

Model Pool

Feature Vector

Feature Set
(1 , 0, 0, …, 1)(1 , 0, 0,…,

Vector Space

Model PoolModel Pool

Classify & Evolve

BenignMalicious

Feature Set
 Transmission

Featu
Trans

Evolved
Feature Set

Evolved
Model Pool

Model Pool
 Transmission

Feature Set Update

Model Pool Update

Fig. 1: Architecture of DroidEvolver

ments. Section IV evaluates DroidEvolver in different aspects,

analyzes the experiment results and discusses its limitations.

Section V summarizes the related work, and Section VI

concludes the paper.

II. DESIGN OF DROIDEVOLVER

The architecture of DroidEvolver1 is shown in Fig. 1.

DroidEvolver consists of two phases, including an initializa-
tion phase and a detection phase. In the initialization phase,

DroidEvolver takes as input a set of known applications which

are associated with true labels (i.e., “malicious” and “benign”),

and outputs a set of features and a set of detection models,

which are transmitted to the detection phase. In the detection

phase, DroidEvolver takes as input each application which

true label is unknown, and outputs a prediction label for the

unknown application.

The initialization phase of DroidEvolver consists of four

modules, including preprocessor, feature extraction, vector
generation, and model pool construction. For each known ap-

plication from the input, the preprocessor applies apktool [37]

to decompile its apk file and obtain its disassembled dex

bytecode, which includes API calls that are used in this

application. Then, the feature extraction module is used to

extract all Android APIs and record Android API binary

presence for each application as the detection features of

the application. An initial feature set, which is a total order

set, is constructed by combining the detection features of all

applications in the input. A feature space is constructed by a

1-to-1 mapping from all features in the initial feature set to

the dimensions of the feature space. In the vector generation

module, DroidEvolver generates a feature vector from each

1The code of DroidEvolver is released at http://github.com/DroidEvolver/D-
roidEvolver.

application for all detection models by mapping the detection

features of the application into the feature space, where each

detection feature that falls in the initial feature set is mapped

to component one, while other components are set to zero.

Given the feature vectors generated from all applications

in the input, the model pool construction module constructs

an initial model pool, which consists of a set of detection

models. Each detection model is initialized using a different

online learning algorithm which processes all input applica-

tions according to their feature vectors and true labels. At

the end of the initialization phase, DroidEvolver transmits the

initial feature set and the initial model pool to the detection

phase. Each detection model in the model pool is associated

with a feature set indicator, which indicates the number of

features that the detection model can process. All feature set

indicators are initialized as the size of the initial feature set

and may increase to larger values in the detection phase.

In the detection phase, DroidEvolver classifies each single

unknown application as malicious or benign and performs

necessary updates to the feature set and the detection models.

The first three modules in the detection phase are similar to

those in the initialization phase, except that (i) the feature set

is dynamically updated to include new features, (ii) a feature

space is constructed for each detection model by a 1-to-1

mapping from all features in the feature set whose ordinal

numbers are less than the feature set indicator of the detection

model, to the dimensions of the feature space, and (iii)

DroidEvolver generates a feature vector from each application

for each detection model by mapping the detection features of

the application into the feature space of the detection model.

In the feature extraction module, DroidEvolver extracts

Android APIs according to the existing Android API fam-

ilies [24], including android, java, javax, junit,

apach, json, dom, and xml. While the number of API

49

packages increases significantly from 96 at API level 1 (An-

droid version 1.0 released in October 2008) to 196 at API

level 27 (Android version 8.1 released in November 2017),

the names of Android API families remain unchanged over

time. In its detection phase, DroidEvolver would not miss

any new Android API calls caused by Android framework

evolvement as long as the API families of new API calls

remain unchanged.

The last module in the detection phase is classification
and evolvement. In this module, DroidEvolver generates a

classification result (either malicious or benign) for each

unknown application given in the input. If certain detection

models in the model pool are aging in detecting an unknown

application, DroidEvolver updates its feature set incrementally

(without changing the ordinal number of any existing feature)

by including all new Android API calls that are used in the

unknown application, and updates the feature set indicator of

each aging model to the size of the updated feature set. In

addition, DroidEvolver updates each aging model by learning

from the unknown application according to its classification

result and updated feature vector.

The rest of this section clarifies how the model pool is

constructed in the initialization phase, and how classification

and evolvement are achieved in the detection phase.

A. Model Pool Construction

Given a set of known applications and their associated true

labels in the initialization phase, DroidEvolver constructs a

model pool with a set of online learning algorithms instead

of any single detection model for malware detection. A single

detection model may not always provide accurate detection

results due to its limited capability [33]. The model pool can

help detect and mitigate the bias of any single detection model

and generate more reliable detection results in the detection

phase.

Each detection model in the model pool is constructed

using a different online learning algorithm that processes one

application at a time. The complexity of online learning is

linear to the number of applications in the input, which is

different from batch learning that requires processing a set of

applications at the same time. The common process of the

online learning algorithms in DroidEvolver is given below.

Let the input of DroidEvolver be a total order set of N
known applications. Let xt be a d-dimensional real-valued

feature vector for the t-th application in the input, where d
is the size of the initial feature set derived from the input in

the feature extraction module. Let yt be the true label of the t-

th application in the input, where yt = +1 means “malicious”

and yt = −1 means “benign.” The input of each online

learning algorithm is a sequence of (xt, yt) for t = 1, . . . , N .

Each online learning algorithm uses a detection model, which

is represented by a d-dimensional weight vector wt, to process

(xt, yt), where 1 ≤ t ≤ N . The weight vector consists of the

weights for all features in the initial feature set.

At each step t, each online learning algorithm processes

xt and generates a prediction label ŷt = sgn(wt · xt), where

sgn is a function that maps any non-negative value to +1 and

maps any negative value to -1. A loss value lt(yt, ŷt) at step

t is then computed from true label yt and prediction label ŷt.
Each online learning algorithm implements a different strategy

on how to compute the loss value lt and update its weight

vector wt to wt+1.

In DroidEvolver, each detection model defines a hyperplane

{x ∈ R
d|wt · x = 0}, where wt is the weight vector of the

detection model that is generated by certain online learning

algorithm. A detection model with weight vector wt performs

its classification on an application according to the distance

from the feature vector xt of the application to the hyperplane

of the model: if the distance wt · xt is non-negative, the

prediction label is “malicious”; otherwise, the prediction label

is “benign.” The absolute value of wt · xt is called as the

prediction score of the model for xt.

DroidEvolver constructs its model pool consisting of five

linear online learning algorithms, including Passive Aggressive

(PA) [9], Online Gradient Descent (OGD) [45], Adaptive

Regularization of Weight Vectors (AROW) [10], Regularized

Dual Averaging (RDA) [38], and Adaptive Forward-Backward

Splitting (Ada-FOBOS) [11]. These algorithms are selected to

cover major online learning algorithm categories, including

first-order online learning (including PA and OGD), second-

order online learning (including AROW), and online learning

with regularization (including RDA and Ada-FOBOS) [16].

First-order online learning algorithms aim to optimize the

objective functions using the first-order gradient information

only. The advantage of the first-order algorithms is that their

computational complexity is linear to the input size. Unlike

the first-order online learning algorithms that only exploit the

first-order derivative information of the gradient for the online

optimization tasks, second-order online learning algorithms

exploit both first-order and second-order information in order

to accelerate the optimization convergence. However, second-

order online learning algorithms often suffer from high compu-

tational complexity when dealing with high dimensional data.

This challenge can be addressed by online learning algorithms

with regularization, which aims to exploit the sparsity property

of real-world high-dimensional data. In addition, the selected

algorithms in each category are different in terms of update

policy, learning rate, optimization method, and loss function,

which enables various detection models to age differently in

the model pool when DroidEvolver is applied in malware de-

tection. The update procedures of the selected online learning

algorithms are explained below.

Passive Aggressive (PA). PA [9] incrementally builds its

detection model in multiple steps. At each step t, PA receives a

sample xt and predicts its label ŷt using the current model wt;

it then receives the true label yt of xt and calculates the hinge

loss lt = max{0, 1−yt(wt ·xt)}. Finally, PA sets the learning

rate at step t τt = lt
||xt||2 and updates wt+1 = wt + τtytxt.

In each step, the model update is passive if the hinge loss is

zero (i.e., wt+1 = wt if lt = 0). Otherwise, PA updates wt+1

aggressively. PA ensures that the updated wt+1 should stay as

close as to wt and every incoming sample should be classified

50

by the updated model correctly.

Online Gradient Descent (OGD). OGD [45] has similar

update policy as PA, except that OGD employs predefined

learning rate scheme while PA chooses the optimal learning

rate at each step. At each step t, OGD receives a sample

xt and predicts its label ŷt using the current model wt; it

then receives the true label yt of xt and calculates the hinge

loss lt = max{0, 1 − yt(wt · xt)}. After that, OGD updates

wt+1 =
∏

S(wt − ηt∇lt(wt)), where ηt is a predefined

learning rate, S is a convex set initialized at t = 0, and
∏

S is

the projection function to constrain the updated model to lie

in the feasible domain. To be specific, if wt− ηt∇lt(wt) /∈ S,∏
S projects wt − ηt∇lt(wt) to a vector which is the closest

vector to wt − ηt∇lt(wt) within S. The projected vector is

wt+1.

Adaptive Regularization of Weight Vectors (AROW).
AROW [10] takes the frequency of occurrence of different

features into consideration for model update. In AROW, the

frequent features receive more updates and are estimated more

accurately compared to rare features.

AROW maintains a Gaussian distribution over weight vec-

tors with mean μ and covariance Σ, i.e., w ∼ N (μ,Σ). AROW

initializes μ0 = 0 and Σ0 = Identity Matrix. Given a sample

xt at each step t, AROW computes a margin mt = μt−1 · xt

and a confidence νt = xt
ᵀΣt−1xt. After receiving true lable

yt of xt, AROW suffers loss lt = 1 if sgn(mt) �= yt. If

mtyt < 1, AROW upates μ:

μt = μt−1 +
max(0, 1− ytxt

ᵀμt−1)

xt
ᵀΣt−1xt + r

Σt−1ytxt

where r is an input parameter that is set by parameter tunning.

If μt �= μt−1, AROW updates the covariance Σ:

Σt = Σt−1 − Σt−1xtxt
ᵀΣt−1

xt
ᵀΣt−1xt + r

After that, AROW outputs the updated mean μt and covariance

Σt, which are then used to calculate the updated weight vector.

Regularized Dual Averaging (RDA). RDA [38] adjusts its pa-

rameters by solving a minimization problem for each sample.

At each step t, RDA computes the subgradient gt ∈ ∂ft(wt),
where ft is the cost function revealed at step t. The subgradient

gt is used to compute the average subgradient. RDA then

updates the average subgradient ḡt =
t−1
t ḡt−1+

1
t gt. With the

average subgradient, RDA updates the current weight vector

by solving a minimization problem:

wt+1 = argmin
w

{
ḡt

ᵀw +Ψ(w) +
βt

t
h(w)

}

where βt is a non-negative sequence, Ψ(w) is the original

sparsity-inducing regularizer (i.e., Ψ(w) = λ‖ w ‖1), h(w) is

an auxiliary strongly convex function (i.e., h(w) = 1
2‖ w ‖2),

and ḡt is the averaged subgradient of all previous iterations

(i.e., ḡ = 1
t

∑t
τ=1∇lτ (wτ)).

Adaptive Forward-Backward Splitting (Ada-FOBOS). One

major challenge of RDA is that the geometry information

of underlying data distribution may not be fully exploit by

the auxiliary strongly convex function h(w). To address this

challenge, Ada-FOBOS [11] proposes a data-driven adaptive

regularization for h(w):

ht(w) =
1

2
wᵀHtw

where Ht is the diagonal matrix.

The update procedure is described as follows. At each step

t, Ada-FOBOS receives xt and predicts its label ŷt. It then

suffers loss lt and calculates gradient gt with respect to wt.

Afterwards, it updates the diagonal matrix Ht of ht(w):

Ht = δ + diag(
t∑

i=1

gigi
ᵀ)

where δ is the parameter that ensures positive-definite property

of the adaptive weighting matrix. At last, Ada-FOBOS updates

weight vector wt+1 = wt − τgt
Ht

, where τ is the learning rate.

After all applications in the input have been processed,

DroidEvolver outputs five detection models as its model pool,

and associates each detection model with a feature set indi-

cator, which is initialized as the size of the initial feature set.

Then, DroidEvolver transmits the model pool to the detection

phase for classification and evolvement.

B. Classification and Evolvement

In the detection phase, the classification and evolvement

module performs classification for each unknown application

and makes necessary updates to its feature set and model pool.

This module consists of three steps, including drifting applica-
tion identification, classification and pseudo label generation,

and aging model juvenilization.

Drifting Application Identification - When to Evolve. Mal-

ware detection models that are trained with old applications

usually produce unsatisfactory results when detecting new

applications that are developed later than the training data.

This phenomenon is known as concept drift. In order to

make malware detection robust to concept drift, DroidEvolver

identifies drifting applications which are different from old

applications that have been processed before. For each drifting

application, DroidEvolver identifies aging models which show

signs of aging to classify the drifting application. The emerg-

ing of drifting applications signals the necessity of updating

the corresponding aging models for DroidEvolver to maintain

its effectiveness in malware detection.

DroidEvolver uses a juvenilization indicator (JI for short) to

determine whether an unknown application is drifting or not

when it is processed by a detection model. In a nutshell, JI

indicates the similarity between a new application and a batch

of applications measured by a detection model. To compute

JI for a new application in an efficient manner, DroidEvolver

uses an app buffer B = (b1, . . . , bK) of size K to store the

feature vectors for a subset of the applications that have been

processed, where K (≤ N) is a parameter in DroidEvolver,

and bt (1 ≤ t ≤ K) is a feature vector of certain application

that have been processed before. At the beginning of the

detection phase, the K applications in the app buffer are

51

randomly selected from the input given in the initialization

phase. To keep the existing app buffer up-to-date, whenever a

new application is taken as the input to the detection phase,

DroidEvolver randomly replaces one feature vector from the

app buffer with the feature vector of the new application for

JI computation.

In particular, assume that DroidEvolver has completed its

detection on the (i − 1)-th unknown application Ai−1 and

received a new application Ai. Let xi be the feature vector of

Ai, Mj be the j-th detection model in current model pool, wj

be the weight vector of Mj , and B be the app buffer updated

by Ai. Let σ be an indicator function, where σ(true) equals

1 and σ(false) equals 0. JI ξij of model Mj for application

Ai is defined as follows

ξij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑

bt∈B

σ(wj ·xi≥wj ·bt)
∑

bt∈B

σ(wj ·bt≥0) if wj · xi ≥ 0

∑

bt∈B

σ(wj ·xi<wj ·bt)
∑

bt∈B

σ(wj ·bt<0) else

(1)

In the definition of ξij , the prediction score of Mj for Ai is

compared to the prediction scores of Mj for the applications

in the app buffer that are classified by Mj to the prediction

label of Ai. If the prediction label of Ai by Mj is malicious

(benign, respectively), then the prediction score of Mj for

Ai is in the (100 · ξij)-th percentile ((100 · (1 − ξij))-th
percentile, respectively) among the prediction scores of Mj

for the applications in the app buffer that are classified by Mj

to “malicious” (“benign,” respectively).

Ai is identified as a drifting application to detection model

Mj if its feature vector xi is too close or too far away from

the hyperplane of Mj as compared to the other feature vectors

included in the app buffer (i.e., an outlier from processed

applications). DroidEvolver uses two thresholds, τ0 and τ1
(0 ≤ τ0 ≤ τ1 ≤ 1), to identify drifting applications according

to JI values. If τ0 ≤ ξij ≤ τ1, then ξij is deemed valid;

otherwise, ξij is invalid, where τ0 and τ1 are chosen in the

initialization phase and enforced in the detection phase. If

ξij is invalid, then Mj is identified as an aging model for

detecting Ai. An unknown application is identified as a drifting
application if any of the detection models in the model pool is

an aging model for detecting it. DroidEvolver makes necessary

updates to its feature set and the aging models in its model

pool whenever a drifting application is identified.

Classification & Pseudo Label Generation - What to
Evolve With. In the detection phase, DroidEvolver generates

a classification result for each unknown application through a

weighted voting. If an input application Ai is not a drifting

application, the weighted voting is performed by all detection

models in the model pool using
∑M

j=1 wj ·xi, where M is the

size of the model pool, wj is the weight vector of model Mj

in the model pool, and xi is the feature vector of Ai. If the

voting result is non-negative, Ai is classified as “malicious,”

otherwise, its classification result is “benign.”

In the case that the input application is identified as a

drifting application, the weighted voting is performed among

the detection models in the model pool excluding all aging

models for detecting it. The classification result of the drifting

application is then used as its pseudo label for updating the

feature set and all aging models. In the other case that all

models are aging or no model is aging, DroidEvolver performs

the weighted voting among all models in the model pool and

skips the updating process.

Aging Model Juvenilization - How to Evolve. The identifi-

cation of a drifting application and a proper subset of aging

models in the model pool indicates that the aging models

should be juvenilized according to the drifting application for

reliable malware detection over time for the following reasons.

Firstly, the differences between drifting applications and other

processed applications may be induced by new features or new

patterns included in the drifting applications. It is thus impor-

tant to adapt to these new features. In addition, the detection

capabilities of aging models are constrained by the “aging”

feature set and model structures, which needs to be updated

to make accurate classification in the future. In such case,

DroidEvolver first updates its current feature set by including

all new features that are extracted from the drifting application.

DroidEvolver then updates the feature set indicator and model

structure of each aging model individually by learning from

drifting application and corresponding pseudo label. Model

structure includes the dimension of weight vector (according

to current feature set indicator) and the values of the weight

vector (according to the features included in the processed

application).

Let ȳi denote the pseudo label of a drifting application

Ai, and Wj denote the weight vector of aging model Mj .

DroidEvolver updates each aging model Mj for Ai in four

steps. First, DroidEvolver uses Mj to compute a predication

label ŷij for Ai. Then, it reveals the pseudo label ȳi to Mj and

computes a loss value lj(ȳi, ŷij) for Mj according to the loss

function lj of Mj’s online learning algorithm. Third, it updates

the feature set indicator of Mj to be the size of the updated

feature set, and updates the feature vector of Ai according to

the updated feature set and the updated feature set indicator.

Lastly, it relies on the online learning algorithm of Mj to

decide when and how to update Mj according to update policy.

The necessary updates of both feature set and aging models

enable DroidEvolver to adapt to the changes in Android

applications and Android framework. Unlike the existing

online learning-based approaches, DroidEvolver relies on a

model pool instead of a single detection model to generate

its detection result. In addition, DroidEvolver requires no true

labels of drifting applications for updating aging models.

III. EXPERIMENTAL SETTINGS AND PARAMETER TUNING

The performance of DroidEvolver is empirically evaluated

in a series of experiments. The experimental settings and

parameter tuning are detailed in this section.

52

A. Data Collection

TABLE I: Distribution of Datasets over Years

Year 2011 2012 2013 2014 2015 2016

Benign 4,414 5,789 5,784 5,793 5,750 5,764

Malicious 6,063 5,777 5,685 5,760 5,657 5,780

Total 10,477 11,566 11,469 11,553 11,407 11,544

We collected a set of applications in July 2017 from an

open Android application collection project [2]. The labels of

the applications in our dataset were determined by the reports

which we obtained in August 2017 from VirusTotal [36],

which is an anti-virus service with 63 anti-virus scanners. An

application is labeled as benign if it received no alarm from

all anti-virus scanners. On the other hand, an application is

labeled as malicious if it received at least fifteen alarms from

63 scanners (i.e., about 24% of scanners raised alarm). The

way we labeled our applications is consistent with previous

research on malware detection. For example, Arp et al. [4]

labeled an application as malicious if it received alarms from

at least 20% of a set of anti-virus scanners. The resulting

benign dataset consists of 33,294 applications and the ma-

licious dataset includes 34,722 applications. The time of each

application is decided by the time when the apk file of the

application is packaged [28], which is included in the dex file

of the apk file. The dates of the applications in the collected

datasets cover from 2011 to 2016. As shown in Table I,

each dataset consists of a nearly balanced number of benign

applications (42.1%-50.5%) and malicious applications.

B. Metrics and Measurements

The performance of DroidEvolver is assessed using standard

F-measure, i.e.:

F-measure = 2 · Precision · Recall

Precision + Recall

where Precision = TP/(TP+FP) and Recall = TP/(TP+FN).

TP denotes the number of malicious applications being de-

tected correctly, FP denotes the number of benign applications

being mistakenly detected as malicious and FN denotes the

number of malicious application being mistakenly detected as

benign. The performance of DroidEvolver is measured in two

cases as described below.

Performance in Same Time Period. To avoid over-fitting, the

parameters of DroidEvolver are selected such that DroidE-

volver achieves its best performance on a validation set

after it is initialized with a training set; the performance of

DroidEvolver is then evaluated on a testing set, where the

training set, the validation set, and the testing set are different

sets of applications developed in same time periods without

overlapping.

There are six time periods in our experiments, including

2011, 2011-2012, 2011-2013, 2011-2014, 2011-2015, and

2011-2016. For each time period, applications are randomly

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

τ 0

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Fig. 2: Detection F-measure under Different Thresholds

shuffled and divided into five equal-size subsets. We randomly

choose three subsets as the training set, one subset as the

validation set, and the remaining subset as the testing set.

Performance over Time. The performance of DroidEvolver is

further evaluated over different time periods. The training set

and the validation set are chosen the same way as in evaluating

detection performance in same time period; the difference is

that the testing set is replaced with a set of applications that

are developed in later time periods.

C. Parameter Tuning

For each time period, parameters are selected such that

DroidEvolver’s performance is optimized with a validation

set after being initialized with a training set. The selected

parameters are then enforced to detect malware from a testing

set (dated in same or later time periods). In the following, we

show how parameter tuning is performed in an experimental

setting which we refer to as the default setting. In this

setting, 2011 dataset is used to form the training set (6,286

applications) and the validation set (2,095 applications).

Thresholds Tuning. Two thresholds, τ0 and τ1, are used to

identify drifting applications and aging models according to

JI values in the detection phase. Fig. 2 shows the effect of

tuning thresholds to the performance of DroidEvolver in the

default setting. Fig. 2 illustrates that the detection F-measure

of DroidEvolver is stable when τ0 changes from 0.1 to 0.3,

and τ1 increases from 0.6 to 0.8. The F-measure reaches its

maximum value 96.33% when τ0 = 0.3 and τ1 = 0.7. Since

the values of τ0 and τ1 are selected such that DroidEvolver

achieves the best performance on a validation set after being

initialized with a training set, DroidEvolver selects τ0 = 0.3
and τ1 = 0.7 in the default setting.

App Buffer Size Tuning. Recall that an app buffer is used in

the classification and evolvement module for the calculation

of JI in an efficient manner. The size K of the app buffer B
has impact to the identification of drifting applications, and

thus the detection F-measure of DroidEvolver and the time

required to process all unknown applications. Fig. 3 shows the

F-measure of DroidEvolver and the processing time of 2,095

applications in the classification and evolvement module under

different app buffer sizes, where the threshold values are set to

τ0 = 0.3 and τ1 = 0.7. The F-measure of DroidEvolver varies

53

TABLE II: Performance of DroidEvolver and MAMADROID for Detection in Same Time Period

[F-measure, Precision, Recall]%

Year (App #) 2011 (10,477) 2011-2012 (22,043) 2011-2013 (33,512)

DroidEvolver 95.27 97.03 93.58 96.75 97.36 96.70 96.39 97.36 95.44

MAMADROID 76.43 91.99 65.38 81.79 89.30 75.45 81.99 84.51 79.62

Year (App #) 2011-2014 (45,065) 2011-2015 (56,472) 2011-2016 (68,016)

DroidEvolver 96.15 97.60 94.74 96.02 95.14 96.91 96.34 98.15 94.60

MAMADROID 80.97 82.62 79.38 81.29 80.68 81.91 79.68 75.15 84.80

Fig. 3: App Buffer Size Tuning

from 91.45% to 96.41% when the app buffer size K increases

from 10 to 10,000, indicating that the detection F-measure is

not too sensitive to the change of K. On the other hand, the

processing time of all applications increases significantly from

200s to 4,759s as K changes from 10 to 10,000. To balance

F-measure and efficiency, DroidEvolver selects K = 500 in

the default setting.

IV. EVALUATION AND ANALYSIS

In this section, the performance of DroidEvolver is evalu-

ated and analyzed in a series of experiments using the datasets

summarized in Table I. The performance of DroidEvolver is

compared with MAMADROID [24], which is a state-of-the-

art malware detection system that is resilient to the changes of

Android APIs over time. MAMADROID first uses Soot [35]

and FlowDroid [5] to extract an API call graph from each

application; it then extracts a set of API call sequences from

the API call graph, and abstracts each API call to its package

in package mode or to its family in family mode. From

the abstracted API call sequences, MAMADROID builds a

Markov Chain by evaluating the probabilities of all transitions

between abstracted API calls. It then derives a feature vector

from each application according to its Markov Chain, where

each non-zero feature vector component is the corresponding

probability in the Markov Chain. MAMADROID uses a batch

learning algorithm to build a detection model and detects

malware from unknown applications.

For performance comparison, we re-implemented MA-

MADROID using its source code [23] and operated it in

its package mode (which consistently outperforms family

mode [24]), where the batch learning classification algorithm is

Random Forest (which achieves the best performance in [24]).

We evaluated both DroidEvolver and MAMADROID in same

experimental settings.

A. Detection in Same Time Period

Table II compares the performance of DroidEvolver and

MAMADROID in terms of F-measure, precision and recall.

In each experiment, DroidEvolver and MAMADROID are

initialized/trained with same training set and evaluated with

same testing set. In all experiments, DroidEvolver outper-

forms MAMADROID consistently and significantly, achiev-

ing 15.80% higher F-measure, 12.97% higher precision, and

17.57% higher recall on average. By learning from drift-

ing applications and adapting to new changes, DroidEvolver

achieves 96.15% F-measure on average using Android APIs

as detection features.

B. Detection over Time

Our next and main focus is on the detection performance

of DroidEvolver and MAMADROID over time where their

detection models are trained with a set of applications devel-

oped in one time period and then tested with another set of

applications developed in later time periods.

As shown in Fig. 4, the overtime performance of DroidE-

volver gains significant margins over MAMADROID in all

experiments. When DroidEvolver is evaluated on testing sets

that are newer than training sets by one to five years, the aver-

age F-measure of DroidEvolver is 92.32%, 89.30%, 87.17%,

87.46% and 89.97%, respectively. In comparison, the average

F-measure of MAMADROID in the corresponding cases is

68.01%, 56.09%, 45.88%, 32.85% and 8.81%, respectively.

The overall F-measure of DroidEvolver is 2.11 times higher

than MAMADROID on average for malware detection over

time. The F-measure of DroidEvolver declines by 1.06%

on average per year over five years, while MAMADROID

declines by 13.52% in the same case.

Fig. 4 also shows that, after operating for two to three

years, the F-measure of DroidEvolver becomes stable. In

its detection phase, DroidEvolver automatically learns from

drifting applications with pseudo labels and updates its feature

set and model pool. In comparison, the detection model

in MAMADROID makes no evolvement after training. The

54

(a) (b) (c) (d) (e)

Fig. 4: Detection Performances of DroidEvolver and MAMADROID. (a), (b), (c), (d), and (e) show results of initializing/training

with training set of 2011, 2011∼2012, 2011∼2013, 2011∼2014, and 2011∼2015, respectively.

Fig. 5: Detection Performance of DroidEvolver(DE) and MA-

MADROID(MMD) When Updated with Different Percentage

of Drifting Applications with True Labels, where Drifting

Applications Take about 11.23% of All Testing Applications

on Average.

advantage of DroidEvolver is more obvious in comparison

with MAMADROID in the default setting in which the training

set is relatively old and small as shown in Fig. 4a.

C. Impact of Model Updates

DroidEvolver performs necessary model updates in detec-

tion phase by learning from drifting applications without true

labels. Nonetheless, if true labels are available to certain appli-

cations, DroidEvolver can perform lightweight model updates

on such applications. After initializing with 2011 training set,

DroidEvolver and MAMADROID are further tested by updat-

ing their models with a fixed percentage of randomly selected

drifting applications with true labels during malware detection,

where drifting applications take about 11.23% of all testing

applications on average. As shown in Fig. 5, DroidEvolver

significantly and consistently outperforms MAMADROID in

all settings. The overall F-measure of DroidEvolver is 1.44

times higher than MAMADROID on average for malware

detection over time. In addition, DroidEvolver maintains its

average F-measure above 92% if it is updated by 60% (or

above) of drifting applications with true labels. Since around

11.23% of testing applications in each year are identified as

drifting applications, DroidEvolver can maintain its detection

Fig. 6: Detection Performance of DroidEvolver, Naive Solu-

tion and MAMADROID in Default Setting

performance at a high level if it is updated by only about

6.74% of testing applications with true labels in each year.

Learning from a small amount of applications with true

label helps DroidEvolver update itself with higher quality and

achieve better detection performance.

As shown in the white bars in Fig. 5, the average F-

measure of DroidEvolver slightly varies from 90.51% to

92.89% when the percentage of drifting applications with true

labels increases from 0% to 100%. In addition, the F-measure

remains stable when the percentage increases from 40% to

100%. In contrast, the average F-measure of MAMADROID

increases significantly from 41.29% to 71.25% as the percent-

age changes from 0% to 100% (as shown in the grey bars in

Fig. 5). Compared with MAMADROID, DroidEvolver is less

sensitive to model updates with true labels and achieves much

better performance. One reason is that DroidEvolver is able

to learn from pseudo labels of drifting applications when true

labels are not available. Another reason is that the pseudo label

of each drifting application is generated through a weighted

voting by excluding the aging models from the model pool,

which can help mitigate the bias of any single detection model

and generate more reliable pseudo labels.

When the true labels of certain applications are available

for model updates, DroidEvolver outperforms MAMADROID

not only in terms of efficacy, but also in efficiency. While

DroidEvolver can perform instant model updates by individual

55

(a) True Malicious (b) True Benign

Fig. 7: Distribution of JI Values for One Detection Model

testing applications with true labels, MAMADROID requires

repetitively retraining by including all available testing appli-

cations with true labels into the training set.

The importance of updating aging models in DroidEvolver

by drifting applications can be further justified by testing a

naive solution in which no drifting application is identified

and no update is performed; instead, the classification result

of each application is generated by all detection models

through weighted voting. Fig. 6 compares the performance of

DroidEvolver with the naive solution in the default setting. It

shows that the F-measure of the naive solution is significantly

lower than DroidEvolver after operating for several years. The

naive solution is less effective in malware detection overtime

due to more and more detection models are aging during

malware detection as no update is performed.

Although the naive solution is less effective than DroidE-

volver, it still outperforms MAMADROID considerably. Its

average F-measure is 1.88 times higher than MAMADROID

in same experimental setting. The reason is that the weighted

voting performed in the naive solution helps mitigate the bias

of single detection model and thus generate more reliable

detection results even without model updates.

D. Impact of Identifying Drifting Applications and Aging
Models

The distribution of JI values is analyzed to show the im-

portance of identifying drifting applications and aging models

during detection. Our analysis is performed in the default set-

ting, where DroidEvolver is evaluated with 2012 applications

with fine-tuned parameters τ0 = 0.3, τ1 = 0.7, and K = 500.

The distribution of JI values is shown for one model only (i.e.,

Passive Agressive) since the analysis to other models leads

to similar results. The chosen detection model shows signs

of aging to classify 3.55% of new applications developed in

2012. This percentage remains stable (without showing more

signs of aging) when evaluated with applications developed in

later time periods, which indicates the update performed by

DroidEvolver make the detection model slow-aging.

Fig. 8: Distribution of TPs, FNs, TNs and FPs in Drifting

Applications Developed in 2012

Fig. 7 shows box and whisker plots for the distribution of

JI values. The boxes extend from the lower quartiles to the

upper quartiles of JI values, where the means and medians

are marked with solid triangles and lines, respectively. The

whiskers extend from the boxes to show the 5th and the 95th
percentiles of JI values. The grey baselines mark τ0 and τ1,

and each red filter point denotes the invalid JI value of a

drifting application. Fig. 7a and Fig. 7b show JI distributions

for true malicious applications and true benign applications,

respectively. Most correct predictions (i.e., first columns in

these figures) are associated with valid JI values, while a

majority of false predictions are associated with invalid JI

values. In most cases, if an application is not drifting, the

detection model can make a correct prediction; otherwise, the

detection model is aging and may misclassify the drifting

application. For this reason, DroidEvolver generates a clas-

sification result for each drifting application by excluding all

aging models from weighted voting; it then updates all aging

models using online learning algorithms according to each

drifting application and its pseudo label. In the extreme case

where all detection models are aging in classifying a drifting

application, the weighted voting is performed by all models,

and no update is performed on any model.

We then analyse the identified drifting applications to

demonstrate the impact of drifting applications. The experi-

ment is performed in the default setting, where DroidEvolver

identifies 1459, 1308, 1242, 1267, and 1183 drifting appli-

cations from testing applications dated in 2012, 2013, 2014,

2015 and 2016, respectively. Since all drifting applications

and corresponding pseudo labels are then used to update

identified aging models, the correctness of pseudo labels is

important to the detection performance of DroidEvolver. Drift-

ing applications with incorrect pseudo labels might mistakenly

update aging models. Fig. 8 shows the distribution of TPs,

FNs, TNs and FPs in drifting applications dated in 2012.

For all identified drifting applications, DroidEvolver correctly

classifies 98.22% of them into benign or malicious. The rest

1.78% of drifting applications with incorrect pseudo labels

may mislead DroidEvolver to generate incorrect classification

56

(a) Num of Extracted Features (b) Feature Set Indicator

Fig. 9: Feature Evolvement

Fig. 10: Distribution of New Features

results and lead to the decline of F-measure for malware

detection overtime.

E. Feature Evolvement

A major advantage of DroidEvolver is that its feature set

is not fixed. It grows by taking in new features that are

extracted from drifting applications during detection. This

advantage helps DroidEvolver adapt to the new features that

are introduced due to application evolvement and Android

framework evolvement.

Fig. 9 shows feature evolvement in the default setting

where DroidEvolver is initialized with 2011 training set and

tested with applications developed from 2012 to 2016. In

particular, Fig. 9a shows that the real number of extracted

features increases from 14,327 to 52,001 in six years. A similar

growth pattern is observed for the feature set indicator of each

detection model in the model pool; for example, Fig. 9b shows

the growth of the feature set indicator for one detection model

(i.e., Passive Aggressive). The similar growth pattern indicates

that (i) DroidEvolver can update its feature set to include

new features discovered from drifting applications, and (ii)

detection models of DroidEvolver are updated to adapt to new

features for malware detection over time.

The new features that are added to the feature set in each

year can be considered as coming from two sources, including

application evolvement and Android framework evolvement.

The application evolvement means that the new features are

the existing APIs that have not been used in any applications

(a) TPs (b) FNs (c) TNs (d) FPs

Fig. 11: Feature Weight Distribution for TPs, FNs, TNs, and

FPs

in the training set or any drifting applications that have been

processed before. The Android framework evolvement means

that the new features are the new APIs that are added into

Android specifications. Fig. 10 shows that a majority of the

new features comes from application evolvement, while the

contribution from Android framework evolvement cannot be

ignored. Note that the distribution of new features may change

in different experimental settings. Nonetheless, a slow-aging

malware deteciton system should be designed to accommodate

new features and makes a good use of them in malware

detection over time.

F. False Positives and False Negatives

To explain why false positives and false negatives are

misclassified, DroidEvolver outputs a weight value for each

feature of an application being detected. The weight value of

a feature indicates how significant the feature contributes to

the classification result. In particular, the weight of a feature

for an application is computed as (
∑

j∈S wj · x), where S
is the set of models in the model pool that participate in the

weighted voting, wj is the weight vector of each model in

S at the time when the weighted voting is performed for the

application, and x is one-hot vector for the feature. Note that

the sum of all features’ weights for an application is exactly

the result of the weighted voting, which is used to derive

the classification result for the application. For a malicious

(benign, respectively) application, a non-negative (negative,

respectively) weight shows that the corresponding feature

contributes positively to its detection, and the absolute value

of the weight indicates how significant is the contribution.

We then present the detailed analysis of false positives and

false negatives, where DroidEvolver is evaluated on 11,566 ap-

plications dated in 2012 (including 5,789 benign applications

and 5,777 malicious applications). In such case, DroidEvolver

achieves F-measure 95.69%, accuracy 95.91%, TPR 93.39%,

and FPR 1.70%.

Feature Weight Distribution. We first analyse the feature

weight distribution for true positives (TPs), false negatives

(FNs), true negatives (TNs), and false positives (FPs). Fig. 11

shows box and whisker plots for 16 randomly chosen ap-

57

TABLE III: Distribution of Non-Negative Weight Features

(NNWF) for FPs

(a) NNWF% among All Features

NNWF (%) (40,50) (50,60) (60,70) (70,80)

FPs (%) 9.09% 90.91% 0% 0%

(b) NNWF% among Top 100 Significant Features

NNWF (%) (40,50) (50,60) (60,70) (70,80)

FPs (%) 0% 36.36% 45.46% 18.18%

TABLE IV: Distribution of Negative Weight Features (NWF)

for FNs

(a) NWF% among All Features

NWF (%) (40,50) (50,60) (60,70) (70,80)

FNs (%) 6.67% 81.67% 11.66% 0%

(b) NWF% among Top 100 Significant Features

NWF (%) (40,50) (50,60) (60,70) (70,80)

FNs (%) 15.00% 48.33% 35.00% 1.67%

plications (including four TPs, four FNs, four TNs and four

FPs), where each box extends from the lower quartile to the

upper quartile of the feature weights of certain application,

the whiskers extend from the boxes to show the 5th and the

95th percentiles of the feature weights, the mean (median,

respectively) of the feature values is marked with a solid

triangle (line, respectively) inside the box, a grey baseline

insides the box marks value zero, and each red filter point

(green filter point, respectively) denotes a non-negative weight

feature (a negative weight feature, respectively).

Fig. 11 shows that the feature weight distribution for FPs

(see Fig. 11d) is more similar to that for TPs (see Fig. 11a)

than that for TNs (see Fig. 11c) as most feature weights are

non-negative. On the other hand, the distribution of feature

weights for FNs (see Fig. 11b) is more similar to that for TNs

(see Fig. 11c) than to that for TPs (see Fig. 11a) in a sense

that most feature weights fall below zero.

False Positives. From 5,789 benign application, DroidEvolver

produces 98 FPs (i.e., FPR = 1.70%). Table III shows the

distribution of non-negative weight features for these FPs.

As shown in Table IIIa, all of these FPs possess more

than 40% of non-negative weight features among all fea-

tures extracted from their apk files. Although their true la-

bels are benign, 90.91% of them have more non-negative

weight features than negative weight features. Among the

top 100 significant features, Table IIIb further shows that all

of these FPs have more non-negative weight features than

negative weight features. These explain why these applica-

tion are predicted wrongly by DroidEvolver. Among the top

100 significant features extracted from these FPs, we find

some common non-negative weight features, such as an-
droid.telephony.TelephonyManager:getDeviceID, android.tele-
phony.TelephonyManager:getSimSerialNumber, and android.-

content.pm.PackageManager:getApplicationInfo. These APIs

are often used by malware to get personal information about

users’ devices and check installed applications.

False Negatives. DroidEvolver generates 382 FNs from 5,777

malicious applications in its detection phase (i.e., FNR =

6.61%). Table IV shows the distribution of negative weight

features for these FNs. As shown in Table IVa, 93.33% of

these FNs have more negative weight features than non-

negative weight ones. Among the top 100 significant features,

Table IVb shows that 85% these FNs contains more negative

weight features than non-negative weight features. Since a

majority of features are associated with negative weights, it

is difficult for DroidEvolver to rectify its detection on these

FNs unless more features than API calls are examined.

G. Runtime Performance

The runtime performance of DroidEvolver is evaluated in

its detection phase and compared to MAMADROID on a

machine with 4×3.2 GHZ Intel-Cores and 12 GB of RAM.

For runtime performance evaluation, both DroidEvolver and

MAMADROID are initialized/trained on 2011 training set, and

tested on 2012 dataset.

Table V summarizes the runtime performance of DroidE-

volver and MAMADROID in the average case. As shown

in Table Va, the performance bottleneck of DroidEvolver is

preprocessor, which decompiles apk files to obtain bytecode.

DroidEvolver takes only about 0.05s on average to perform

classification and evolvement, including drifting application

identification, application classification, and necessary aging

model juvenilization. By using API calls that can be easily

extracted as detection features and applying online learning

algorithms to quickly update detection models, DroidEvolver

takes 1.37s on average in total to process each unknown

application in its detection phase.

Table Vb shows the runtime performance of MAMADROID

in the same experimental setting. The first step of MA-

MADROID is “call sequence abstraction,” which extracts

API call graphs using Soot and FlowDroid and abstracts

the extracted API calls to their packages. This step takes

37.29s on average for each application, which is the bottleneck

of MAMADROID. The second step is to build a Markov

chain model and construct a feature vector, which takes about

0.43s on average. Finally, MAMADROID takes about 0.0036s

on average to classify a feature vector to either benign or

malicious. In total, MAMAROID requires 39.15s on average

to process each unknown application in its detection phase,

which is 28.58 times slower than DroidEvolver.

As shown in Table V, DroidEvolver is significantly faster

than MAMADROID in all modules except in classification

and evolvement. Although classifying the feature vector of

unknown application and updating aging model (i.e., 3.22 ×
10−3s on average) are lightweight, it is dominant to iden-

tify drifting applications and corresponding aging models.

Although DroidEvolver leverages app buffer to strike a balance

between effectiveness and efficiency, it still takes more time

than other steps to calculate JI value for each unknown

58

TABLE V: Average Time of Processing An Unknown Application in Detection Phase

(a) DroidEvolver

DroidEvolver
Preprocessor

Feature Vector Classification&
Overall

Extraction Generation Evolvement

1.1s 0.17s 0.05s 0.05s 1.37s

(b) MAMADROID

MAMADROID
Call Sequence Feature Vector

Classification Overall
Abstraction Extraction

37.29s 0.43s 0.0036s 39.15s

(a) Initialization Phase (b) Detection Phase

Fig. 12: Runtime Evaluation

application, which requires comparison with all applications

included in the app buffer.

The runtime performance of DroidEvolver and MA-

MADROID is then evaluated separately in their initializa-

tion/training phase and detection phase in Fig. 12. As shown

in Fig. 12a, the time required by the initialization phase of

DroidEvolver increases from 3s to 27s as the size of training

set increases from 10,000 to 50,000. In the same setting,

the training phase of MAMADROID increases from 26s to

1,207s, which ranges from 8.67 to 44.70 times slower than

DroidEvolver.

In their detection phases, both DroidEvolver and MA-

MADROID are linear in runtime performance to the number

of applications that are processed by them. Fig. 12b shows the

average performances of them for processing each application

in their detection phases, indicating that MAMADROID is

significantly slower than DroidEvolver.

A high efficiency of DroidEvolver is achieved in several

aspects. First, DroidEvolver leverages online learning algo-

rithms [17] to update its aging models from individual drifting

applications instead of learning from a collection of applica-

tions as in all batch learning-based malware detection systems.

This update process makes DroidEvolver efficient to process

a stream of applications sequentially. DroidEvolver does not

require any retraining with cumulative datasets periodically to

keep up with the trends in application evolvement and Android

framework evolvement. In addition, DroidEvolver requires no

true labels to be available for updating its model pool in

the detection phase. In comparison, most existing malware

detection systems depend on periodic model retraining to

update their detection models, and such model retraining

requires manual labeling of a set of new applications beyond

the original training set, which is constrained by available

resources. Besides, DroidEvolver applies extracted Android

API calls as detection features, which can be easily retrieved

from decompiled bytecode without complicated process, such

as those performed in Soot [35], FlowDroid [5], and Taint-

Droid [12]. Last but not least, DroidEvolver applies app buffer

to speed up the process of JI calculation without declining

detection performance.

H. Robustness

DroidEvolver is robust against common code obfuscations,

including identifier renaming, junk code insertion, code re-

ordering, and data encryption. Such code obfuscations may

evade many existing commercial anti-malware tools [30].

DroidEvolver is resilient to identifier renaming type of

obfuscations such as resigning, repackaging, and changing

class/field/method names because DroidEvolver does not rely

on specific application signatures or class/field/method names

to detect malware. DroidEvolver is also resilient to junk code

insertion, which inserts junk code segments into application

source code. If the inserted junk code segments include no An-

droid API calls, such junk code segments will not be extracted

by DroidEvolver and thus have no impact to DroidEvolver’s

performance. In addition, DroidEvolver is robust to code

reordering type of obfuscations, which change the control-

flow logics of obfuscated applications. DroidEvolver is robust

because it exploits no control-flow logic for malware detection.

DroidEvolver is also robust to data encryption type of code

obfuscations since they encrypt strings and/or arrays without

modifying original API calls in application source code.

We test the robustness of DroidEvolver by applying Droid-

Chameleon [30] to obfuscate 100 malicious applications that

are randomly selected from the malicious applications in

2012 dataset. DroidChameleon is a framework of eleven typi-

cal obfuscation techniques, including (1) Identifier renaming:

Disassembling and Reassembling, Class Renaming, Method

Renaming, and Field Renaming; (2) Junk code insertion: Junk

Code Insertion, and Nop Instruction; (3) Code reordering:

Code Reordering, Order Reversing, and Function Indirection

59

Insertion; and (4) Data encryption: String Encryption, and

Array Encryption. We apply each of the 11 obfuscation

techniques to the 100 selected malicious applications, gen-

erating 1,100 obfuscated applications. After initializing on

2011 dataset, DroidEvolver can successfully detect 96% of

the obfuscated applications. For each of the 11 obfuscation

techniques, DroidEvolver missed four out of 100 obfuscated

applications. After manually checked these 44 missed applica-

tions, we found that all of them were obfuscated from the same

four malicious applications. We further tested DroidEvolver on

these four malicious applications and found that DroidEvolver

missed them too. Therefore, DroidEvolver missed these 44

obfuscated applications not because they are obfuscated but

because they are missed even without obfuscations.

A strong attacker may carefully craft malware in adversarial

sampling [15] so as to evade malware detection and mislead

detection models. One example of adversarial sample crafting

is to introduce selected perturbations to the feature vectors of

certain malicious applications so that the detection results on

the perturbed feature vectors are benign [29], [14]. Consider

a strong attacker who knows DroidEvolver mechanisms and

status, including all detection models in the model pool, and

all feature vectors in the app buffer, at any time. Such attacker

may craft a feature vector at certain time to evade malware

detection, or create a set of feature vectors to mislead the

evolvement of DroidEvolver. However, it remains challenging

for such attacker to build a real-world malicious application

from a crafted feature vector since it is non-trivial to achieve

certain purpose-driven malicious function from a fixed list of

Android APIs that is defined by a crafted feature vector. It

remains a future research direction on how such attacks can

be performed in reality in a large scale.

I. Limitations and Extensions

DroidEvolver is a static analysis system that detects mal-

ware according to a set of Android API calls included in its

bytecode. It cannot detect malware that can only be detected

based on more complicated features such as API call graphs

and bytecode semantics. DroidEvolver can be evaded if the

API calls of malware are not visible in static analysis, such

as dynamically loaded malicious code and runtime malicious

behaviors. Another limitation of DroidEvolver that is inherited

from online learning is that it is vulnerable to poisoning at-

tacks [6][20]. In poisoning attacks, attackers may deliberately

craft the initialization dataset for DroidEvolver such that it is

not be able to detect certain malware effectively.

To address these limitations, DroidEvolver can be extended

to work with any other detection features instead of a set of

Android API calls. Such extension is feasible because DroidE-

volver’s core modules, including model pool construction and

classification and evolvement, are independent of how feature

vectors are generated in other modules. By plugging in more

complicated features such as API call graphs and control flow

graphs in static analysis, DroidEvolver may achieve higher

accuracies with certain tradeoffs on its performance overheads.

DroidEvolver can also be extended to native code analysis

and dynamic analysis as long as appropriate features can be

generated and used for such analyses. While our current work

focuses on designing and evaluating the evolving mechanisms

in DroidEvolver with lightweight detection features, our future

work will shift to extending DroidEvolver to other detection

features.

To thwart poisoning attacks, we suggest that DroidEvolver

be extended to include a sanitization module in its initialization

phase. For each application in the initialization dataset, the

sanitization module requires each detection model in the model

pool to generate a classification label based on the current

model structure. If a majority of the detection models in the

model pool cannot reach an agreement on the classification

label of an application, the sanitization module may consider

the application “poisoned” and delete it from the initialization

dataset. This sanitization process can be performed in several

rounds (each time from scratch) with randomly reshuffled ini-

tialization dataset. After the initialization dataset is sanitized,

DroidEvolver can be initialized for malware detection.

V. RELATED WORK

Over the past few years, Android malware detection has

attracted extensive attentions in both academia and industry.

DroidEvolver is more related to learning-based Android mal-

ware detection systems which we review below.

Detection Over Time. MAMADROID [24] is an Android

malware detection system that is resilient to Android API

changes due to abstract API calls to their packages and fami-

lies. The detection model in MAMADROID is not automati-

cally updated by individual applications in the detection phase

since it is built from a batch learning algorithm. To maintain its

effectiveness for malware detection over time, MAMADROID

may be retrained with a new set of applications; however,

such retraining is constrained on the availability of true

labels for the applications used in retraining. In comparison,

DroidEvolver requires no true labels for model evolvement in

its detection phase.

Another related work is Transcend [19], which is a frame-

work to detect concept drift in malware classification models.

The importance of identifying drifting applications and aging

models in DroidEvolver is motivated by Transcend; however,

the statistical metrics proposed in Transcend for detecting

concept drift cannot be directly applied in DroidEvolver be-

cause Transcend calculates its concept drift metrics for each

testing application by comparing it to all and only training

applications with true labels. The concept drift metrics do

not capture how each testing application is different from

any new applications that are given in the detection phase

without true labels. Another difference between Transcend

and DroidEvolver is that Transcend focuses on how to detect

concept drift only without covering how to develop a slow-

aging, scalable, and robust malware detection system for

effective malware detection over time.

Online Learning in Malware Detection. Online learning

algorithms have been applied to Android malware detection

60

in recent years. For example, DroidOL [27] and CASAN-

DRA [26] use online learning algorithms to build malware

detection models and classify Android applications according

to their API call graphs. Both DroidOL and CASANDRA

automatically retrain their detection models using online learn-

ing algorithms upon receiving each labeled application, and

classify unlabeled applications using the updated detection

models. The retraining process requires that each application

be associated with its true label, which is constrained by

available resources. In comparison, DroidEvolver requires no

true labels for automatically updating its detection models in

its detection phase, which evades the necessity of labeling

any applications after the initialization phase. Unlike these

existing approaches, DroidEvolver relies a model pool instead

of any single online learning algorithm to generate its detection

results. The model pool can help detect and mitigate the bias

of any single detection model and thus generate more reliable

detection results.

Other Malware Detection Methods. Different from DroidE-

volver, most learning-based malware detection systems rely on

frequent retraining to maintain their effectiveness in malware

detection over time, while the retraining is performed on a

set of labeled applications including new applications beyond

the previous training set. An incomplete list of such malware

detection systems is given below. 6thSense [32] utilizes three

different machine learning techniques (i.e., Markov Chain,

Naive Bayes, and LMT) to detect malicious behaviors as-

sociated with mobile phone sensors. StormDroid [8] uses

various machine learning algorithms, such as SVM, Deci-

sion Trees, and Naive Bayes to detect malware according

to used permissions, sensitive API calls, and sensitive API

call sequences. MARVIN [22] applies the Linear Logistic

Regression model to classify Android applications from a

large number of features derived in both static analysis and

dynamic analysis. DroidMiner [40] also uses various machine

learning algorithms, including SVM, Decision Tree, Naive

Bayes, and Random Forest to detect malware from sensitive

API call graphs. Drebin [4] applies SVM to malware detection

based on request permissions, app components, and suspicious

API calls. Finally, DroidSIFT [43] performs both anomaly

based detection and signature based detection based on feature

vectors generated from contextual API dependency graphs.

Recent effort on malware detection has been made on how

to use deep neural networks for better malware detection. For

example, DroidDetector [42] and Droid-Sec [41] build Deep

Belief Networks for Android malware detection using 192

human engineered features, including required permissions,

sensitive API calls, and certain dynamic behaviors obtained

from DroidBox [7]. Deep4maldroid [18] constructs weighted

directed graphs from Linux kernel system calls and use them

to train deep neural networks for Android malware detection.

Mclaughlin et al. [25] uses a deep neural network to detect

Android malware according to how 218 dex instructions are

used by each application. DeepRefiner [39] uses two detection

layers with different deep neural networks to detect Android

malware from different perspectives. FeatureSmith [44] uses

natural language processing techniques to generate malware

detection features from scientific literature.

Besides learning-based malware detection systems, enor-

mous signature-based malware detection systems have been

proposed. For example, Kirin [13] detects malware according

to required permissions which break certain pre-defined secu-

rity rules. Since they are not very close to this work, we refer

readers to a recent survey [1] for more details.

VI. CONCLUSION

This paper presented DroidEvolver, an effective and efficient

Android malware detection system that can automatically

update itself so as to catch up with the rapid evolution

of both malware and Android framework. Different from

most learning-based malware detection systems which rely on

batch learning algorithms for generating immutable detection

models with fixed feature sets, DroidEvolver applies online

learning algorithms to make necessary update to its detection

models with evolving feature set. While most existing malware

detection systems can be updated by retraining on a new

set of applications with true labels, DroidEvolver requires

neither retraining nor true labels to update itself; therefore,

DroidEvolver is more practical in resource-constraint settings

where true labels are not promptly available to many new

applications. Rigorous experiments show that the performance

of DroidEvolver is consistently higher than the state of the art

in malware detection over time in terms of both accuracy and

efficiency. DroidEvolver is also shown robust against several

typical code obfuscation techniques. In the future, we plan to

extend DroidEvolver using malware detection features other

than Android API calls in both static analysis and dynamic

analysis. The ultimate goal is to improve the accuracy of

DroidEvolver to that updated by true labels. Our current work

offers a promising first step towards this ultimate goal.

ACKNOWLEDGEMENTS

Ke Xu and Robert H. Deng are supported by AXA Re-

search Fund. Yingjiu Li’s work is supported by Huawei Re-

search Project with agreement number YBN2018085241 from

Huawei International Pte. Ltd. through Singapore Management

University. Kai Chen is supported in part by NSFC U1836211,

U1536106, 61728209, National Top-notch Youth Talents Pro-

gram of China, Youth Innovation Promotion Association CAS,

Beijing Nova Program, Beijing Natural Science Foundation

(No.JQ18011) and National Frontier Science and Technology

Innovation Project (No. YJKYYQ20170070).

REFERENCES

[1] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith,
“Sok: Lessons learned from android security research for appified
software platforms,” in IEEE Symposium on Security and Privacy, 2016.

[2] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, 2016.

[3] T. Anderson, The theory and practice of online learning. Athabasca
University Press, 2008.

61

[4] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in NDSS, 2014.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Acm Sigplan Notices, 2014.

[6] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in ICML, 2012.

[7] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck, “Droidbox: An
android application sandbox for dynamic analysis,” in Lund University
Technical Report, 2011.

[8] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid: A
streaminglized machine learning-based system for detecting android
malware,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, 2016.

[9] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” in Journal of Machine Learning
Research, 2006.

[10] K. Crammer, A. Kulesza, and M. Dredze, “Adaptive regularization of
weight vectors,” in Advances in neural information processing systems,
2009.

[11] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” in Journal of Machine
Learning Research, 2011.

[12] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
in ACM Transactions on Computer Systems (TOCS), 2014.

[13] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proceedings of the 16th ACM conference
on Computer and communications security, 2009.

[14] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in ICLR, 2015.

[15] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” in CoRR, 2016.

[16] S. C. Hoi, D. Sahoo, J. Lu, and P. Zhao, “Online learning: A compre-
hensive survey,” arXiv preprint arXiv:1802.02871, 2018.

[17] S. C. Hoi, J. Wang, and P. Zhao, “Libol: A library for online learning
algorithms,” in The Journal of Machine Learning Research, 2014.

[18] S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4maldroid: A deep
learning framework for android malware detection based on linux kernel
system call graphs,” in IEEE/WIC/ACM International Conference on
Web Intelligence Workshops (WIW), 2016.

[19] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,
and L. Cavallaro, “Transcend: Detecting concept drift in malware
classification models,” in 26th USENIX Security Symposium, 2017.

[20] M. Kloft and P. Laskov, “Security analysis of online centroid anomaly
detection,” in Journal of Machine Learning Research, 2012.

[21] LeiWang, “Baidu Security Lab,” https://www.blackhat.com/docs/eu-16/,
2016.

[22] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Efficient
and comprehensive mobile app classification through static and dynamic
analysis,” in IEEE 39th Annual Computer Software and Applications
Conference, 2015.

[23] Mariconti, “MAMADROID Project,” https://bitbucket.org/gianluca
students/mamadroid code, 2018.

[24] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models,” in NDSS, 2017.

[27] A. Narayanan, L. Yang, L. Chen, and L. Jinliang, “Adaptive and scalable
android malware detection through online learning,” in International
Joint Conference on Neural Networks (IJCNN), 2016.

[25] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller,
S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé et al., “Deep android
malware detection,” in Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, 2017.

[26] A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, “Context-
aware, adaptive, and scalable android malware detection through online
learning,” in IEEE Transactions on Emerging Topics in Computational
Intelligence, 2017.

[28] P. Palumbo, L. Sayfullina, D. Komashinskiy, E. Eirola, and J. Karhunen,
“A pragmatic android malware detection procedure,” in Computers &
Security, 2017.

[29] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in IEEE European Symposium on Security and Privacy, 2016.

[30] V. Rastogi, Y. Chen, and X. Jiang, “Catch me if you can: Evaluating
android anti-malware against transformation attacks,” in IEEE Transac-
tions on Information Forensics and Security, 2014.

[31] D. Sahoo, C. Liu, and S. C. Hoi, “Malicious url detection using machine
learning: A survey,” arXiv preprint arXiv:1701.07179, 2017.

[32] A. K. Sikder, H. Aksu, and A. S. Uluagac, “6thsense: A context-aware
sensor-based attack detector for smart devices,” in 26th USENIX Security
Symposium, 2017.

[33] C. Smutz and A. Stavrou, “When a tree falls: Using diversity in ensemble
classifiers to identify evasion in malware detectors.” NDSS, 2016.

[34] M. Sun, T. Wei, and J. Lui, “Taintart: A practical multi-level information-
flow tracking system for android runtime,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, 2016.

[35] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot-a java bytecode optimization framework,” in Proceedings of
the Conference of the Centre for Advanced Studies on Collaborative
Research, 1999.

[36] VirusTotal, “Virustotal-free online virus, malware and url scanner,”
Online: https://www. virustotal. com/en, 2012.

[37] R. Winsniewski, “Android–apktool: A tool for reverse engineering
android apk files,” 2012.

[38] L. Xiao, “Dual averaging methods for regularized stochastic learning and
online optimization,” in Journal of Machine Learning Research, 2010.

[39] K. Xu, Y. Li, R. H. Deng, and K. Chen, “Deeprefiner: Multi-layer
android malware detection system applying deep neural networks,” in
2018 IEEE European Symposium on Security and Privacy (EuroS&P),
2018.

[40] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, “Droidminer:
Automated mining and characterization of fine-grained malicious behav-
iors in android applications,” in European Symposium on Research in
Computer Security, 2014.

[41] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: deep learning in
android malware detection,” in ACM SIGCOMM Computer Communi-
cation Review, 2014.

[42] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware charac-
terization and detection using deep learning,” in Tsinghua Science and
Technology, 2016.

[43] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware android mal-
ware classification using weighted contextual api dependency graphs,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, 2014.

[44] Z. Zhu and T. Dumitras, “Featuresmith: Automatically engineering
features for malware detection by mining the security literature,” in
Proceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security, 2016.

[45] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proceedings of the 20th International Confer-
ence on Machine Learning (ICML), 2003.

62

