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Abstract—Securing database-backed applications requires
tracking information across the application program and the
database together, since securing each component in isolation may
still result in an overall insecure system. Current research extends
language-based techniques with models capturing the database’s
behavior. This research, however, relies on simplistic database
models, which ignore security-relevant features that may leak
sensitive information.

We propose a novel security monitor for database-backed
applications. Our monitor tracks fine-grained dependencies
between variables and database tuples by leveraging database
theory concepts like disclosure lattices and query determinacy. It
also accounts for a realistic database model that supports security-
critical constructs like triggers and dynamic policies. The monitor
automatically synthesizes program-level code that replicates the
behavior of database features like triggers, thereby tracking
information flows inside the database. We also introduce symbolic
tuples, an efficient approximation of dependency-tracking over
disclosure lattices. We implement our monitor for SCALA
programs and demonstrate its effectiveness on four case studies.

I. INTRODUCTION

Database-backed applications are programs that interact with

databases to store and retrieve information. These applications

are commonly used in settings like e-commerce, e-health,

and social networks, and often handle sensitive data where

security is a concern.

Securing database-backed applications is challenging: the

security of the program and the database in isolation is insuf-

ficient to ensure the overall system’s security. For instance,

program-level information, such as the sensitive context of a

function call that triggers a query, is lost at the time of database-

level enforcement. Conversely, database-level information, such

as fine-grained security labels, is lost at the time of program-

level enforcement, when information from the database is

manipulated by the application.

Security models for database-backed applications must there-

fore account for both the program’s and the database’s seman-

tics. Following this approach, existing information-flow control

(IFC) solutions [7], [14], [15], [17], [19], [31], [44], [49]

extend programs with database models and apply standard IFC

techniques, such as security type systems [17], [43], symbolic

execution [14], or faceted values [49], to track information

flows across the program and the database, with the goal of

providing end-to-end security.

These approaches, however, are inadequate to secure modern

database-backed applications. They only consider simplistic

database models and often ignore features like dynamic policies

and triggers. These features are available in most modern

database systems and can be exploited to violate the database’s

confidentiality [25]. Ignoring them, therefore, means ignoring

possible information leaks.
Another challenge in tracking information flows across the

program-database boundary is analyzing queries. Some ap-

proaches [7], [43] perform simple syntactic checks on table and

column identifiers to derive the queries’ security levels. As mod-

ern query languages like SQL are very expressive, this may re-

sult in coarse approximations that make the analyses imprecise.

Additionally, these approaches do not support common policy

idioms used in database security, such as row-level policies.
In summary, effectively securing database-backed

applications requires (1) realistic database models that capture

the security-critical features offered by modern databases,

and (2) specialized techniques, rooted in database theory, to

analyze queries.

Contributions. We develop a novel IFC solution that (1) builds

on top of a realistic database model accounting for a large

class of security-relevant features, and (2) tracks fine-grained

dependencies between variables and tuples by using concepts

from database theory.
First, we develop a foundation for IFC for database-backed

applications using WHILESQL, a simple imperative language

extended with querying capabilities. WHILESQL builds on a

state-of-the-art database operational semantics developed by

Guarnieri et al. [25] and supports database features like triggers,

views, and dynamic policies. We propose a novel security

condition for WHILESQL programs that accounts for dynamic

policy changes.
Second, we develop a novel IFC monitor for WHILESQL

programs and prove it sound with respect to our security con-

dition. Our monitor tracks fine-grained dependencies between

variables and queries across program-level computations and

blocks outputs that could potentially leak sensitive information.

For checking policy violations, the monitor relies on disclosure

lattices [8] and query determinacy [35]. The monitor supports

row-level policies, a common class of database policies used

in many fine-grained access control models [12], [24], [37],

[48]. Additionally, it supports security-critical database features,

such as triggers and policy changes, that are not supported

by existing mechanisms [17], [19], [31], [43], [44], [49]. To

address the mismatch between program code and database

features like triggers and integrity constraints, the monitor

automatically synthesizes WHILESQL code mimicking these

features’ behavior, thereby enabling IFC techniques to track

information flows inside the database.
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Third, we implement our approach in DAISY (DAtabase and

Information-flow SecuritY), a security monitor for database-

backed SCALA programs. To overcome undecidability issues

when reasoning with disclosure lattices, DAISY relies on sym-

bolic tuples, a novel, efficient approximation of dependency-

tracking over disclosure lattices. We demonstrate our approach’s

precision and feasibility in four case studies implementing (i)

a social network, (ii) an assignment grading system, (iii) a

calendar application, and (iv) a conference-management system.

The case studies confirm that DAISY successfully prevents leaks

of sensitive information in the presence of realistic database

constructs without being overly restrictive. Our experiments

also show that symbolic tuples can be used to efficiently track

fine-grained dependencies. Concretely, DAISY introduces an

overhead of only 5%–10% in our case studies.

II. OVERVIEW

We now present our approach via an example. First, we

introduce the system model and the setting of our example.

Next, we motivate the need for realistic database models for

IFC. Finally, we illustrate how our monitor DAISY prevents

leaks of sensitive information.

System model. The system consists of users, whose

interaction with the database is mediated by a program like

a web application. Each user is uniquely associated with a

user account that is used to authenticate the user and retrieve

information from the database. We assume that users execute

programs using their own accounts. An attacker is a user

who can interact with the database only through programs. He

cannot learn the results of the queries issued by the program

unless they are part of the program’s output.
A security policy is defined at the database level using

access control policies, which specify what data each user is

allowed to access. Differently from access control, however,

we interpret the read permissions over tables and views as

information-flow policies, and we enforce them in an end-to-

end fashion across the program and the database. We assume

that the database does not enforce read permissions over tables

and views, but it still correctly enforces write permissions, e.g.,

a user can insert a tuple into a table T only if the policy says

so. This allows us to study what it means for a system to be

end-to-end secure from the information-flow perspective.

Setting. We consider a social network allowing users to review

books, publish their reviews, and share them with friends. The

database consists of six tables: book, user, friends, review,

likes, and stats. The table book contains information about

books, the table user contains the users’ information, the table

friends encodes the friendship relation among users, the table

review contains the users’ reviews, the table likes stores

information about reviews liked by users, and the table stats

contains statistics about the users and reviews. Furthermore,

we assume that for each user u there is a database view

reviewu containing user u’s reviews, i.e., the results of the

query SELECT ∗ FROM review WHERE userId = u.
The security policy is as follows: all users can read the con-

tent of the tables book, user, friends, likes, and stats but

they can only read their friends’ reviews. The first requirement

can be implemented by granting SELECT permissions over the

respective tables. The second requirement is formalized using

row-level policies, which disclose only a subset of the tuples in

a table. Row-level policies are a widely used policy idiom in

database security, and they are employed in many fine-grained

database access control models [12], [24], [37], [48]. In our set-

ting, we model the second requirement by granting SELECT per-

missions over the view reviewu1
to u2 whenever 〈u1, u2〉 is in

the table friends. We remark that we interpret the above pol-

icy as an information-flow policy, not as an access control one.

Motivating example. We consider three users Alice , Bob, and

Carl . We assume that Alice is a friend of Bob and Carl , but

Bob and Carl are not friends with each other. That is, Alice
can read Bob’s and Carl ’s reviews, but Bob cannot read Carl ’s
reviews and vice versa.

Consider the simple program below. First, Carl reviews

the novel “War and Peace” by Leo Tolstoy. Next, Alice reads

Carl’s review, which she appreciates, and creates an entry in

the table likes associated with it. Finally, Bob retrieves from

stats the statistics of all his friends.

//Executed by Carl
x ← INSERT INTO review(id, user, book, score)

VALUES (1,Carl ,"War and Peace", 10)
//Executed by Alice
y ← SELECT revId, text, score FROM review WHERE

book = "War and Peace" AND userID = Carl
out(Alice, y)
z ← INSERT INTO likes VALUES (y.revId ,

"War and Peace",Carl ,Alice)
//Executed by Bob
F ← SELECT u2 FROM friends WHERE u1 = Bob
S ← SELECT genre FROM stats WHERE userId = Bob
for (f : F ; g : S)

v ← SELECT v FROM stats WHERE userId = f
AND genre = g

out(Bob, 〈f, g, v〉)
The program is secure since all information flows comply with

the policy. Specifically, Alice observes one of Carl ’s reviews.

This is allowed by the policy since they are friends. Moreover,

Bob’s computation depends only on the public tables friends

and stats.

Why are realistic database models essential? The above

example relies on only basic database features like SELECT

and INSERT commands. Modern databases, however, support

many security-critical features, such as dynamic policies and

triggers, that may introduce additional information flows. As a

result, a seemingly secure program may actually be insecure

when features like triggers are accounted for.

To illustrate this, we extend our social network with a

trigger, that is, SQL code that is executed automatically by the

database in response to queries. Concretely, our social network

collects several statistics about users’ reviews in the table

stats. Among other things, the social network collects, for

each user u and genre g, the score of the last review of books
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of genre g liked by u. Instead of computing this data on the

fly, the statistics are stored in the database and updated using

triggers. The following trigger, which is executed under the

database administrator’s privileges, updates the score whenever

a new tuple is inserted into the table likes.

CREATE TRIGGER tr ON likes AFTER INSERT DO

UPDATE stats SET lastScore = (SELECT score

FROM reviews WHERE id = NEW.revid)
WHERE user = NEW.user AND genre IN (SELECT
genreFROM book WHERE book = NEW.book)

Specifically, whenever someone inserts a tuple 〈revId , book ,
revAuthor , user〉 into likes, the trigger updates the score

associated with the user user and book ’s genre with the score

associated with the review with identifier revId . In the above

trigger, we write NEW.x to refer to the attribute x of the tuple

just inserted in likes.

The program is no longer secure when the trigger tr is

present in the database. Indeed, now the information observed

by Bob depends on Carl ’s review. This flow of information,

however, is not allowed by our security policy since Bob
can only read his friends’ reviews. In more detail, when

Alice inserts the tuple into the table likes, the trigger tr is

executed and the attribute lastScore is updated using the

score in Carl ’s review. Moreover, since Carl is one of Alice’s

friends, this information influences Bob’s computation, thereby

violating the security policy.

Stopping leaks with DAISY. Ignoring advanced database

features may lead to a false sense of security. Indeed, a

seemingly secure program may still leak sensitive information

due to additional information flows introduced by triggers

and other database features. As a result, reasoning about the

security of database-backed applications requires accounting

for realistic database models and for common policy idioms

used in database security. Unfortunately, existing solutions [7],

[14], [15], [17], [19], [31], [43], [44], [49] either ignore relevant

security-critical database features (like triggers and dynamic

policies) or adopt imprecise analyses when handling queries (cf.

§VIII). This severely limits their ability to secure applications

and to enforce natural policy idioms like row-level policies.

To address this, we propose DAISY, a security monitor that

leverages disclosure lattices and query determinacy to track

fine-grained tuple-level dependencies. DAISY monitors the

program’s execution, tracks dependencies between variables and

tuples, and stops the program whenever sensitive information

may be leaked.

How DAISY works DAISY tracks, at runtime, dependencies

between queries and program variables and stops the program

whenever it detects a possible leak of sensitive information. For

instance, whenever information is retrieved from the database,

DAISY determines which tuples may have influenced the

query’s result and it tracks how the retrieved information flows

through the program. To concisely represent sets of tuples,

we develop symbolic tuples, an efficient approximation of

disclosure lattices (cf. §VI), which represent sets of concrete

tuples using logical formulae.

Consider the program from our example. When Alice re-

trieves the review, DAISY records that the content of the variable

y depends on Carl ’s review. More precisely, DAISY labels y
with the symbolic tuple 〈review, userId = Carl ∧ book =
"War and Peace"〉, which denotes that y’s content depends

on the values of all tuples in the table review satisfying the

constraint userId = Carl ∧ book = "War and Peace".

When Alice inserts a tuple into the table likes, DAISY tracks

the information flow caused by the trigger. DAISY determines

that the UPDATE command executed by the trigger inserts

sensitive information, i.e., the score of Carl ’s review, into

the public table stats. Concretely, the tool compares the

label associated with the input values, i.e., the tuple 〈y.revId ,
"War and Pace",Carl ,Alice〉, with the label associated

with the table stats .

Among others, 〈y.revId ,"War and Pace",Carl ,
Alice〉 is labelled with the symbolic tuple 〈review,
userId = Carl ∧ book = "War and Peace"〉 Using

query determinacy, DAISY checks if the symbolic tuple

〈review, userId = Carl ∧ book = "War and Peace"〉
can be derived from those associated with the stats table.

Since the stats table contains only public information, there

is no symbolic tuple among stats’s labels that discloses the

information represented by 〈y.revId ,"War and Pace",
Carl ,Alice〉’s label 〈review, userId = Carl ∧ book =
"War and Peace"〉. Hence, DAISY stops the program,

thereby preventing the leak of sensitive information.

Organization. We formalize WHILESQL in §III and our

security condition in §IV. We present our monitor in §V

and symbolic tuples in §VI. We present DAISY and our case

studies in §VII, we discuss related work in §VIII, and we draw

conclusions in §IX. A technical report with complete proofs of

all results is available at [23], and DAISY is available at [22].

III. WHILESQL

Here we present WHILESQL, a language supporting

querying constructs and a realistic database model.

A. Syntax and notation

Syntax. WHILESQL is an imperative language with querying

capabilities, whose syntax is given in Figure 1. Its impera-

tive fragment consists of assignments x := e, conditionals

if e then c1 else c2, loops while e do c, and output statements

out(u, e), which print the value of an expression e to a user

u. Expressions e are values n ∈ Val , variables x ∈ Var ,

or application of unary �e and binary operations e1 ⊗ e2 to

expressions. The set U of all users is UID ∪ {public}, where

UID is a set of user identifiers and public is a designated

identifier denoting all users.

Database queries are modeled as statements of the form

x ← q that execute an SQL command q, which may contain

program variables, and assign the result to a variable x. Observe

that each SQL command either returns the query’s result or an

error message. Error messages indicate whether queries violate

security constraints or integrity constraints, such as a DELETE

command that is not allowed by the current security policy or
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Basic Types
(Table Ids) T ∈T

(View Ids) V ∈V

(Relation Ids) R ∈T ∪ V

(Trigger Ids) tr ∈TR

(Variables) x ∈Var
(Values) n ∈Val
(User identifiers)u ∈U
(Formulae) ϕ ∈RC

Syntax
(Privileges) p := SELECT ON R | INSERT ON T | DELETE ON T

| CREATE VIEW | CREATE TRIGGER ON T
(Actions) a := INSERT e1, . . . , en INTO T | DELETE e1, . . . , en FROM T

| GRANT p TO u | REVOKE p FROM u
| GRANT p TO u WITH GRANT OPTION

(SQL commands) q := a | SELECT ϕ | CREATE VIEW V : SELECT ϕ
| CREATE TRIGGER tr ON T AFTER (INS | DEL) IF ϕ DO a

(Expressions) e :=n | x | �e1 | e1 ⊗ e2
(Statements) c := ε | x ← q | x := e | out(u, e) | if e then c1 else c2

| while e do c | c1 ; c2
Fig. 1: WHILESQL’s syntax

an INSERT command that violates a primary key constraint.

WHILESQL supports SQL’s core features, such as SELECT,

INSERT, DELETE, GRANT, and REVOKE commands, as well as

advanced features like triggers and views.

Database features. WHILESQL relies on the state-of-the-art

database semantics from Guarnieri et al. [25], which supports

security-critical features like dynamic policies and triggers.

Hence, following [25], we make various simplifications to our

query language.

WHILESQL supports retrieving information from the data-

base using SELECT commands. Rather than using SQL’s data

query language, we rely on the relational calculus (i.e., function-

free first-order logic), which has a simple and well-defined se-

mantics [1]. Following [25], we only consider boolean queries,

i.e., queries whose results are either true or false. We denote

by RC the set of all boolean relational calculus queries.

WHILESQL allows changes to the database’s content us-

ing INSERT and DELETE commands. Specifically, we sup-

port INSERT and DELETE commands that explicitly identify

the tuple to be inserted or deleted, i.e., commands of the

form INSERT INTO table(x1, . . . , xn) VALUES (v1, . . . , vn)
and DELETE FROM table WHERE x1 = v1 ∧ . . . ∧ xn = vn,

where x1, . . . , xn are table’s attributes and v1, . . . , vn are the

tuple’s values. More complex commands can be simulated by

combining SELECT, INSERT, and DELETE commands.

WHILESQL also supports the administration of dynamically

changing security policies. We support GRANT commands to

add permissions to a security policy. We also support delegation

through GRANT commands with GRANT OPTION. Moreover,

privileges can be revoked using REVOKE commands. We only

consider REVOKE commands with the CASCADE OPTION, i.e.,

when a user revokes a privilege, he also revokes all the

privileges that depend on it [40], [47].

Our model also supports triggers, which are procedures

automatically executed by the database system in response

to user commands. In particular, we support AFTER triggers

on INSERT and DELETE events, i.e., triggers that are executed

in response to INSERT and DELETE commands. In our model,

triggers are executed under the privileges of the trigger’s owner.

Moreover, the triggers’ WHEN conditions (which specify whether

a trigger is enabled or not) are arbitrary boolean queries and

their actions are INSERT or DELETE commands. Note that

database systems usually impose restrictions on the WHEN clause,

such as it must not contain sub-queries. However, most systems

can express arbitrary conditions on triggers by combining

control flow statements with SELECT commands inside the

trigger’s body. Thus, we support the class of triggers whose

body is of the form BEGIN IF expr THEN act END, where

expr is a boolean query and act is an INSERT or DELETE

command. Following [25], we only consider triggers that do

not recursively activate other triggers.

We also support database views, i.e., virtual tables defined

through SELECT queries, executed under the privileges of the

view’s owner. Additionally, we support CREATE commands

for creating new triggers and views. Finally, we support two

kinds of integrity constraints: functional dependencies and

inclusion dependencies [1]. They model the most widely used

SQL integrity constraints, i.e., the UNIQUE, PRIMARY KEY, and

FOREIGN KEY constraints.

B. Local semantics

We define here the semantics of WHILESQL programs

executed in isolation by a user u. It is formalized as a ternary

relation 〈c,m, s〉 o−→u 〈c′,m′, s′〉 mapping a local configuration

〈c,m, s〉, where c is the program under execution, m is the

memory, and s is the database state, to a configuration 〈c′,m′,
s′〉 while producing an observation o.

A WHILESQL program is defined with respect to a

database configuration 〈D,Γ〉, where D is a database schema,

i.e., a set of table identifiers with the corresponding arities,

and Γ is a set of integrity constraints. Here, we fix a database

configuration M = 〈D,Γ〉.
Database states. Following [25], we now introduce all the

components necessary to model a database state.

We define a security policy to be a finite set of GRANT

statements. Given a policy sec and a user u, auth(sec, u)
denotes the set of all tables and views that u is authorized to

read according to sec. A system state is a tuple 〈db, U, sec, T,
V 〉, where db is a database state, U ⊂ UID is a finite set of

users, sec is a security policy, T is a finite set of triggers, and

V is a finite set of views. We lift auth from policies to system

states, i.e., auth(〈db, U, sec, T, V 〉, u) = auth(sec, u).
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A context ctx describes the database’s history, the scheduled

triggers that must be executed, and how to modify the

database’s state in case a roll-back occurs. We refer the reader

to [25] for a formal definition of contexts. A runtime state is

a tuple 〈s, ctx 〉, where s is a system state and ctx is a context.

The set of all runtime states is denoted by ΩM and ε denotes

the empty context. In the following, we use s to refer to both

system and runtime states when this is clear from the context,

and we use 〈s, ctx 〉 otherwise.

Local configurations. A local configuration 〈c,m, 〈s, ctx 〉〉
consists of a command c ∈ Com , a memory m ∈ Mem , and a

runtime state 〈s, ctx 〉 ∈ ΩM , where memories m ∈ Mem are

functions mapping variables to values, i.e., Mem = Var →
Val . A configuration is initial iff ctx = ε.

Observations. In WHILESQL, there are two ways of producing

observations. First, out(u, e) statements can be used to output

information to users. Second, successfully executed GRANT,

REVOKE, and CREATE commands produce public observations

notifying all users of the configuration’s changes. Formally,

an observation is a tuple 〈u, o〉, where u ∈ U is the target

user and o is a value in Val or a GRANT, REVOKE, or CREATE

command. We denote by Obs the set of all observations.

In our model, we represent traces of observations using

sequences, for which we use a standard notation. For a set S,

S∗ is the set of all finite sequences over S. Given a sequence

s ∈ S∗, we denote by |s| its length, by sj , where j ∈ N, its

prefix of length j, and by s|j its j-th element (if it exists). We

also denote by ε the empty sequence, by s1·s2 the concatenation

of s1 and s2, and by s1 
 s2 that s1 is a prefix of s2.

Evaluation relation. Given a user u ∈ UID , the relation →u

⊆ (Com×Mem×ΩM )×Obs×(Com×Mem×ΩM ) formal-

izes the local operational semantics of programs executed by u.

A run r is an alternating sequence of configurations and obser-

vations that starts with an initial configuration and respects the

rules defining →u. Given a run r, we denote by ri, where i ∈ N,

the run obtained by truncating r at the i-th state. A trace is an

element of Obs∗. The trace τ of a run r, denoted by trace(r),
is obtained by concatenating all observations in the run.

We rely on [25] for the semantics of SQL statements. Our

operational semantics uses the function �q�(〈s, ctx 〉, u) (defined

in [23]) to connect WHILESQL’s semantics with the database’s

semantics. The function �q�(〈s, ctx 〉, u) takes as input an SQL

command q, a runtime state 〈s, ctx 〉 ∈ ΩM , and the user u ∈
UID executing the command, and it returns a tuple 〈〈s′, ctx ′〉,
r, em〉, where 〈s′, ctx ′〉 ∈ ΩM is the new runtime state, r is

q’s result, and em is an error message. We also write �e�(m) to

denote the evaluation of an expression e in memory m. It is al-

ways clear from context if �·�(·) refers to queries or expressions.

Figure 2 depicts the rules specifying a query’s execution. The

rule E-QUERYOK handles the successful execution of queries.

It first replaces the free variables in the query with their values.

Afterwards, it executes the query (using �q�(〈s, ctx 〉, u)) and it

stores the query’s result in the memory. The rule relies on the

function obs(q), which takes as input a query q, to conditionally

produce a public observation 〈public, q〉 in case the command

E-QUERYOK

{v1, . . . , vn} = vars(q)
�q′�(〈s, ctx〉, u) = 〈〈s′, ctx ′〉, r, ε〉

q′ = q[v1 �→ �v1�(m), . . . , vn �→ �vn�(m)]

〈x← q,m, 〈s, ctx〉〉 obs(q′)−−−−−→u 〈ε,m[x �→ r], 〈s′, ctx ′〉〉

E-QUERYEX

{v1, . . . , vn} = vars(q)
�q′�(〈s, ctx〉, u) = 〈〈s′, ctx ′〉, r, em〉 em �= ε
q′ = q[v1 �→ �v1�(m), . . . , vn �→ �vn�(m)]

〈x← q,m, 〈s, ctx〉〉 −→u 〈ε,m[x �→ em], 〈s′, ctx ′〉〉
Fig. 2: Rules handling the query’s execution

q modifies the database configuration. Formally, obs(q) =
〈public, q〉 if q is a GRANT, REVOKE, or CREATE command,

and ε otherwise. Hence, the rule guarantees that configuration

changes are visible to all users. The rule E-QUERYEX handles

queries that fail, e.g., due to an integrity constraint’s violation.

Instead of storing the query result, the rule stores the error

message in the memory. The rules for the other WHILESQL

statements are standard and the full details are given in [23].

C. Global semantics

We now introduce a semantics modeling multiple WHI-

LESQL programs executed in parallel. We formalize it as a

ternary relation 〈C,M, s,S〉 o−→ 〈C ′,M ′, s′,S ′〉 mapping a

global configuration 〈C,M, s,S〉, where C is the sequence of

programs under execution, M is the sequence of memories, s is

the state of the shared database, and S is the scheduler’s state,

to a global configuration 〈C ′,M ′, s′,S ′〉, while producing the

observation o.

Global configurations. We denote the set of commands to-

gether with the executing user by ComUID = UID×Com and

the set of pairs of users and memories as MemUID = UID ×
Mem . To model a system state where multiple WHILESQL

programs run in parallel and share a common database, we

introduce global configurations. A global configuration is a

tuple 〈C,M, 〈s, ctx 〉,S〉 ∈ GlConf , where C ∈ Com∗UID is

a sequence of WHILESQL programs paired with the execut-

ing users, M ∈ Mem∗UID is a sequence of memories, 〈s,
ctx 〉 ∈ ΩM is the runtime state of the shared database, and S
is a scheduler formalizing the interleaving of the programs in

C. We consider only configurations 〈C,M, 〈s, ctx 〉,S〉 such

that |C| = |M | and for all 1 ≤ i ≤ |C|, C|i = 〈u, c〉 and

M |i = 〈u,m〉. Furthermore, a global state is a pair 〈M, s〉,
where M ∈ Mem∗UID and s is a system state.

Evaluation relation. Our global semantics is standard and

it executes, at each computation step, one step of the local

semantics for the program selected by the scheduler. We for-

malize the global semantics in [23]. For simplicity, we assume

that each user is associated with at most one program and

that different programs use disjoint sets of variable identifiers.

Moreover, we assume that all expressions are well-typed, and

all SQL commands refer to tables in the database schema or

previously created views.
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IV. SECURITY MODEL

We introduce our security model in terms of the knowledge

of a user that observes outputs and public events from a program

execution. To ease the presentation, we assume that only the

database’s content is sensitive, while the initial memory’s

content is known by all users. This is without loss of generality,

since sensitive information can be loaded from the database at

the start of the computation. In our technical report [23], we

consider the more general case where the memory content can

be sensitive.

A. Preliminaries

Database equivalence. Two database states db and db′ are

equivalent with respect to a set S of tables and views, written

db ≈S db′, iff the contents of all tables and views in S are

the same in db and db′. For the equivalence of system states,

we employ data-indistinguishability from [25]. Informally, two

system states s and s′ are equivalent for a user u iff the users,

policies, triggers, and views in s and s′ are the same and the

content of the tables and views that u is authorized to read

is the same in s and s′. Formally, two system states s = 〈db,
U, sec, T, V 〉 and s′ = 〈db′, U ′, sec′, T ′, V ′〉 are u-equivalent,
written s ≈u s′, iff (1) U = U ′, (2) sec = sec′, (3) T = T ′,
(4) V = V ′, and (5) db ≈auth(sec,u) db

′. Given a system state

s and a user u, we denote by [s]≈u the set of all system states

that are u-equivalent to s.

Trace equivalence. To formalize equivalence between traces,

we first define the projection of a trace τ for a user u, written

τ�u. The projection τ�u is the sequence of all observations in

τ that u can observe, i.e., those observations where the user is

either u or public.

Two traces τ1 and τ2 are u-equivalent, written τ1 ∼u τ2,

iff one of the u-projections is the prefix of the other one, i.e.,

τ1�u 
 τ2�u or τ2�u 
 τ1�u. We remark that our definition

of trace equivalence follows state-of-the-art definitions for

dynamic policies, which do not differentiate between divergence

and termination [3], [46]. This is in contrast with other works

defining trace equivalence as requiring that either both traces are

equal or one is a divergence terminated prefix of the other [4],

[26].

B. Knowledge

Following [3], [46], we characterize what a user can infer

from an execution in terms of his knowledge, i.e., the set of

system states consistent with his observations.

Definition 1. The knowledge Ku(〈M0, s0〉, C,S, τ) of a user
u for a global state 〈M0, s0〉, a sequence of programs C, a

scheduler S , and a trace τ is defined as {s | s ≈u s0 ∧ ∀ctx ′,
τ ′, C ′,M ′, s′,S ′. (〈C,M0, 〈s, ε〉,S〉 τ ′

−→∗ 〈C ′,M ′, 〈s′, ctx ′〉,
S ′〉 ⇒ τ ∼u τ ′)}.

A user u’s knowledge is the set of initial system states that u
considers possible after having observed τ�u. Thus, a smaller

set indicates a more precise knowledge.

Def. 1 is progress-insensitive as it ignores information leaks

due to the progress of computation, i.e., information that can

be inferred solely by observing how many outputs the program

produces. We achieve this by requiring that any execution

starting from a u-equivalent global state only produces traces

τ ′ that are u-equivalent to the original trace τ . There are

different flavors of progress-insensitivity in the literature. Some

definitions consider program termination or divergence to be

an observable event [4], [26], while other definitions, in line

with ours, do not [3], [46]. They therefore ignore pure progress

leaks, i.e., progress leaks not related to divergence/termination.

All these definitions are, in any case, subject to brute-forcing
leaks with known information-theoretic bounds [4].

C. Security condition

Our security condition ensures that changes in a user’s knowl-

edge comply with the current security policy. The condition is

inspired by existing IFC conditions for dynamic policies [3],

[11].

We interpret security policies with respect to initial system

states. The allowed knowledge Au,sec determines the set of

initial system states that a user u considers possible for a given

policy sec. Given a system state s0 = 〈db0, U0, sec0, T0, V0〉,
a security policy sec, and a user u, we define the set Au,sec(s0)
as {s | s ≈sec,u s0}, where 〈db′, U ′, sec′, T ′, V ′〉 ≈sec,u 〈db′′,
U ′′, sec′′, T ′′, V ′′〉 iff db′ ≈auth(sec,u) db

′′. We call Au,sec(s0)
allowed knowledge since it represents the knowledge of the

initial system state that the user u is permitted to learn given

the policy sec. In contrast to [s0]≈u
, Au,sec(s0) contains the

system states that agree with s0 with respect to the policy sec
instead of the policy in s0.

We now introduce our security condition.

Definition 2. A sequence of programs C ∈ Com∗UID is secure
with respect to a user u for a scheduler S and a system state s0
iff whenever r = 〈C,M0, 〈s0, ε〉,S〉 τ−→n 〈C ′,M ′, 〈s′, ctx ′〉,
S ′〉, then for all 1 ≤ i ≤ n, Ku(〈M0, s0〉, C,S, trace(ri−1))∩
Au,sec(s0) ⊆ Ku(〈M0, s0〉, C,S, trace(ri)), where the data-

base state in r’s (i− 1)-th configuration is 〈db, U, sec, T, V 〉.
Our condition ensures that a user’s knowledge after

observing trace(ri) is no more precise than his previous

knowledge combined with the allowed knowledge from r’s

(i− 1)-th configuration, i.e., the knowledge increase is allowed

by the current policy.

V. ENFORCEMENT

We now present a monitor that provably secures WHILESQL

programs. To achieve end-to-end security across the database

and applications, our monitor tracks dependencies at the data-

base level (between tuples and queries) and at the program level

(between variables). It ensures that the information released by

output statements and public events complies with the current

security policy.

The monitor instruments WHILESQL programs to track

dependencies between variables, and it blocks the execution of

statements that may leak sensitive information. The monitor
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also intercepts each database command and expands it into

WHILESQL code to prevent leaks caused by triggers and

other database side-effects. While executing the code produced

during expansion, the monitor tracks the dependencies between

variables and queries.

This approach cleanly separates the application’s code and

the security policy, thus putting trust in the security monitor

instead of the application. This trust is formally justified

by proving that the security monitor satisfies our security

condition. Our monitor also supports a rich class of policies,

including dynamic policy changes. The policies are expressed

using GRANT and REVOKE commands, and the monitor ensures

their end-to-end interpretation through the application-database

boundary. This approach is transparent to the applications and

does not require customized database support.

A. Preliminaries

We leverage disclosure lattices to reason about the infor-

mation disclosed by sets of queries [8]. Recall that a security

policy specifies a set of database tables and views that a

user is authorized to read. Hence, policies can be seen as

sets of database queries, which are elements of a disclosure

lattice. This natural connection between disclosure lattices,

queries, and policies allows us to track cumulative information

disclosures across multiple queries and determine whether a

new query would increase the total amount of information

beyond what is actually allowed by the policy. Additionally,

disclosure lattices allow us to track fine-grained dependencies

across the application and the database. This is needed to

enforce realistic security policies, such as row-level database

policies. We discuss the benefits of using disclosure lattices for

IFC in §V-C. In the following, we fix a database configuration

〈D,Γ〉 and we refer only to database states db defined over

the schema D and that satisfy the integrity constraints in Γ.

Predicate queries. A predicate query is a query of the form

T (v), where T is a table identifier in D and v ∈ Val |T | is

a tuple of values whose length is T ’s arity |T |. A predicate

query represents a single tuple in the database. The set of all

predicate queries is RC pred .

Determinacy. Query determinacy [35] is the task of deter-

mining, given two sets of queries Q and Q′, if the results

of the queries in Q are always sufficient to determine the

result of the queries in Q′. Formally, Q determines Q′, written

Q � Q′, iff for all database states db, db′, if [q]db = [q]db
′

for all q ∈ Q, then [q′]db = [q′]db
′

for all q′ ∈ Q′, where [q]db

denotes q’s result in db. For instance, the set {T (1), R(2)}
determines the query T (1) ∨R(2). In general, determinacy is

different from logical entailment, e.g., T (1) |= T (1) ∨ R(2)
but T (1) �� T (1) ∨R(2).

Query support. The support of a query q contains all tuples

that may influence q’s results. To precisely capture a query’s

support, we first introduce the notion of minimal determinacy.

A set of predicate queries Q minimally determines q, denoted

minDet(Q, q), iff Q is the smallest set that determines q.

Formally, minDet(Q, q) iff Q � q and there is no Q′ ⊂ Q

cl({T (1), R(2)})
cl({T (1)}) cl({R(2)})

⊥
Fig. 3: Disclosure lattice for the queries T (1) and R(2).

such that Q′ � q.The support of q, denoted supp(q), contains

all sets of tuples that minimally determine q, i.e., supp(q) :=

{Q ∈ 2RCpred | minDet(Q, q)}.That is, supp(q) contains all

and only those tuples that may influence q’s outcome. For

instance, the query T (1) ∨R(2) is minimally determined by

{T (1), R(2)}. Hence, its support is {{T (1), R(2)}}.

We consider only sets of integrity constraints Γ such that

supp(q) = {{q}} for all predicate queries q ∈ RC pred . In-

tegrity constraints commonly used in practice, such as primary

and foreign keys, satisfy this requirement. This guarantees that

the information associated with a predicate query depends just

on the query itself.

Disclosure orders and lattices. Bender et al. [8] recently

introduced disclosure orders and lattices to reason about the

information disclosed by queries. Given two sets of queries Q1

and Q2, disclosure lattices provide a precise model for answer-

ing questions such as “Does Q1 reveal more information than

Q2?” or “What is the combined and the common information

that is disclosed by both Q1 and Q2?”

A disclosure order [8] is a binary relation 
 over sets of

queries (i.e., over 2RC where RC is the set of all queries),

such that: (1) for all Q,Q′ ∈ 2RC , if Q ⊆ Q′, then Q 
 Q′,
(2) for all Q,Q′, Q′′ ∈ 2RC , if Q 
 Q′ and Q′ 
 Q′′, then

Q 
 Q′′, and (3) for all Q,Q′, Q′′ ∈ 2RC , if Q 
 Q′′ and

Q′ 
 Q′′, then Q ∪Q′ 
 Q′′.
A disclosure order 
 is, in general, not anti-symmetric.

Hence, as is standard in lattice theory [18], we introduce

the concept of closure, which we use to construct a lattice.

Given a set of queries Q and a disclosure order 
, the

closure of Q, written cl(Q), is {q ∈ RC | {q} 
 Q}. The


-disclosure lattice [8] is a tuple 〈L,�,�,�,⊥,�〉 where

(1) L = {cl(Q) | Q ∈ 2RC}, (2) cl(Q) � cl(Q′) iff Q 
 Q′,
(3) cl(Q) � cl(Q′) = cl(Q) ∩ cl(Q′), (4) cl(Q) � cl(Q′) =
cl(Q ∪Q′), (5) ⊥ = cl(∅), and (6) � = cl(RC ).

Determinacy induces an ordering on the information content

of queries. Hence, it is a good candidate for defining disclosure

lattices. Formally, we define the determinacy-based disclosure

order using the relation 
�: given Q,Q′ ∈ 2RC , Q 
� Q′ iff

Q′ � Q. Note that Q 
� Q′ means that Q is less informative

than Q′. As shown in [8], 
� is a disclosure order and the

corresponding disclosure lattice is complete. Figure 3 depicts

the portion of the lattice involving the queries T (1) and R(2).

B. Security monitor

We now present our dynamic security monitor. For simplicity,

we consider a single attacker, denoted by the user atk . We

denote by sec0 the initial security policy.

Security lattice. Our security monitor uses the disclosure

lattice to track information. As a security lattice, we use the
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disclosure lattice 〈L,�,�,�,⊥,�〉 defined over the database

schema D, where � is 
�. Since query determinacy is

undecidable in general [35], in §VI we present a practical

approximation for handling disclosure lattices.

Monitor states. A monitor state Δ is a function Var ∪
RC pred ∪ {pcu | u ∈ UID} → L that associates each variable

and predicate query (which represents a tuple) with a label. The

monitor state also stores the label associated with the security

context of each program. Since each user u executes only one

program, we formalize the program’s security context using

identifiers of the form pcu, where u ∈ UID is the user execut-

ing the program. For example, Δ(pcBob) captures the label asso-

ciated with the condition of an if statement if Bob’s program is

executing a branch of the if statement. We lift Δ to expressions:

Δ(e) =
⊔

x∈vars(e)Δ(x), where e is an expression and vars(e)
are its free variables. The monitor’s initial state Δ0 is as follows:

(a) for each x ∈ Var , Δ0(x) = ⊥, (b) for all q ∈ RC pred ,

Δ0(q) = cl(q), and (c) for all u ∈ UID , Δ0(pcu) = ⊥.

Mapping queries to labels. Our security monitor tracks only

dependencies between predicate queries, i.e., tuples. Hence, we

use the function LQ to derive the label associated with general

queries: LQ(Δ, q) =
⊔

Q∈supp(q)
⊔

q′∈QΔ(q
′). The function

associates to a query q the join of the labels associated with

all predicate queries in q’s support. This ensures that LQ(Δ,
q) accounts for the labels of all predicate queries that may

influence q’s results. For instance, given a monitor state Δ,

the query T (1) ∨R(2), whose support is {{T (1), R(2)}}, is

associated with the label Δ(T (1)) �Δ(R(2)), thus capturing

that it reveals information about T (1) and R(2). For predicate

queries T (v), LQ(Δ, T (v)) = Δ(T (v)).

Mapping users to labels. The function LU maps users to

labels in our security lattice. Since we are interested in end-

to-end security guarantees, we associate to the attacker atk
the set of tables and views he is authorized to read according

to the current access control policy and to the initial policy

sec0. Formally, LU (s, u) = � for any u /∈ {atk , public}. For

the attacker atk , LU (s, atk) = cl(auth(s, atk) ∪ auth(sec0,
atk)), which captures what the attacker can observe according

to the initial policy sec0 and the policy in s. Finally, LU (s,
public) = LU (s, atk). For example, given a security policy

sec0 stating that the attacker atk can read the table T but

not the table R, Lsec0

U (s, atk) =
⊔

v∈Val cl(T (v)). In the

following, we omit the reference to sec0 when this is clear

from the context, i.e., we write LU (s, u) instead of Lsec0

U (s, u).

The mappings LQ and LU allow us to reason about informa-

tion disclosure. For instance, if the above attacker observes the

result of the query q = SELECT T (1)∨R(2) when the monitor

state is Δ0, this violates the security policy. In fact, LQ(Δ0,
q) �� LU (s, atk), since cl({T (1), R(2)}) �� ⊔

v∈Val cl(T (v)).

Expansion process. To correctly handle triggers, our monitor

rewrites each SQL command into WHILESQL statements

encoding the triggers’ execution. We do so using the expand(s,
m, u, x ← q) function, which takes as input a system state s,

a memory m, a user u, and a statement x ← q, and produces

as output the statements modeling the triggers’ execution and

database’s other side effects.

In a nutshell, the expand function works as follows. First,

depending on the query q and the database configuration in

s, expand computes all possible execution paths, which are

sequences of queries and triggers together with their results.

In particular, a query may successfully execute or generate an

integrity or a security exception. Triggers additionally may not

be enabled, that is they are not executed since their condition

is not satisfied. Afterward, expand translates each execution

path into an if statement. For each execution path, the if’s
body contains the WHILESQL statements implementing the

execution of the queries and the triggers as described in the

path. In contrast, the if’s condition checks whether the weakest

precondition for the actual execution of the path is met. For

instance, the code checks whether the condition of an enabled

trigger is actually satisfied or whether executing a command

would lead to an integrity exception if the execution path says

so. To achieve this, we designed a procedure for computing

the weakest precondition starting from execution paths. This

can always be automatically computed since execution paths

are loop-free. We formalize expand(s,m, u, x ← q) and prove

its correctness in [23]. Example 1 concretely illustrates how

expand works.

Additional queries and statements. Our monitor extends

WHILESQL with two designated queries T ⊕ e and T � e,

and four designated statements asuser(u′, c), ‖x ← q‖, [c],
and set pc to l. The T ⊕ e (respectively T � e) query inserts

into (respectively deletes from) the table T the tuple e without

database-level side effects like firing triggers or throwing

exceptions in case integrity constraints are violated. The

asuser(u′, c) statement is used to execute the command c as

the user u′ (inside the session of the user u executing the

asuser(u′, c) statement). Finally, the ‖x ← q‖ statement, where

x is a variable and q is a query, denotes a query statement

that has already been processed by expand . All the above

queries and statements are used during the expansion process.

To avoid internal timing leaks caused by executing multiple

programs in parallel [39], the monitor’s semantics executes

branching statements atomically, i.e., without interleaving the

execution of other programs whenever a program is executing a

branching statement. To do so, we introduce statements of the

form [c] denoting that the command c should be executed atom-

ically, and statements set pc to l, where l is a label in L, which

are used to update the label associated to the program’s context.

Enforcement rules. Figure 4 presents selected rules from our

monitor’s semantics. The rules use the auxiliary functions LU
and LQ to derive the security labels associated with users and

queries. We present the full operational semantics in [23].

The rule F-ASSIGN updates the monitor’s state whenever

there is an assignment. This rule prevents leaks using No-

Sensitive Upgrade (NSU) checks [50]. The rule F-OUT en-

sures that the monitor produces only secure output events. It

outputs the value of the expression e to the user u′ only if

the security labels associated with e and the program counter

86



F-ASSIGN
Δ(pcu) 	 Δ(x) Δ′ = Δ[x �→ Δ(pcu) 
Δ(e)]

〈Δ, x := e,m, s〉�u 〈Δ′, ε,m[x �→ �e�(m)], s〉

F-OUT
Δ(e) 
Δ(pcu) 	 LU (s, u′)

〈Δ, out(u′, e),m, s〉 〈u′,�e�(m)〉
u 〈Δ, ε,m, s〉

F-EXPAND
ce = expand(s, x, q, u)

〈Δ, x← q,m, s〉�u 〈Δ, [ce],m, s〉

F-IFTRUE
�e�(m) = tt c′ = [c1 ; set pc to Δ(pcu)] Δ′ = Δ[pcu �→ Δ(e) 
Δ(pcu)]

〈Δ, if e then c1 else c2,m, s〉�u 〈Δ′, c′,m, s〉

F-SELECT
{v1, . . . , vn} = vars(ϕ)

ϕ′ = ϕ[v1 �→ �v1�(m), . . . , vn �→ �vn�(m)] q = SELECT ϕ �q�(s, u) = 〈s′, r, ε〉 �ϕ = LQ(Δ, ϕ) 

⊔

v∈vars(ϕ)

Δ(v) Δ(pcu) 	 Δ(x)

〈Δ, ‖x← SELECT ϕ‖,m, s〉�u 〈Δ[x �→ Δ(pcu) 
 �ϕ], ε,m[x �→ r], s′〉

F-UPDATEDATABASEOK
v = 〈�e1�(m), . . . , �en�(m)〉

⊗ ∈ {⊕,�} �T ⊗ v�(s, u) = 〈s′, r, ε〉 �e =
⊔

1≤i≤n

Δ(ei) �e 	 Δ(T (v)) Δ(pcu) 	 Δ(T (v)) Δ(pcu) 	 Δ(x)

〈Δ, ‖x← T ⊗ 〈e1, . . . , en〉‖,m, s〉�u 〈Δ[T (v) �→ Δ(pcu) 
 �e, x �→ Δ(pcu) 
 �e], ε,m[x �→ r], s′〉

F-UPDATECONFIGURATIONOK
{v1, . . . , vn} = vars(q) q′ = q[v1 �→ �v1�(m), . . . , vn �→ �vn�(m)] isCfgCmd(q′)

�q′�(s, u) = 〈s′, r, ε〉 �cmd =
⊔

1≤i≤n

Δ(vi) �cmd 	 cl(auth(sec0, atk)) Δ(pcu) 	 cl(auth(sec0, atk)) Δ(pcu) 	 Δ(x)

〈Δ, ‖x← q‖,m, s〉 〈public,q′〉
u 〈Δ[x �→ Δ(pcu) 
 �cmd ], ε,m[x �→ r], s′〉

Fig. 4: Security monitor – selected rules.

are authorized to flow to u′, i.e., Δ(e) �Δ(pcu) � LU (s, u′).
The rule F-IFTRUE, instead, executes the then branch c1 in

an if statement and updates the labels of pcu based on the

label of the if’s condition. The rule relies on the set pc to l
command to reset the label of pcu when leaving the then
branch. Note that the rule encapsulates both the then branch

c1 and the set pc to l statement inside an atomic statement

[c1 ; set pc to l] to prevent internal timing channels caused

by the scheduler. We remark that the above rules implement

standard dynamic information-flow tracking [38].

The rule F-EXPAND ensures that triggers as well as integrity

constraint checking is de-sugared into WHILESQL code using

the expand function. The F-SELECT rule ensures, using NSU

checks, that the queries’ results are stored only in variables

with the proper security labels. The rule, finally, updates the

label of the variable storing the query’s result to correctly

propagate the flow of information.

The rule F-UPDATECONFIGURATIONOK handles configura-

tion commands, i.e., GRANT, REVOKE, and CREATE commands.

Since configuration changes are visible to atk (i.e., the rule pro-

duces a public observation), the rule ensures that such changes

are performed only in contexts that are initially low for the

attacker, i.e., Δ(pcu) � cl(auth(sec0, atk)). Furthermore, the

rule prevents leaks of sensitive information using the free vari-

ables in the commands by checking that �cmd � cl(auth(sec0,
atk)). The rule also uses NSU checks to ensure that the query’s

results are stored only in variables with the proper security

labels. The rule uses the predicate isCfgCmd(q), which returns

� iff q is a configuration command. Finally, the rule F-

UPDATEDATABASEOK handles queries that modify the data-

base content. The rule ensures that there are no changes to the

security labels based on secret information using NSU checks.

The rule keeps also track of the labels associated with the infor-

mation stored in the database by updating the monitor’s state Δ.

In WHILESQL, policy changes are publicly visible. This

eliminates leaks through authorization channels [2], and no

additional checks (cf. channel context bounds [3]) are needed.

Theorem 1, proven in [23], states that our monitor is sound:

it satisfies Def. 2 with � as the evaluation relation.

Theorem 1. For all sequences of programs C ∈ Com∗UID ,
schedulers S, sequences of memories M ∈ Mem∗UID , and
system states s, whenever r = 〈Δ0, C,M, 〈s, ε〉,S〉 τ n 〈Δ′,
C ′,M ′, 〈s′, ctx′〉,S ′〉, then for all 1 ≤ i ≤ n, K�atk (〈M, s〉, C,
S, trace(ri−1))∩Aatk ,sec(s) ⊆ K�atk (〈M, s〉, C,S, trace(ri)),
where K�atk refers to Def. 1 with � as evaluation relation and
the system state in r’s (i− 1)-th configuration is 〈db, U, sec,
T, V 〉.
Example 1. Let T, V, Z be three tables, t be the trigger defined

by the administrator using the command CREATE TRIGGER t
ON T AFTER INSERT IF V (1) DO {INSERT 1 INTO Z}, and

s be a state containing t. In this context, the statement

x ← INSERT 2 INTO T is expanded as follows (provided that

all commands are authorized by the policy and there are no

integrity constraints): ‖y ← SELECT V (1)‖; if y then {‖x ←
T ⊕ 2‖; asuser(admin, ‖z ← Z ⊕ 1‖)} else {‖x ← T ⊕ 2‖}.

Suppose the attacker atk executes x ←
INSERT 2 INTO T ;w ← SELECT Z(1); out(atk , w) from a

system state s0 where the tables T and Z are empty and the

table V contains a single record with value 1. We illustrate the
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monitor’s behavior for the security policy where atk cannot

read V but can read and modify T and Z. In this case, the

program is insecure since the presence of 1 in Z depends

(implicitly) on the presence of 1 in V , which atk cannot read.

Consider the program execution with the initial state

s0 as above, and the initial monitor state Δ0 such that

Δ0(pcatk ) = ⊥. The attacker’s label is LU (s0, atk) =⊔
v∈Val cl(T (v))�

⊔
v∈Val cl(Z(v)). The monitor would apply

the rules F-EXPAND (explained above), F-SELECT, F-IFTRUE,

F-UPDATEDATABASEOK, F-ASUSER (not shown), F-UPDATE-

DATABASEOK, F-SETPC (not shown), F-SELECT, and F-OUT.

The evaluation of the first SELECT statement yields Δ′ =
Δ0[y  → Δ(V (1))�⊥], i.e., Δ′(y) = cl(V (1)). The evaluation

of the boolean condition y yields Δ′ = Δ[y  → cl(V (1)),
pcatk  → cl(V (1))]. For the subsequent database update,

the monitor checks whether Δ′(pcatk ) � Δ′(T (2)), namely,

whether cl(V (1)) � cl(T (2)). Since this is not the case, the

monitor stops the execution and prevents the leakage. �

C. Discussion

Supported policies. Our monitor supports dynamic policies

expressed using GRANT and REVOKE commands. It also supports

row-level policies, which can be expressed using views that

disclose a subset of the tuples in a table.

Our monitor associates security labels with tuples. It does

not label columns and therefore it cannot enforce column-

level policies, which disclose only selected attributes of a

table, in their full generality. Despite that, many column-level

policies can be translated into equivalent row-level policies by

carefully refactoring the database schema. We illustrate this

with an example. Consider a table PERSON(id, name, salary),
with primary key id, where the attributes id and name are

public, while the attribute salary is secret. We can refactor

the table PERSON into two tables PERSONpublic(id, name) and

PERSONsecret(id, salary). Then, the column-level policy can

be enforced using row-level policies by granting access only

to PERSONpublic and not to PERSONsecret. More generally,

column-level policies can be encoded as row-level policies

(and enforced by our monitor) whenever the table’s primary

key is public, and the column-level policy does not change

during the execution.

Disclosure lattices. Disclosure lattices allow us to express fine-

grained tuple-level dependencies between data and variables,

such as “the value of the variable x may depend on the initial

values of the queries T (1) and V (2), but not on the value of the

query R(3).” Our monitor leverages disclosure lattices to record

all the data that may have influenced a variable’s current value.

In contrast, existing approaches, such as [7], [43], track column-

level dependencies using the standard “low” and “high” labels.

While these two approaches are incomparable precision-wise

(see [23]), by tracking tuple-level dependencies, we can directly

support row-level policies, which are a common policy idiom

from database security, and form the basis of many fine-grained

database access control models [12], [24], [37], [48]. Row-

level policies cannot be easily supported using column-level

dependency tracking since there is no way to assign distinct

security labels to subsets of tuples in a table. Additionally, we

can also enforce static column-level policies by refactoring the

database schema.

Multiple attackers. To ease the presentation, our monitor

considers a fixed attacker atk . Specifically, Theorem 1

guarantees that atk cannot access sensitive information and that

other users’ programs do not reveal sensitive information to atk .

To handle arbitrary attackers, we can replace all checks of the

form � � cl(auth(sec0, atk)) with
∧

u∈U � � cl(auth(sec0,
u)), all checks of the form � � LU (s, public) with

∧
u∈U � �

cl(auth(sec0, u) ∪ auth(sec, u)), and all checks of the form

� � LU (s, u), where u �= public, with � � cl(auth(sec0,
u) ∪ auth(sec, u)), where U is the set of users, sec0 is the

initial policy, sec is the policy in the state s. This guarantees

that each user accesses only the information he is authorized to

access by the policy, i.e., it ensures that our security condition

is satisfied for all users u.

VI. DISCLOSURE LATTICES IN PRACTICE

Our monitor tracks fine-grained dependencies between tu-

ples and variables using disclosure lattices. However, directly

computing with disclosure lattices is challenging. For instance,

checking l1 � l2 and computing LQ(Δ, q) both requires

solving query determinacy, which is undecidable in general. We

now propose a practical way of approximating computations

over disclosure lattices.

A. Approximating disclosure lattices

Our security monitor in §V relies on disclosure lattices for

several purposes. The monitor state Δ maps variables and

tuples to labels in the lattice L. Additionally, security checks

are implemented using the lattice’s ordering relation �, and

label updates are implemented using the lattice’s join operator

�. Finally, we map queries and users to labels using the LQ,

LU , and auth functions.

An approximation of the (determinacy-based) disclosure

lattice provides lower and upper bounds for each of the

aforementioned components. Formally, an approximation is

a tuple 〈Labs ,�abs ,�abs ,Δabs
0 , Labs

Q , Labs
U , authabs , γ−, γ+〉,

where Labs is the set of abstract labels, �abs is a preorder

over abstract labels, �abs is the join operator over abstract

labels, Labs
Q maps abstract monitor states and queries to abstract

labels, Labs
U maps system states and users to abstract labels, and

authabs maps policies and users to abstract labels. Finally, γ− :
Labs → L and γ+ : Labs → L provide respectively lower and

upper bounds on the information content of abstract labels in

terms of the disclosure lattice L. An abstract label � ∈ Labs rep-

resents all concrete labels l ∈ L such that γ−(�) � l � γ+(�).
We remark that we need both under- and over-approximations

to soundly check containment between labels since abstract

labels may occur on both sides of �abs .

B. Symbolic tuples

Symbolic tuples. Our approximation relies on symbolic tuples,

which concisely represent sets of concrete tuples (i.e., predicate
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queries) using logical formulae. Formally, a symbolic tuple is a

pair 〈T, ϕ〉, where T is a table identifier of arity n and ϕ is a

boolean combination of equality and inequality constraints over

variables in {x1, . . . , xn} and values in Val . We denote by

STD the set of all symbolic tuples defined over the database

schema D.

The concretization of a symbolic tuple 〈T, ϕ〉, denoted

γ(〈T, ϕ〉), is the set {T (v1, . . . , v|T |) | v1, . . . , v|T | ∈ Val ∧
|=ϕ[x1  → v1, . . . , x|T |  → v|T |]} containing all possible con-

crete tuples that satisfy the constraint ϕ, where |=ϕ denotes

that ϕ is a valid formula.

For instance, the symbolic tuple 〈T, x1 �= x2〉 represents

the set of all concrete tuples T (v1, v2) such that v1 �= v2. The

concrete tuple T (1, 2) belongs to 〈T, x1 �= x2〉’s concretization

γ(〈T, x1 �= x2〉), while the concrete tuple T (1, 1) does not.

Abstract labels. In our approximation, we track lower and

upper bounds using two sets of symbolic tuples. Formally, a

label � is a pair 〈S−, S+〉 such that S− and S+ are sets of

symbolic tuples. The set S− captures �’s lower bounds whereas

S+ captures �’s upper bounds. Given a label � = 〈S−, S+〉, we

denote by �|− (respectively �|+) the set S− (respectively S+).

We can now formalize the lower and upper bound concretiza-

tion functions γ− and γ+. For an abstract label �, its lower-

bound (respectively upper-bound) concretization γ−(�) (respec-

tively γ+(�)) is the (closure of the) union of the concretizations

of all tuples in �|− (respectively �|+). That is, γ−(�) =
cl(

⋃
〈T,ϕ〉∈�|− γ(〈T, ϕ〉)) and γ+(�) = cl(

⋃
〈T,ϕ〉∈�|+ γ(〈T,

ϕ〉)).
The set Labs of all valid abstract labels contains all labels �

for which the lower-bound concretization is below its upper-

bound concretization with respect to the concrete ordering

�, i.e., Labs := {〈S−, S+〉 ∈ P(STD)
2 | γ−(〈S−, S+〉) �

γ+(〈S−, S+〉)}.

Consider the abstract label � = 〈{〈T, x1 = 2〉}, {〈T,�〉,
〈R,�〉}〉. It represents all concrete labels l such that cl({T (2,
x2) | x2 ∈ Val}) � l � cl({T (x1, x2) | x1, x2 ∈ Val}) �
cl({R(x1) | x1 ∈ Val}). This implies, for instance, that �
at most contains as much information as the tables T and

R. However �′′ = 〈{〈T,�〉, 〈R,�〉}, {〈T, x1 = 2〉}〉 is not a

valid abstract label since γ−(�′′) �� γ+(�′′).

Ordering relation. The abstract ordering relation �abs is as

follows: 〈S−1 , S+
1 〉 �abs 〈S−2 , S+

2 〉 iff for all symbolic tuples

〈T, ϕ〉 ∈ S+
1 , there is a symbolic tuple 〈T, ϕ′〉 ∈ S−2 such that

ϕ |= ϕ′, where ϕ |= ϕ′ denotes that any assignment that satis-

fies ϕ also satisfies ϕ′ (this is equivalent to γ(〈T, ϕ〉) ⊆ γ(〈T,
ϕ′〉)). This ensures that whenever 〈S−1 , S+

1 〉 �abs 〈S−2 , S+
2 〉 is

satisfied, then γ+(〈S−1 , S+
1 〉) � γ−(〈S−2 , S+

2 〉) holds as well.

Hence, the concrete tuples represented by 〈S−1 , S+
1 〉 are below

those represented by 〈S−2 , S+
2 〉.

To illustrate, consider the abstract labels �1 = 〈∅, {〈T, x1 =
2 ∧ x2 �= x1〉}〉 and �2 = 〈{〈T, x1 = 2〉}, {〈T,�〉, 〈R,�〉}〉.
It is easy to see that �1 �abs �2 holds: any concrete tuple in

γ+(�1) also belongs to γ−(�2) since any satisfying assignment

for x1 = 2∧x2 �= x1 also satisfies x1 = 2. In contrast, �2 ��abs

�1. For instance, T (1, 1) belongs to γ+(�2) but not to γ−(�1).

Join operator. The join operator between abstract labels is the

pairwise union of their components: given two labels �1 = 〈S−1 ,
S+
1 〉, �2 = 〈S−2 , S+

2 〉 ∈ Labs , their join �1�abs �2 is 〈S−1 ∪S−2 ,
S+
1 ∪ S+

2 〉. For instance, given two abstract labels �1 = 〈{〈T,
x1 = 2〉}, {〈T,�〉}〉 and �2 = 〈{〈T, x1 �= x2〉}, {〈T,�〉}〉, the

label �1 �abs �2 is 〈{〈T, x1 = 2〉, 〈T, x1 �= x2〉}, {〈T,�〉}〉.
Labeling queries. To map queries to labels, we need both

lower and upper bounds for LQ. In the following, let Δabs be

an abstract monitor state and q be a boolean query. Moreover,

we denote LQ’s lower and upper bounds respectively by �−
Δabs ,q

and �+
Δabs ,q

. Namely, Labs
Q (Δabs , q) = 〈�−

Δabs ,q
, �+

Δabs ,q
〉. We

formalize �−
Δabs ,q

and �+
Δabs ,q

below. Without loss of generality,

we assume that universally quantified statements ∀x. ϕ are

expressed as ¬∃x.¬ϕ.

Over-approximating queries. We compute the upper bound

of LQ in two steps. We first extract the symbolic tuples from

the query q. We then compute �+
Δabs ,q

by accounting for the

labels in Δabs .
Given a query q, the function cstrs(q) extracts the symbolic

tuples from q. We denote by subf (q) the set of q’s immediate

sub-formulae that contain predicate symbols. Moreover, nf (q)
denotes that q is of the form T (x)∧ϕ, where ϕ is a (possibly

empty) boolean combination of equalities and inequalities over

variables in x and values in Val . The set cstrs(q) is recursively

defined as cstrs(q) =
(⋃

q′∈subf (q)∧¬nf (q) cstrs(q
′)
)
∪ {〈T,

ϕ〉 | nf (q)∧q = (T (x)∧ϕ)}. Observe that the concrete tuples

represented by the symbolic tuples in cstrs(q) contain those

in q’s support. That is, supp(q) ⊆ ⋃
〈T,ϕ〉∈cstrs(q) γ(〈T, ϕ〉).

Given a symbolic tuple 〈T, ϕ〉 and a finite set M of predicate

queries of the form T (v), we denote by R(〈T, ϕ〉,M) the most

precise symbolic tuple 〈T, ϕ′〉 such that (γ(〈T, ϕ〉) \M) ⊆
γ(〈T, ϕ′〉).

Given an abstract state Δabs and a query q, we compute

�+
Δabs ,q

as:

⋃
〈T,ϕ〉∈cstrs(q′)

⎛
⎝ ⋃

T (v)∈γ(〈T,ϕ〉)∩MT

Δabs(T (v))|+ ∪ {R(〈T, ϕ〉,MT )}
⎞
⎠

where q′ is the query obtained by recursively replacing views

with their definitions and MT is the set {T (v) ∈ RC pred |
Δabs(T (v))|+ �= Δabs

0 (T (v))|+} of all predicate queries

whose upper bound is different from the initial one.
To illustrate, consider the query q defined as ∃x.(T (2, x) ∧

(x = 3 ∨ x = 4)) ∧ ∀x. R(x) → ∃y. S(3, y). Computing

cstrs(q) produces the symbolic tuples: {〈T, x1 = 2 ∧ (x2 =
3 ∨ x2 = 4)〉, 〈R,�〉, 〈S, x1 = 3〉}. Given a monitor state

Δabs such that Δabs(T (2, 3))|+ �= Δabs
0 (T (2, 3))|+ results in

�+
Δabs ,q

being: Δabs(T (2, 3))|+ ∪ {〈T, x1 = 2 ∧ x2 = 4〉, 〈R,
�〉, 〈S, x1 = 3〉}.

Under-approximating queries. Producing useful lower

bounds for queries is more difficult than finding upper bounds.

In particular, computing non-trivial lower bounds for a query

q is, in general, as difficult as determining whether q is unsat-

isfiable. Here, we target a restricted class of queries satisfying

specific syntactic properties.
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We say that a query q is well-formed if it is a boolean com-

bination of formulae ∃x. T (x)∧ψ such that (1) nf (T (x)∧ψ)
holds, (2) the formula ψ is satisfiable, (3) for any two distinct

sub-formulae ∃x. T (x)∧ψ and ∃x. T (x)∧ψ′, there is no v sat-

isfying both ψ and ψ′, and (4) there are no integrity constraints

involving tables occurring in q. The first requirement ensures

that we can precisely extract symbolic tuples using the cstrs(q)
function described above. The second requirement ensures that

each symbolic tuple represents at least one concrete tuple. The

third requirement ensures that the symbolic tuples represent

disjoint sets of concrete tuples. The fourth requirement, finally,

guarantees that integrity constraints do not affect the symbolic

tuples in cstrs(q). These requirements guarantee that cstrs(q)
correctly identifies a set of tuples that belong to q’s support.

For a well-formed query q, we com-

pute the under-approximation �−
Δabs ,q

as⋃
〈T,ϕ〉∈cstrs(q)

(⋃
T (v)∈γ(〈T,ϕ〉)Δ

abs(T (v))|−
)

. If q is not

well-formed, then �−
Δabs ,q

= ∅. Finally, if q refers to views,

then �−
Δabs ,q

= �−
Δabs ,q′ , where q′ is the query obtained by

recursively replacing views with their definitions.

Consider the query q: S(1, 2)∨¬∃x. T (1, x)∨∃x. T (2, x).
This query satisfies our well-formedness criteria. For instance,

the two sub-formulae ∃x. T (1, x) and ∃x. T (2, x) depend

on disjoint sets of tuples in the table T . Computing cstrs(q)
results in the set {〈S, x1 = 1∧ x2 = 2〉, 〈T, x1 = 1〉, 〈T, x1 =
2〉}. Hence, �−

Δabs ,q
is Δabs(S(1, 2))|− ∪ ⋃

v∈Val Δ
abs(T (1,

v))|− ∪⋃
x∈Val Δ

abs(T (2, v))|−.

Labeling users. For the abstract mapping from users to labels,

we first define authabs and afterwards derive Labs
U . We use

the former to derive an abstract label representing what a user

can read according to an arbitrary policy. We use the latter to

derive a user’s permissions with respect to the current and the

initial policies.

Let sec be a security policy and u ∈ UID be a user. The

mapping authabs(sec, u) assigns to u all the symbolic tuples

that can be derived from the tables and views in the policy

sec. Observe that we consider only the views in normal form,

since those are the only ones that can be directly represented as

symbolic tuples, and ignore the others. That is, authabs(sec, u)
is 〈{〈T,�〉 | T ∈ auth(s, u)∩T}∪{〈T, ϕ〉 | V is a view∧V ∈
auth(s, u) ∧ def (V ) = (T (x) ∧ ϕ) ∧ nf (def (V ))},STD〉.

In contrast, the abstract mapping Labs
U from system states

and users to labels is as follows. For the attacker atk , Labs
U (s,

atk) is the join of what the attacker can read under the cur-

rent policy sec and the initial policy sec0, i.e., authabs(sec0,
atk)�absauthabs(sec, atk). For the public user public, Labs

U (s,
public) = Labs

U (s, atk) since the attacker also observes public

observations. Finally, for users u distinct from atk and public,

Labs
U (s, u) = 〈STD,STD〉. Observe that the upper bounds for

authabs(sec, u) and Labs
U (s, atk) are always STD, i.e., they

represent the � element in the disclosure lattice. This does not

affect our monitor’s precision since both authabs(sec, u) and

Labs
U (s, atk) only occur on the left-hand side of �abs , so their

upper-bound components are never used.

Consider a policy sec where the user u is authorized to

read the table T and the views V (defined as {x, y | T (x,
y)∧R(x)}) and W (defined as {x, y | S(x, y)∧x �= y}). The

function authabs maps sec and u to the label 〈{〈T,�〉, 〈S,
x1 �= x2〉},STD〉. Observe that the view V has been ignored

in authabs(sec, u) since it cannot be under-approximated using

symbolic tuples.

Initial monitor state. The initial abstract state Δabs
0 is as

follows: for all predicate queries T (v) ∈ RC pred , the initial

label Δabs
0 (T (v)) corresponds exactly to the query itself, i.e.,

〈{〈T,∧1≤i≤|T | xi = vi〉}, {〈T,
∧

1≤i≤|T | xi = vi〉}〉, whereas

for all x ∈ Var ∪ {pcu | u ∈ UID}, the initial label is the

one containing no information, i.e., Δabs
0 (x) = 〈∅, ∅〉.

Soundness. In [23], we prove that the above approximation

preserves the monitor’s security guarantees. In the next section,

we implement this approach in DAISY and evaluate it through

different case studies.

VII. IMPLEMENTATION AND CASE STUDIES

We first present DAISY, a security monitor for database-

backed SCALA programs. Afterwards, we evaluate our ap-

proach’s feasibility using four realistic case studies.

A. Securing SCALA programs

We now present DAISY (publicly available at [22]), a se-

curity monitor for database-backed SCALA programs, which

implements the monitor presented in §V with the approxi-

mation from §VI. DAISY enforces end-to-end security across

application-database boundaries while supporting advanced

database features like triggers and dynamic security policies.

Implementation. We implement DAISY via monitor inlin-

ing [16] using SCALA’s macro facilities [13]. This allows a

programmer to write normal SCALA code that will then be

augmented with information-flow checks for both application-

level code and database queries simply by adding a @daisy
annotation on a class, object, or function definition. DAISY

uses the Z3 SMT solver [20] to compare symbolic tuples.

Supported fragment. To match the monitor presented in §V,

DAISY handles only the imperative subset of SCALA (including

all WHILESQL’s features) with limited support for higher-

order functions. To express queries, DAISY relies on the query

language supported by WHILESQL, and it translates queries

into SQL commands. The scheduling of threads is currently

handled explicitly using the designated function asUser. DAISY

can easily be extended to directly use SCALA’s multi-threading

facilities. We refer the reader to DAISY’s documentation for a

precise definition of the supported fragment.

Extensions. DAISY extends our monitor from §V with config-

uration functions, and multi-table symbolic tuples.

DAISY allows database administrators to specify functions

that modify the database configuration. These functions are

annotated with the @configuration annotation, and users

can invoke them inside their code. These functions also receive

as input the identifier of the user invoking them. To avoid

leaks, DAISY enforces the following restrictions: (a) functions
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annotated with @configuration can be executed only when

Δ(pc) = ⊥, and (b) they can only execute GRANT, REVOKE,

and CREATE commands.

DAISY implements a simple generalization of symbolic

tuples that allows us to track dependencies across multiple

tables, such as those introduced when joining tables. In addition

to symbolic tuples of the form 〈T, ϕ〉, DAISY supports symbolic

tuples of the form 〈T, ϕ〉, where T = T1· . . . ·Tn is a sequence

of table identifiers and ϕ is a boolean combination of equality

and inequality constraints over T1 × . . . × Tn. Informally,

〈T1· . . . ·Tn, ϕ〉 represents a set of concrete tuples over the

Cartesian product of the tables T1, . . . , Tn. Here, we discuss

how we extend �abs to handle multi-table symbolic tuples. The

other operators are extended in a straightforward way. Given

two labels 〈S−1 , S+
1 〉 and 〈S−2 , S+

2 〉, 〈S−1 , S+
1 〉 �abs 〈S−2 , S+

2 〉
iff for all symbolic tuples 〈T, ϕ〉 ∈ S+

1 , there are symbolic

tuples 〈T1, ϕ1〉, . . . , 〈Tn, ϕn〉 in S−2 such that T = T1· . . . ·Tn

and ϕ |= ϕ′1 ∧ . . . ∧ ϕ′n (where ϕ′i is obtained from ϕi by

renaming xj as xj+
∑

i<j(Ti|0+...+Ti||Ti| ).

B. Case studies

To evaluate DAISY, we carried out four case studies

(available at [22]): (i) a social network, (ii) an assignment

grading system, (iii) a calendar application, and (iv) a

conference management system. Note that we only focus on

the security-critical parts of the applications. Our evaluation

has three objectives: to (1) validate that DAISY provides the

desired security guarantees, (2) confirm that our approximation

is not overly restrictive, and (3) evaluate DAISY’s overhead.

1) Social network: We implemented in SCALA the social net-

work model from §II. Without the trigger, DAISY considers the

program from §II as secure, since there is no leak of sensitive in-

formation. When the trigger is in place, DAISY correctly identi-

fies the leak of sensitive information. Specifically, by leveraging

our expansion procedure, DAISY successfully tracks the flows

of information across the program-database boundaries and

correctly rejects the program as insecure. Existing approaches

ignore the leaks caused by triggers and would accept the

program as secure. Moreover, our approximation is sufficiently

precise to correctly enforce the row-level policy “each user

can read only his friends’ reviews”; which cannot be enforced

by existing approaches that track column-level dependencies.

2) Assignment grading system: We model a system inspired

by one of URFLOW’s case studies [14]. The system allows

students to hand-in assignments that are graded by teaching

assistants (TAs) who only have access to students’ pseudonyms.

Database schema. The table students holds the students’

data. The table codes maps students to their pseudonyms. The

table tas stores TAs’ names, and handins(ID, txt) records

student submissions. The table grades(ID, grade) stores the

hand-ins’ grades, and owner(ID, studID) associates the hand-

ins with pseudonyms.

Security policy. Students are authorized to read their own

pseudonym, but they cannot read other entries in the table

codes. Moreover, they can read the grades only of their own

submissions. In contrast, TAs can read the handins table and

can read and modify the grades table. Thus, according to

our policy, a TA cannot leak information about a student s to

another student. We implement this policy using views and

GRANT commands; see [22].

Examples. In the following, a student submits a hand-in, a TA

grades it, and, then, the same student reads the grade.

asUser("stud1") {submitHandin("stud1",
"GoodSubmission")}

// TA inspects submission and grades it
asUser("ta") {
val firstSubmission = viewSubmissions().head
outputTo("ta", firstSubmission)
grade(firstSubmission, "Good")

} // student reads the grade:
asUser("stud1") { viewGrade("stud1") }

The example uses the helper functions submitHandin, grade,

viewGrade, and viewSubmissions, which encapsulate the inter-

action with the database. For example, the viewSubmissions

function is as follows:

def viewSubmissions() = select("{id, text |
handins(id, text)}")

DAISY accepts this program as secure and successfully

enforces the row-level policy “each student can read his grades.”

UR/FLOW would also consider the above program as secure.

Now, consider the same program where the function

viewSubmissions is defined as select("{id, text |

handins(id, text)AND codes(’stud1’, ’xyz’}"). The

program violates our policy: observing the output of

viewSubmissions leaks information about codes to the TA.

DAISY correctly detects such a leak and rejects the program as

insecure. UR/FLOW, however, would accept the program as se-

cure, since it ignores implicit leaks introduced by queries [14].

Finally, the TA tries to output the grades to a student stud2 .

DAISY prevents this since grades contains information about

stud1 that should not flow to stud2 .

asUser("ta") { // TA tries to leak everything:
val gr = select("{id, gr | grades(id, gr)}")
outputTo("stud2", gr) }

3) Calendar: We implement a calendar application that

supports creating events and adding other users as attendees.

We use DAISY to enforce the following policy: each user u
can read the information about an event’s participants only if

u is attending the event. As a result, if the event’s organizer

removes an attendee, that attendee can no longer view the

event’s other attendees. We implement the calendar application

as well as examples that comply with and violate the above

policy. See [22] for further details.

4) Conference management system: We model the key

aspects of a conference management system.

Database schema. The table user(ID, name) holds the

users’ data. The table paper(paperID, confID, title)
stores the papers’ information, whereas the table

authors(paperID, authorID) maps papers to authors and

reviewer(confID, revID) associates conferences with
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reviewers. The table review(paperID, revID, decision)
stores reviews’ information.

Security policy. In our system, we have two roles: reviewers

and authors. As an author, a user u can access only the reviews

of his own papers. To encode this, for each user u, we introduce

the view reviewAu = {p, r, d | review(p, r, d) ∧ author(p,
u)}}. As a reviewer, a user u can access the reviews of all

papers submitted to conferences where he is a reviewer. This is

implemented using the view reviewRu = {p, r, d | review(p,
r, d) ∧ ∃c, t. (paper(p, c, t) ∧ reviewer(c, u))}. We can now

define the permissions. Whenever a user u acts as author, he

can read reviewAu. In contrast, when a user u acts as reviewer,

he can read reviewRu. Moreover, users can always read the

tables user, author, and reviewer. We model users logging

in as authors or as reviewers using the configuration functions

asAuthor and asReviewer, which are executed under the

administrator’s privileges and modify the policy as expected.

Examples. In the following snippet, a user u logs into the

application as an author (modeled using the asAuthor func-

tion) and retrieves the reviews of his EuroS&P papers.

asAuthor()
val revs = extractReviews("u", "EuroS&P 2019")
outputTo("u", revs)

This example relies on the extractReviews helper func-

tion, which returns the result of the query SELECT {p, t,
d | reviews(p, c, t, d) ∧ author(p, c, u)}, where u and c are

the user and the conference given as input. Symbolic tuples are

precise enough to determine that revs’ content depends only

on authorized information. Hence, DAISY correctly accepts

this program as secure. Approaches based on column-level

dependencies would reject this program as insecure.

To illustrate dynamic policies, consider the following snippet,

where a user u logs in as a reviewer, stores all reviews of all

papers for the conferences where he is a program committee

member in a variable data , switches his role to author, and

prints the data.

asReviewer()
val data = conferenceData("u")
asAuthor()
outputTo("u", data)

This example uses the conferenceData helper function

that returns the result of the query SELECT {p, t, d | review(p,
c, t, d) ∧ reviewer(c, u)}, where u is the user given as in-

put. The example violates our policy. While the function

conferenceData accesses only authorized data when u is

logged as a reviewer, the information is disclosed only after the

privileges have been revoked. DAISY detects that data’s content

is no longer authorized in the last statement and correctly

stops the execution. Hence, DAISY correctly handles dynamic

policies and tracks dependencies across policy changes.

5) Performance: We benchmarked our case studies (each

one comprising roughly 100 lines of code) on a 64-bit i7-4600U

CPU running ArchLinux with OpenJDK version 1.8.0 144. In

our experiments, DAISY introduces an overhead between 5%

and 10% compared to the code’s unmonitored execution. We

believe is acceptable for a proof-of-concept implementation.

VIII. RELATED WORK

IFC for database-backed applications. We compare our work

with existing IFC solutions for database-backed applications [7],

[14], [15], [17], [28], [31], [44], [49] with respect to three

aspects: (1) the database model, (2) the supported security

policies, and (3) whether the solution has been proved sound.

Figure 5 summarises how existing approaches fare with respect

to these criteria.

SIF [15] enforces IFC policies for Java web applications,

whereas Li and Zdancewic [31] present a system for statically

checking IFC policies for database-backed applications. Both

approaches are type-based, require programmers to manually

annotate programs with typing annotations, and consider only

simple database models and column-level policies. Another

type-based approach is IFDB [44], a system supporting de-

centralized IFC across databases and applications. Its Query
by Label model extends work on multi-level secure (MLS)

databases [33] and provides abstractions for dealing with

expressive IFC policies. It supports complex database features

and policies. Similarly to other MLS approaches, it relies on

poly-instantiation [30], which is not supported by the SQL

standard and requires ad-hoc extensions [21], [42]. Moreover,

it has neither a formal semantics nor a soundness proof. In

contrast to these type-based approaches, we do not require

program annotations, we support more complex dynamic row-

level policies, and our solution comes with a soundness proof

of security for a realistic database model.

JSLINQ [7], SELINKS [17], [45], and SELINQ [43] secure

applications that interact with databases through language-

integrated queries. In contrast to DAISY, they consider simpler

database models and ignore constructs like triggers and integrity

constraints. Moreover, JSLINQ and SELINQ only support

column-level policies, while SELINKS also supports row-level

policies. However, none of them support row-level policies

where privileges can be granted and revoked as we do. Lourenço

and Caires [32] introduce dependent information flow types

which allow the types’ security levels to depend on runtime val-

ues, thus enabling row-level policies. Their main goal is using

dependent types for IFC; they therefore ignore the challenges

posed by advanced database features and dynamic policies.

URFLOW [14] is a static information flow analysis tool

for UR/WEB applications. It supports policies expressed as

SQL queries that leverage the users’ runtime knowledge. The

enforcement is done by symbolic execution over a model of

the web application. DAISY can enforce similar policies and it

supports features like triggers and dynamic policies. Moreover,

URFLOW provides no precise security guarantees, as it ignores

some implicit flows.

LWEB [36] is a framework for developing secure multi-

tier applications in Haskell. LWEB enforces data-dependent

column- and row-level policies (expressed in Haskell), where

the labels associated with columns and tuples may depend

on the tuples’ values. Similarly to LWEB, we also support
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Fig. 5: Comparison with other IFC approaches for database-backed applications

data-dependent row-level policies, which can be formalized

using views, and a restricted class of column-level policies. In

contrast to our work, LWEB ignore advanced database features,

like triggers, and it supports only declassification, while DAISY

supports dynamic policies where permissions can be granted

and revoked at runtime.

JACQUELINE [49] presents an IFC approach that secures

database-backed applications using faceted execution [5].

JACQUELINE adopts a policy-agnostic programming model,

where the language runtime modifies the computation to pro-

duce policy compliant results. In contrast to modifying the

results, our monitor prevents leaks by terminating the execution.

In JACQUELINE, security policies are formalized as program

functions and both row-level and column-level policies are

supported. However, JACQUELINE consider a simpler database

model than our work and it ignores security-critical database

features like triggers.

To summarise, existing works consider unrealistic database

models, ignore dynamic policies where permissions can be

granted and revoked, or provide informal soundness arguments.

In contrast, our work has the following distinguishing features:

(1) a realistic database model, which accounts for security-

critical constructs like triggers, views, and dynamic policies,

(2) a monitor combining information-flow tracking with dis-

closure lattices that can enforce dynamic row-level and static

column-level policies, and (3) a soundness proof of security

for a realistic database model.

Security conditions. Our security condition is inspired by

existing knowledge-based notions for dynamic policies [3], [6],

[11]. While the semantics for dynamic policies remains an open

research problem, our security condition captures security with

respect to a perfect recall attacker. Askarov and Chong [3] pro-

pose security conditions against all attackers. We conjecture that

our security monitor also enforces security against all attackers.

Hicks et al. [27] propose non-interference between updates,

which ensures non-interference between policy changes, while

ignoring information leaks across such changes. Bohannon et

al. [10] study reactive noninterference to reason about security

policies in languages with event handlers like client-side web

applications. The execution model for event handlers is similar

to the execution of triggers in our language. We refer the reader

to Broberg et al. [11] for a survey of dynamic policies.

Label models. The universal lattice by Hunt and Sands [29]

allows expressing dependencies between variables, where the

lattice’s elements are sets of variables and the order relationship

is set containment. In contrast, disclosure lattices allow us to rea-

son about dependencies between queries. By directly combining

disclosure lattices with dynamic information-flow tracking, we

track tuple-level dependencies between variables and queries,

which would otherwise be lost using simpler label models,

e.g., the “high” and “low” lattice. This allows us to support

dynamic row-level policies and static column-level policies.

Database access control. Many security conditions have been

proposed for attackers that can issue only SELECT queries [8],

[9], [24], [37], [48]. Guarnieri et al. [25] extend database

access control by supporting advanced features, such as

triggers and dynamic policies. WHILESQL’s database model

builds on top of Guarnieri et al.’s database semantics. Bender

et al. [8], [9] introduce disclosure lattices to reason about fine-

grained security policies in databases. We leverage disclosure

lattices to track information-flows through the application and

database boundary.

QAPLA [34] is a database access control middleware support-

ing complex security policies, such as linking and aggregation

policies, that go beyond what is supported by commercial

database systems. Our monitor supports only policies that

can be expressed in the SQL access control model. Hence, it

does not support policies like linking or aggregation. QAPLA,

however, cannot enforce end-to-end IFC policies across the

application/database boundary.

Research on mandatory database access control has histori-

cally focused on Multi-Level Security [21], [33], where both

the data and the users are associated with security levels. In

contrast to WHILESQL, MLS systems consider, in general,

fixed security policies (cf. the tranquility principle [41]) and

rely on poly-instantiation [30].

IX. CONCLUSION

Securing database-backed applications requires reasoning

about the program and the database as a whole. Motivated by
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the severe limitations of existing approaches, we developed

a novel security monitor that enforces security policies in an

end-to-end fashion across the application-database boundary.

In contrast to existing approaches, our monitor accounts for

realistic database model, and it leverages disclosure lattices to

track fine-grained tuple-level dependencies between variables

and tuples and to enforce expressive dynamic policies. DAISY

implements our security monitor for SCALA programs, and it

relies on symbolic tuples, a novel efficient approximation of

disclosure lattices. DAISY demonstrates how realistic database

models and database theory can be combined with language-

based security techniques to effectively protect systems against

larger classes of attacks.
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