2019 IEEE European Symposium on Security and Privacy (EuroS&P)

Adaptive Call-site Sensitive Control Flow Integrity

Mustakimur Khandaker* Abu Naser* Wenqing Liu* Zhi Wang* Yajin Zhou! Yueqiang Cheng!
* Deparment of Computer Science, Florida State University, Tallahassee, USA
Email: {mrk15e, an16e, wl16¢}@my.fsu.edu, zwang@cs.fsu.edu
T School of Computer Science, Zhejiang University, Hangzhou, China
Email: yajin_zhou@zju.edu.cn
! Baidu X-lab, Sunnyvale, USA
Email: chengyueqiang@baidu.com

Abstract—Low-level languages like C/C++ are widely used
in various applications for their performance and flexibility.
Unfortunately, these languages are prone to memory corruption
vulnerabilities, leading to control-flow hijacking attacks. Control
flow integrity (CFI) is a general principle to enforce run-time
control flow of a program to a pre-computed control-flow graph
(CFG). While the traditional context-insensitive CFI falls short
in protecting critical control transfers, recent context-sensitive
CFI research shows promising improvements but has various
limitations.

We present Control Flow Integrity with Look Back (CFI-
LB), a call-site sensitive CFI in which a conventional source-
target control transfer is strengthened by a look back into its
call-sites (return addresses). CFI-LB features the adaptive call-
site sensitivity in which each indirect call has its own level of
sensitivity and the multi-scope CFG to improve the security
even if a precise context-sensitive static CFG is not available,
especially for large programs such as GCC and NGINX. One
of the CFGs is constructed by our localized concolic execution,
which significantly extends the dynamic CFG with very low false
positives. In addition, CFI-LB is the first CFI system explicitly
designed to protect its reference monitors from race conditions.
We have built a prototype of CFI-LB. The evaluation with SPEC
CPU2006 benchmarks and NGINX indicates that CFI-LB has a
low-performance overhead (less than 5% on average for the full
protection) while increasing the security.

1. INTRODUCTION

Computer software has become increasingly complicated.
For example, the Linux kernel, first released in 1991, now
has more than 20 million lines of source code (version
4.19.1). Such complexity unavoidably leads to more and
more vulnerabilities [49], many of which can be exploited
to execute arbitrary code or escalate the privilege. Existing
deployed defenses such as data-execution prevention (DEP)
and address-space layout randomization (ASLR) make exploits
more challenging but can still be bypassed by code-reuse
attacks [46], information leaks, heap sprays, etc.

Control-flow integrity (CFI) is an effective defense against
most control-flow hijacking attacks [2]. It employs in-line
reference monitors to enforce that the run-time control flow of
a process must follow its control-flow graph (CFG), a static
graph representing the program’s legitimate control transfers.
Control flow can be changed by direct branches (i.e., direct
calls/jumps) and indirect branches (i.e., indirect calls/jumps
and returns). Direct branches are hard-coded in the program
and thus cannot be manipulated by attackers under DEP;

© 2019, Mustakimur Khandaker. Under license to IEEE.
DOI 10.1109/EuroSP.2019.00017

indirect branches load the program counter with a code pointer
from a register or a memory location. Consequently, they can
be exploited by manipulating the in-memory data, and thus
CFI needs to protect their integrity. Since its introduction,
there has been a long stream of research in CFI to improve its
performance [53], [54], increase its precision [18], [48], [50],
and protect other mechanisms [36], [39], [3].) Nevertheless,
recent research puts the security of CFI systems into serious
question [6], [16], [21], [23].

The security of a CFI system is determined mainly by three
factors: the actual CFG, the CFG construction algorithm, and
the enforcement mechanism. The actual CFG is determined
by the program structure itself. Some indirect branches have
a large set of valid targets. In this case, even a precise CFI
system could still be bypassed by taking advantage of these
valid targets [6]. The CFG construction algorithm determines
how close the computed CFG is to the actual CFG. CFGs are
often computed by the static points-to analysis, a well-known
NP-hard problem. Existing points-to analysis algorithms are
designed to be conservative; consequently, illegitimate control
transfers may be included in the resulting CFG and incorrectly
allowed by the CFI system [21]. The enforcement mechanism
can also introduce insecurity, mainly due to the trade-off
between security and performance. For example, some CFI
systems enforce an oversimplified CFG [47], [53], allowing
them to be subverted [16], [23].

Context sensitivity is an effective way to improve the
security of CFI systems [18], [48] because it takes the past
execution into consideration when validating the next target
of an indirect branch. Existing context-sensitive CFI (CS-CFI)
systems rely on the hardware support, such as Intel last branch
record (LBR) and processor tracing (PT), to obtain the recent
execution path. These hardware features provide rich context
information about both direct and indirect branches. However,
Intel LBR and PT can only be accessed in the kernel mode;
accordingly, these systems must change the kernel. This not
only increases the complexity of the design but also incurs
high performance overhead. This overhead can be partially
addressed by enforcing CS-CFI at a limited number of selected
locations, such as the syscall entrance [48], or by offloading
the run-time check to a separate CPU core [18]. However, the
former can only protect a small part of the program, and the
rest of the program may still be compromised (e.g., to leak

IEEE
computer
psoc1ety

the private key of a web server); the latter reduces the number
of usable CPU cores.

In this paper, we aim at improving the security and ef-
fectiveness of CFI with CFI-LB, control-flow integrity with
look-back. CFI-LB is a CS-CFI system that uses call-sites as
the context. Specifically, to validate the target of an indirect
branch, CFI-LB obtains the return addresses from the safe
shadow stack and only permits the control transfer if the
target is valid for that sequence of callers. This is essentially
a call-site sensitive CFI system. While deeper contexts (i.e.,
more call sites) provide better security, they often incur higher
overhead, making the protection less useful. To address that,
CFI-LB employs the following strategies: first, we observe
that not all indirect branches require a deep context. In most
cases, a single return address can provide sufficient constraint
on the valid targets; while other cases require a deeper context
for better security. As such, CFI-LB features the adaptive
context sensitivity that allows each indirect branch to decide
its own level of call sites to check. Second, CFI-LB fea-
tures the multi-scope CFG to overcome the insecurity caused
by imprecise/coarse-grained CFGs. Specifically, we compute
three CFGs for every program — a dynamic CFG from dynamic
profiling, a concolic CFG from localized concolic execution,
and a static CFG from the static points-to analysis algorithm.
The concolic CFG is derived from the dynamic CFG, but
significantly expands it by exploring multiple paths at the point
of interest with a concolic execution engine. The dynamic and
concolic CFGs are precise but might be incomplete; while the
static CFG is complete but may contain extraneous control
transfers. At run-time, we apply different policies to these
CFGs: control transfers within the dynamic and concolic CFGs
are trusted and allowed by default, and these within the static
CFG are allowed but recorded for further off-line verification.
With the multi-scope CFG, CFI-LB is still secure even though
a precise context-sensitive static CFG is not available. Third,
an often overlooked pitfall of all the existing CFI systems
is race conditions against CFI’s inline reference monitors in
multi-threaded processes. Many CFI systems employ reference
monitors that save intermediate states in the memory (either
by design or due to register spilling [1], [4], [34]). These
states can be manipulated by another benign-but-vulnerable
thread under attack. A secure CFI system must be “modeled
against arbitrary read/write at arbitrary times” [35]. CFI-
LB is the first CFI system that is explicitly designed to
guarantee the atomicity of its reference monitors by leveraging
the widely-available hardware transactional memory support
(Intel TSX [28]). We have built a prototype of CFI-LB.
In addition, we propose an equation to universally quantify
the security of CFI systems. Our security and performance
evaluation demonstrates that CFI-LB can significantly improve
the security of CFI systems without causing high performance
overhead (less than 5% on average for the full protection of
indirect branches and returns and Intel TSX support).

In summary, this paper makes the following contribution:

o« We propose the design of CFI-LB, a call-site sensitive

CFI system featuring adaptive context sensitivity and

96

multi-scope CFG to provide the balanced security and
improve the security even if a precise context-sensitive
CFG is not available (as is the reality).

CFI-LB is the first CFI system explicitly designed to
protect the integrity of its reference monitors against race
conditions. In addition, our localized concolic execution
can significantly extend the dynamic CFG with low false
positives.

We propose a universal quantitative metric to measure
and compare the security of both context-insensitive and
context-sensitive CFI systems.

We have built a prototype of CFI-LB and extensively
evaluated its security and performance.

II. CALL-SITE SENSITIVE CFI

In this section, we first propose a generic metric to quantify
the security of CFI systems and then present the notion of
call-site sensitive CFI with a concrete example.

A. Quantifying Context-Sensitive CFI

CFI protects a process from control-flow hijacking attacks
by confining the possible targets of an indirect branch to
these in the program’s CFG. As previously mentioned, the
security of a CFI system is determined by the following three
factors: the actual CFG, the CFG construction algorithm, and
the enforcement mechanism. The first factor is decided by the
program structure itself. For example, syscalls in the kernel are
dispatched through a large table of syscall handlers, indexed
by the syscall number. Recent versions of the Linux kernel
for x86-64 contain more than 320 syscalls. This particular
indirect call hence has a very large legitimate target set.
Target sets can also be affected by the precision of the
CFG construction algorithm (the second factor), i.e., points-
to analysis. Points-to analysis is a static analysis to calculate
the variables or data structures a pointer can point to. Precise
points-to analysis algorithms rely on context sensitivity (e.g.,
call-site sensitivity) to improve precision. Unfortunately, such
algorithms often do not scale well. Few can handle the code
size of real-world programs such as Apache and GCC, and
even fewer are publicly available and regularly maintained (we
report our own experience later). The last factor is the CFI
enforcement mechanism. CFI inserts online reference monitors
into the target program to enforce its policies. A precise
CFI enforcement requires to perform more thorough check of
the run-time states and thus may lead to higher performance
overhead. As such, some CFI systems trade precision and
security for performance, making them bypassable. Existing
CFI systems have applied a wide spectrum of designs in these
three factors. An effective measurement of the security of CFI
systems should take all these three aspects into consideration.

In a recent survey of (context-insensitive) CFI systems [3],
Burow et al. propose to use the following equation to quantify
the security of CFI systems:

1

EC x —

QSCFI = LC

e))

cs;— _Fa Rl
Indcally [
cs; es
2
Fp ’
CS3 e e
IndCally o, »F3

Fig. 1. An example of equivalence classes. C'S,, represents a call site; IndCall
represents an indirect call instruction; and F; represents a function.

EC is the total number of the equivalence classes and LC is the
largest size of the equivalence classes. An equivalence class
(EC) is a group of targets that a CFI system cannot distinguish.
Fig. 1 gives an example of ECs: function F, and F} both
contain an indirect call, IndCall, and IndCally, respectively.
The former targets function F; and F5, and the latter targets
F5 and Fs. F, is called by call site C'S; and C'S, while Fy, is
called by C'Ss. A traditional CFI system validates the targets
without considering the contexts. This creates at most two
ECs ({F}, F5} and {F5, F3}). However, the CFI enforcement
may merge these two classes. For example, the original CFI
system [2] inserts a label at each target and enforces CFI by
checking the label. This requires these two ECs be merged
because each target function can only bear one label; the label
of F thus has to be shared by F} and F3. Some CFI systems
trade security for performance by assuming every indirect call
can target any address-taken function. As such, they have a
single large EC. In summary, EC reflects the precision of
both the CFG and the enforcement mechanism. Eq. 1 is an
effective measurement of the security of context-insensitive
CFI systems, but it is not as effective for CS-CFI systems.
Call-site sensitive CFI takes the call path into consideration
when enforcing the CFI policy. This leads to more, smaller
ECs. For example, assume there are four valid execution paths
in Fig. 1: (CS, — F, — IndCqall, — Fy), (CSy — F, —
IndCall, — F3), (CS3 — F, — IndCall, — F»), and
(CS3 — Fy — IndCall, — F3). These four paths are divided
into three ECs with a maximum size of 2 — the first two paths
are in its own class separately, and the last two are in one class
together. However, different context-sensitive CFI systems
may use different contexts, leading to different numbers of
ECs in the CFG. Moreover, the number of ECs could increase
exponentially while the maximum EC size changes at a much
slower rate (see an example in Section III-B). Because of these
reasons, Eq. 1 is not suitable for comparing CS-CFI systems.
To address that, we propose to use the following equation to
measure the security of all CFI systems:
QScrr = AVGEec x LC 2)
AV G e is the average size of all the ECs, and LC is still the
size of the largest EC. In Eq. 2, the larger QScrr is, the less
secure. A useful feature of Eq. 2 is that QScr; now has a
theoretical limit of 1, in which every target can be individually
distinguished and validated.

97

B. Call-site Sensitive CFI

typedef int (*Handler) (char *);
int proceed(Handler handler, char *root_path)

{

return handler(root_path);

¥

void auth()

{
char *user_name;
char *passwd;
char id[80];
int attempt = 5;
Handler handler;

while (attempt > 0) {
handler &on_failure;
username passwd = null;

scanf ("/ms", &username) ;
scanf ("/ms", &password);

passwd = salt_passwd(username, passwd);
sprintf(id, "%s;%s", username, passwd);

if (is_admin(id)) {
handler &on_admin;
proceed(handler, user_home_dir);
} else {
proceed(handler, "/tmp");

}
attempt--—;

//clear passwd, free user_name, passwd

Fig. 2. An example for call-site sensitive CFI

CFI-LB enforces a call-site sensitive CFI policy in which the
targets of an indirect branch are validated in the context of call-
sites (i.e., return addresses on the stack). By doing so, we can
partition equivalence classes into finer-grained sets, reducing
the average EC size and improving the overall security (Eq. 2).

Fig. 2 illustrates the benefits of call-site sensitivity, in
which the auth function authenticates the user and calls the
proceed function with a function pointer decided by the
results of auth. In the context-insensitive CFI, the indirect
call at L5 can legitimately transfer to both on_admin and
on_failure. That is, an attacker can execute on_admin
even if the password authentication fails by exploiting the
buffer overflow at 1.24 to overwrite handler. By nature,
even a precise context-insensitive CFI will fail to provide
meaningful protection for this program.

With CFI-LB, we take the call sites into account when vali-
dating the targets of handler at L5. Specifically, proceed
has two call sites at 1.28 and L30. The valid targets of L5 thus
can be presented by tuple (128, L5, on_admin) and (L30,
L5, on_failure). To validate the targets at L5, we retrieve

the return address from the stack, combine it with the location
of the indirect call (L5) and the target address, and check
whether the formed tuple is valid or not. Consequently, we
can prevent the aforementioned attack. Note that the attacker
cannot overwrite the return address of proceed because it is
pushed to the stack after the overflow, and we employ a secure
shadow stack to protect return addresses. Any modifications
to them will trigger an exception. In other words, the call sites
used in the validation are trusted.

What we just described is technically a one call-site sen-
sitive CFI. Sometimes more call sites need to be examined
to provide a finer-grained context, for example, if the indirect
call in L5 is wrapped in another function and proceed calls
this function instead of directly calling handler. In this
case, a two call-site sensitive CFI-LB can recover the lost
precision. As expected, call-site sensitivity may fall short in
some cases even though it is overall a strong protection. For
example, it is possible to merge the two calls of proceed
in Fig. 2 by introducing a new local variable to store the
arguments of root_path. Now, proceed has only a single
call site. This prevents CFI-LB from distinguishing the two
targets of handler. To further improve the precision, we
need to take the executed branches into account, i.e., which
branch of is_admin is executed. An Intel-PT based CFI can
theoretically provide this kind of protection [18]. However, the
CFG is the limitation here — a points-to analysis with that level
of precision (context- and path-sensitive) is hardly scalable,
and its public availability is virtually non-exist, especially for
the C/C++ language.

III. SYSTEM DESIGN

In this section, we first describe how we enforce one call-site
sensitivity in CFI-LB and then describe two unique features
of CFI-LB, adaptive call-site sensitivity and multi-scope CFG,
to make our design more scalable and secure.

Assumptions: like all other CFI systems, we assume that the
code integrity of the target program is protected by Wd X,
a common protection in all commodity operating systems. A
secure CFI system has to protect both returns and indirect
calls (or jumps). We assume that return addresses are protected
by a secure shadow stack [11], [29], which saves a copy of
return addresses to a protected stack and verifies that they have
not been changed before returning. Our prototype uses CPI’s
SafeStack [31] for this purpose. SafeStack separates return
addresses and others safe data into a separate safe stack. It
can protect return addresses from being compromised, similar
to the shadow stack.

A. Enforcing One Call-site Sensitivity

To enable its protection, CFI-LB instruments the program
to insert inline reference monitors that protect the program’s
run-time control flow. We describe this process in two steps,
compiling-time instrumentation and run-time verification.
Compiling-time instrumentation: Fig. 3 shows the CFG for the
example program in Fig. 2. There is one indirect call (L5) (and
four returns) that needs protection. To protect indirect calls,

98

auth on_admin

L28: call proceed proceed

L29: ...

L5: call *eax

L30: call proceed
L31: ...

on_failure

ret

ret ret

Fig. 3. CFG for the example in Fig. 2

CFI-LB uses a hash-table based set membership test. For one
call-site sensitivity, the set consists of tuples of the following
format: (return site, indirect call, target). Therefore, the set
for Fig. 3 contains (L29, L5, on_admin) and (L31, L5,
on_failure). We instrument the program to initialize the
hash table with these two entries before executing the main
function. Our current prototype uses a simple hash function
to calculate the hash index: xor the three members of each
tuple and mod the set size. We practically adjust the set size
to reduce hash conflicts. Our experience with large programs,
such as SPEC CPU2006, shows that this simple hash function
is fast and effective. For example, the hash table for 403 . gcc
has 1,541 entries with only 74 conflicts. More advanced hash
functions can easily be adopted if necessary. The hash table
is write-protected after the initialization.

We further instrument the program to insert a reference
monitor before each indirect call. In our prototype, we in-
strument the program at the source code level. The hash table
search function is implemented as a function but inlined and
specialized at each instrumentation point (e.g., L5 in Fig. 3).
Inlining is used to avoid introducing an artificial function (i.e.,
the validation function) that can legitimately return to all the
locations before the indirect calls.

We use the hash-table based enforcement because it will not

introduce imprecision since it does not merge the target sets of
different indirect calls, and it has near constant performance.
As we will show later, the size of target sets can increase
exponentially when the level of call-site sensitivity increases.
Hash table can provide the consistent performance.
Run-time verification: at run-time, the reference monitor re-
trieves the target from the register/memory and return ad-
dresses from the shadow stack, hash them with the location
of the indirect call (hard-coded in the reference monitor), and
search the hash table for validation.

Atomicity of reference monitors: an often overlooked attack
vector against CFI is the race condition — if a reference monitor
saves its intermediate states in the memory, the attacker
can compromise these states by exploiting vulnerabilities in
another thread. Even though the window of vulnerability is
narrow, reference monitors are called frequently enough for
this to be a concern. A simple defense against that is to rewrite
reference monitors to only use the registers. This method
works because each CPU core has its own set of registers, and

one core cannot change another core’s registers. However, it is
difficult to implement since it requires hand-coding reference
monitors in assembly instructions. Most existing CFI systems
rely on the compiler for register allocation (e.g., systems
implemented in the LLVM IR [1], [4], [34]). Their internal
states might be spilled to the stack by the compiler, making
them potentially vulnerable.

To address that, CFI-LB encapsulates its reference monitors
in the hardware transactional memory based on Intel TSX [28].
Intel TSX provides two software interfaces, hardware lock
elision (HLE) and restricted transactional memory (RTM).
CFI-LB uses the RTM interface, which consists of three new
instructions, xbegin, xend, and xabort, to start, end,
and abort a transaction, respectively. When a transaction is
started, the CPU records all the memory accesses by the
transaction and monitors the system for race conditions (i.e.,
read-write and write-write conflicts). If a race condition is
detected, the transaction is aborted and its changes are rolled
back; otherwise, it is committed to the memory. When a
transaction fails, the CPU returns the error conditions in the
eax register. One of the return status is conflict-detected
(_XABORT_CONFLICT). However, we cannot simply report
a conflict as an attack because a transaction can fail without
real data conflicts — Intel TSX detects data conflicts at the
granularity of a cache line (64 bytes) [28]. False sharing in
the cache line or cache conflicts can all cause transactions to
fail. In our experiment with the NGINX server, we found that
transactions have a chance of 0.003% to fail even without race
conditions. To address that, we retry the transaction multiple
times before reporting a failure. This design does not weaken
security because the verification can not be compromised as
long as the transaction succeeds. To the best of our knowledge,
CFI-LB is the first CFI system that is explicitly designed to
guarantee the atomicity of its reference monitors.

B. Adaptive Call-site Sensitivity

As specified in Eq. 2, the security of CFI-LB is determined
by the average EC (equivalence class) size and the largest EC
size. In the following, we use the GCC benchmark in SPEC
CPU2006 as an example to demonstrate the impact of different
levels ! of call-site sensitivity to these two parameters. Our
measurement of other benchmarks shows a similar trend (Sec-
tion V). We then describe the first feature of CFI-LB, adaptive
call-site sensitivity, to balance security and performance.

TABLE 1
NUMBER OF ECS AND AVERAGE EC SIZE FOR DIFFERENT LEVELS OF
SENSITIVITY.

Sensitivity Call-site(0) Call-site(1) Call-site(2) Call-site(3)
of ECs 220 795 2763 6463
AVGEo 2.7 1.53 1.38 1.33

Average EC size: the goal of call-site sensitivity is to limit
the choices that an attacker has in compromising the control

I'The level of sensitivity counts how many levels of return addresses to use.

99

flow by reducing EC sizes. Generally speaking, more levels of
call-site sensitivity lead to smaller average EC sizes. Table |
shows the result for the GCC benchmark 2. For example, with
the three call-site sensitivity, the average EC size decreases to
1.33 but the number of ECs increases more dramatically (29x
of the context-insensitive CFI). This implies that a constant-
time membership test algorithm is essential to the performance
of CFI-LB. Nevertheless, increasing the level of sensitivity can
still harm the performance because it needs more memory
accesses to retrieve the context.

TABLE 11

EC DISTRIBUTION OVER SIZES OF THE TARGET SETS
Sizes Call-site(0) Call-site(1) Call-site(2) Calll-site(3)

1 149 674 2372 5423

2 27 54 223 667

3 10 18 48 172

4 7 17 35 70
5-10 20 26 56 93
11-20 4 4 28 37
21-40 2 1 0 0

54 1 1 1 1
Total 220 795 2763 6463

Largest EC size: the security of a CFI system also relies on
the largest EC size. When increasing the call-site sensitivity,
larger ECs break down into smaller ECs. This can potentially
reduce the largest EC size. Table II shows the distribution of
EC sizes. For example, with one call-site sensitivity, there are
674 ECs having a single target and 26 ECs having between
5 and 10 targets. When we increase the sensitivity to three,
these numbers increase to 5,423 and 93, respectively.

Interestingly, the maximum EC size for every case remains
the same (54). This problematic indirect call is located in
Function get_insn_template, which uses a function
pointer to generate templates for different instructions. The
reason that this indirect call defies call-site sensitivity is
because its only caller, final_ scan_insn, is a recursive
function. As such, the caller can appear many times on the
call stack, and no level of call-site sensitivity can increase the
precision for this call. We could theoretically merge duplicated
return addresses in the context. Such an implementation is
more complicated and has higher overhead. In summary, using
a high-level of sensitivity across the program has the following
issues: higher performance overhead, explosion of the number
of ECs, and cases that it does not improve security.
Adaptive call-site sensitivity: to address these problems, CFI-
LB features adaptive call-site sensitivity, in which the level
of sensitivity is decided independently for each indirect call.
The goal is to reduce the average EC size while avoiding the
explosion of the number of ECs. The algorithm is summarized
as the following:

1) Repeat the following for the maximum level n from 0

and 3: for each indirect call, calculate AV G ¢ for each

2We use the CFG generated through dynamic profiling from the reference
inputs of the SPEC CPU2006 benchmark to avoid the imprecision of CFG
generation algorithms.

TABLE III
DISTRIBUTION OF ADAPTIVE CALL-SITE SENSITIVITY. NOTE THAT THE
LARGEST INDIRECT CALL IS CORRECTLY ASSIGNED TO LEVEL 0 SINCE NO
ADDITIONAL LEVEL WILL REDUCE ITS TARGET SIZE.

Call-site Max. target # of # of Avg. EC
Depth Set Size Indirect Calls ECs Size
0 54 161 161 1.48
1 20 23 262 1.37
2 17 36 787 1.50
Total 220 1210 1.47

level of sensitivity from O to n, and select the smallest
level that has the smallest AV G g¢ for this indirect call.

2) Pick the maximum level n that has the best security
according to Eq. 2. n is the maximum level of sensitivity
for the whole program.

The results of applying this algorithm to 403 . gcc is shown
in Table III. The maximum level is 2 with an average EC size
of 1.47. The total EC number is 1,210, less than half of the
case if two call-site sensitivity is applied uniformly. Note that
CFI-LB’s hash-table based CFI enforcement can easily support
adaptive sensitivity by assuming the missing call-sites to be
zero in lower levels.

C. Multi-scope CFG

CFI-LB’s second feature, multi-scope CFG, focuses on

improving the security even if a scalable context-sensitive
points-to analysis algorithm is, unfortunately, not available for
C/C++ programs (the current state of the art in the points-to
analysis). We combine different CFGs together and apply both
on-line and off-line validation of control transfers.
The need for multi-scope CFG: there are two ways to generate
CFGs: dynamic analysis and static analysis. Dynamic analysis
runs the program under a dynamic binary instrumentation
(DBI) tool to record an execution history of the program and
construct the CFG from it. For brevity, we call the CFG created
in this way a dynamic CFG. A dynamic CFG has no false
positives, i.e., all the control transfers are valid. However,
it suffers from false negatives, i.e., the CFG is incomplete
because dynamic analysis cannot cover all the code paths.

Static analysis uses points-to analysis to calculate the CFG
from either the source code or the program binary. Tradi-
tionally, points-to analysis is used by compilers to optimize
programs. The produced CFG is an over-approximation of the
real CFQG, i.e., the CFG has false positives (extra control trans-
fers) but no false negatives (missing control transfers). One
way to improve the precision of points-to analysis is context
sensitivity. Call-site sensitivity is often used for procedural
programming languages like C/C++. Unfortunately, precise
points-to algorithms do not scale well, especially for com-
plicated programs like GCC. Availability of such algorithms is
even worse. The best choice at the time of writing seems to
be the DSA algorithm, which has not been maintained for a
long time and contains known algorithmic errors [32], [33].
Existing CFI systems often use an imprecise CFG, such as all
address-taken functions [47] or the type-based CFG [1].

Given this reality, CFI-LB proposes the multi-scope CFG
to improve security despite the imprecision in the points-to
analysis: a security mechanism like CFI should have no false
positives and limited false negatives to be secure and usable *.
Note that a false positive in the CFG leads to false negatives
in the CFI (no alarm raised where it should be), and vise
versa. Therefore, the overall CFG we use should have no false
negatives and limited false positives. CFL-LB’s multi-scope
CFG consists of three CFGs: a dynamic CFG generated by
dynamic analysis, a static CFG generated by a scalable but
conservative points-to analysis, and a concolic CFG generated
by our localized concolic execution. The relation of these three
CFGs are shown in Fig. 4.

Dynamic CFG
Concolic CFG

Fig. 4. Multi-scope CFG in CFI-LB

On-line and off-line verification: after generating those CFGs,
CFI-LB applies both on-line and off-line verification of in-
direct call targets. Specifically, any run-time control transfer
within the dynamic CFG is allowed because the dynamic
CFG contains only valid control transfers. Our experiments
show that the concolic CFG has a very low false positive
rate. As such, we also allow any run-time control transfer
within the concolic CFG. However, the static CFG may cause
false negatives in the CFI. We allow a control transfer in
this CFG (but outside the dynamic and concolic CFGs) to
proceed at run-time but record the target and its context (e.g.,
the call stack) for the off-line analysis. If the analysis proves
that the control transfer is legitimate, it will be added to the
dynamic CFG for future use. Any control transfer outside
the static CFG is a true violation and will be immediately
blocked. The rationale of this design is that only few run-
time control transfers require off-line verification because of
the effectiveness of the dynamic and concolic CFGs; we can
gradually expand the dynamic CFG, and eventually any run-
time control transfers out of the dynamic and concolic CFGs
become suspicious.

To support multi-scope CFG, we mark each hash table entry
with its scope and record the run-time context as indicated
by the scope. The context we record includes the call stack
and the arguments to the target function. We can use this
information to validate the control transfer. In the following,
we present our method to generate the concolic CFG.

3A typical counter-example is UAC of Window Vista that trained users to
ignore and click through any access control questions.

100

D. Localized Concolic Execution

The goal of localized concolic execution is to extend the

dynamic CFG with very few false positives so that CFI-LB
can trust them without further validation.
Overview: concolic execution, as its name indicates, is a
combination of concrete and symbolic execution. It maintains
the symbolic relations between program variables while con-
cretely executing the program. Concolic execution is often
used to improve path coverage in software testing: when the
concolic execution engine finds a conditional branch, it adds
the branch’s condition to the path condition. The satisfiability
of the path condition determines whether a path is feasible or
not. To explore an alternative path, the engine tries to solve
the related path condition with a constraint solver, such as
Z3 [17]. If the solver proves the path condition is satisfiable,
it provides a solution to the related symbolic variables that
will lead the execution to that path in a concrete execution.

Theoretically, we could use concolic execution to explore all
the paths of the program and derive a complete CFG. Unfor-
tunately, concolic execution does not scale well because of the
path explosion problem, in which the number of feasible paths
grows exponentially to the number of conditional branches and
can even be infinite if the program has unbounded loops. Our
target programs are too complicated to be fully explored. For
example, 403 .gcc has about 1 million instructions.

CFI-LB addresses this challenge by limiting the scope
of concolic execution with additional heuristics to further
improve its scalability. Because the generated CFG is used in
the call-site sensitive CFI, we must generate, for each indirect
call, both its target set and the associated contexts. CFI-LB’s
concolic execution is localized to the individual indirect call
site. Specifically, at each indirect call site, it searches backward
in the program’s CFG for the callers of this indirect calls and
concolically executes these callers until the execution reaches
the indirect call. A list of the targets and their associated
contexts will be returned at the indirect call site. The intuition
behind this approach is that the function pointer used by the
indirect call likely is assigned or indexed by its callers. By
exploring more code paths in the callers, we can potentially
assign other legitimate values to this function pointer. In the
following, we will describe each step in detail.

Step I: recording initial program states: CFI-LB’s localized
concolic execution is binary based. As previously mentioned,
concolic execution runs the program both concretely and
symbolically. It is necessary to provide the valid inputs to the
starting function so that the concrete execution can proceed
without causing exceptions. Our target programs are often
very complicated. It is generally unfeasible to achieve this
programmatically. To this end, we execute the program under
a dynamic binary instrumentation (DBI) tool with some valid
inputs (e.g., a well-formed C program for GCC) and record a
complete execution history. At the entry point of an interested
function, we reconstruct the function’s arguments, the global
variables, the registers, and the heap from the execution history
and take a snapshot of them. This snapshot provides a set of

101

valid inputs for the concolic execution. We use Intel Pin as
the DBI tool in our prototype [30].

Step II: locating starting functions: after recording the execution
history, our system needs to find the callers of the interested
indirect call site as the starting function for the concolic
execution. While recording the execution history, the DBI tool
also generates a dynamic CFG for the program. Technically,
we can search this CFG for the callers of this indirect call
and start concolically executing them. However, this approach
does not work well — sometimes the indirect call that we are
interested in is not even executed by the DBI tool because
of the limited coverage of the initial input. To address that,
we extract from the program binary a CFG that contains only
direct calls, and further extend this CFG by the indirect control
transfers from the dynamic CFG. We then locate the callers
of the interested indirect call in this CFG. If a located caller
has been executed by the DBI tool, we add this caller into a
work list for the concolic execution. We make sure that the
depth of the callers is larger than or equal to the depth of this
indirect call’s sensitivity.

main:

call FullSortTophits

" sSIwritelndex:

FullSortTophits: GSISortindex:
call specgsort call specgsort call specgsort
’ ‘-u..__specqsort:; e
call gst
gst: V
call rex

Fig. 5. Locate the callers of an indirect call (in 456 . hmmer benchmark)

Fig. 5 illustrates how this works. Specifically, the gst
function, which implements quick sort, contains an indi-
rect call through the rcx register. gst has a single caller,
specgsort. Unfortunately, specgsort has not been ex-
ecuted by the DBI tool; we then have to search backwards
further. specgsort in turn has three callers, but none of
them have been executed by the DBI tool either. Searching
further back, we find that one of specgsort’s callers,
FullSortTophits, can be called by the main function,
which certainly has been executed by the DBI tool. There-
fore, we add main as a starting function and record the
path from main to gst (main — FullSortTophits
— specgsort — gst). This information is used by the
concolic engine to limit the depth of exploration (more details
in the following). Note that even though the main function in-
cludes a call to FullSortTophits, FullSortTophits
may not have been executed by the DBI tool if it is guarded by
an unsatisfiable branch condition during the initial execution.
Our concolic engine can solve the related path condition and
execute the function. If we just search for starting functions

in the dynamic CFG generated by the DBI tool, we cannot
find any executed callers for gst. Therefore, by searching for
starting functions in the combine CFG, we can discover more
targets of an indirect call.

Step lll: concolically executing code: after discovering the
starting functions, we start executing them one by one concol-
ically. Specifically, we use the aforementioned snapshot as the
initial inputs to the starting function and execute the program
concretely while maintaining the relation between symbolic
variables. In particular, we maintain a set of path conditions.
If a new conditional branch is found, we add the condition (or
its inverse depending on which branch the concrete execution
takes) to the current path condition. After every emulation,
we iterate through the generated path conditions and check
whether a path has been taken or not. For each path not-
taken, we then query a SMT solver to check whether its
path condition can be satisfied. If so, the solver will return a
model that will execute the new path. This process repeats until
all the paths have been explored. When the concolic engine
reaches the indirect call site, we retrieve the values stored in
the register or memory referenced by the indirect call and add
it and its context into the target set of the indirect call.
Variable symbolization: when concolic execution is used to
explore a whole program, we just need to symbolize the
external inputs, such as the command line arguments and files.
In CFI-LB, we only concolically execute a part of the program.
Therefore, we symbolize all the function arguments, global
variables, and external inputs (e.g., files). Specifically, if a
variable is a scalar (e.g., an integer), we create a new symbolic
variable for it; if a variable is a pointer to a data structure,
we keep the pointer’s concrete value (i.e., the address of the
structure in the snapshot) but symbolize the data structure
it points to; if a variable is a function pointer, we do not
symbolize it otherwise it can point to arbitrary memory or
whatever the solver produces. The following example contains
all these three cases:

void specgsort (char* base, int n, int size,

int (xcompar) ());

By symbolizing all the inputs external to the starting function,
we essentially assume that they can take any value. Conse-
quently, we over-approximate the results (false positives in
the CFG) because some values provided by the solver may
not be possible in a normal execution.

Optimization: our concolic engine uses a few measures to
improve the scalability. For example, we limit each loop to
only five iterations if the loop is unbounded. One of the
most significant challenges to scalability is function calls. The
instructions to simulate can cascade quickly when function
calls nest. To address that, we simply ignore the function
calls unrelated to the indirect call: we have mentioned that
we maintain a path from the starting function to the indirect
call. Functions on this path are concolically executed while
functions not on the path are ignored. However, if any argu-
ment to an ignored function is symbolic, we symbolize the
function’s return value. This is another over-approximation

since we assume the function’s return can take any value if
one of its arguments is symbolic.

Not all unrelated functions are ignored. Specifically, our
execution engine can emulate more than 60 common libc
functions. If an unrelated function is a libc function, we call
the corresponding emulated function, which simulates the be-
haviors of the function. Most libc functions are straightforward
to emulate. For example, we symbolize the related buffer
for functions such as fread, fgets, and getenv since
they accept inputs from the external resources. For functions
that modify the memory (e.g., strcat, memcpy, strcpy), we
emulate their operations on the memory (e.g., to create a new
buffer) and symbolize the resulting memory if any of the input
is symbolic. Functions like strlen is interesting. As we
have mentioned, CFI-LB symbolizes the content of a buffer
but neither its address nor its length. To correctly simulate
strlen, the symbolic engine needs to support variable length
buffer, as well as to change the solver’s memory model. Our
experience with several publicly available symbolic engines
shows that these features currently are not well supported. To
address that, we just symbolize the return value of strlen
if its input is a symbolic buffer. Despite these approximations,
our experiments with large programs show that the computed
target set contains relatively few false positives.

E. Prototype of CFI-LB

We have built a prototype of CFI-LB for the Intel x86-
64 architecture. We wrote a tool for the Intel Pin DBI
framework to record the program execution and implemented
the localized concolic execution based on the Triton symbolic
engine [43]. The instrumentation is implemented in the Clang’s
CodeGen module, a module after the source parsing but before
the LLVM IR generation. We used LLVM’s CFL-AA alias
analysis algorithm to generate the static CFG. Overall, our
prototype has 4500+ lines of C/C++ code and 500+ lines of
python code.

IV. EVALUATION

We present the evaluation of our prototype in this section. In
particular, we aim at answering the following questions: first,
whether adaptive call-site sensitivity improves the security of
CFI as measured by Eq. 2 in Section II; second, whether the
localized concolic execution can extend the dynamic CFG with
few false positives; third, what’s the performance overhead of
our prototype in the different configurations.

A. Security Evaluation

To answer the first question, we need to quantitatively
analyze the security of CFI-LB using Eq. 2.

Effectiveness of call-site sensitivity: intuitively, the security of
CFI improves when both average and largest EC sizes de-
crease. Fig. 6 shows the impact of call-site sensitivity on the
number of ECs, the average EC size, and the largest EC
size. As the level of sensitivity increases, the average EC
size generally drops, and the attacker has less choices of the
legitimate targets. For example, at three call-site sensitivity,

102

TABLE 1V
EFFECTIVENESS OF ADAPTIVE CALL-SITE SENSITIVITY. THE TABLE SHOWS THE MAX CALL-SITE LEVEL, THE NUMBER OF INDIRECT CALLS IN EACH
LEVEL, AND FOR EACH LEVEL, THE NUMBER OF ECS AND THE AVERAGE EC SIZE. THE LAST COLUMN SHOWS THE IMPROVEMENT OF CFI-LB OVER
CONTEXT-INSENSITIVE CFI.

Benchmark Lang | Max Level # of IndCalls # of ECs AV G g Per Level AVGgco LC QSCFI—LB/QSCFI(O)
400.perlbench C 3 62/8/3/7 62/30/114/492 1.02/1.0/1.21/2.77 2.28 115 124
401.bzip2 C 0 12 12 1.0 1.0 1 1
403.gec C 2 161/23/36 161/262/787 1.48/1.37/1.50 1.47 54 1/1.84
429.mef C 0 0 0 0 0 0 0
445.gobmk C 2 36/15/12 36/39/98 16.86/9.44/12.76 1286 [427 124
456.hmmer C 0 9 9 1.0 1.0 1 1
458.sjeng C 0 1 1 6.0 6.0 6 1
462.libquantum C 0 0 0 0 0 0 0
464.n264ref C 3 68/2/4/1 68/20/48/12 1.5/1.05/1.15/1.25 131 2 1/6.4
471.omnetpp C++ 3 226/2/8/3 226/86/156/60 1.81/1.0/1.04/1.7 1.44 168 1/1.45
473 astar C+r 0 1 1 1.0 1.0 [1
483.xalancbmk | C++ 3 1960/25/30/48 | 1960/117/118/262 | 1.06/1.12/1.20/1.71 1.14 26 1/1.52
433.milc C 0 1 1 2.0 2.0 2 1
444.namd C+r 0 12 12 1.0 1.0 [1
447 dealll C++ 3 100/3/4/1 10/19/20/9 1.04/1.0/1.0/1.11 1.03 2 1/1.07
450.soplex C++ 0 56 56 1.0 1.0 1 1
453.povray C++ 2 40319 40/10/33 1.6/4.2/2.12 2.12 9 1/1.06
470.1bm C 0 0 0 0 0 0 0
482.sphinx3 C 0 0 0 0 0 0 0

[NGINX [C [3 [9418/0/11] 94/89/0/58 [554/1.0600.01491 [373 [62 | 1/3.3

the average EC sizes of three benchmarks (perloench, gec,
and gobmk) drop to less than half of the context-insensitive
CFI These benchmarks happen to be the three largest ones.
Another benchmark, h264ref, drops to about 70%. However,
the remaining three benchmarks, hmmer, bzip2 and sjeng, have
the same average EC size as the context-insensitive CFIL.
They happen to have the smallest code sizes. It seems that
complex code benefits more from call-site sensitivity. Note
that the average EC size for gobmk increases from two call-
site sensitivity to three. This is possible if the total EC size
increases faster than the number of ECs.

However, we found that the largest EC size in almost all
the benchmarks do not meaningfully reduce, except h264ref
(reduced to 20%). We further looked into the reasons of
this. First, for gcc, the caller of this particular indirect call
is a recursive function; thus its largest EC cannot be broken
down regardless the level of sensitivity. Second, the largest EC
of gobmk is related to an indirect call in the shapes_callback
function, which handles different board shapes in a Go game.
shapes_callback are called by a sequence of callers: matchpat —
matchpat_loop — do_matchpat. The function pointer called by
shapes_callback is actually defined in the caller of matchpat;
therefore increasing the sensitivity to four will significantly
reduce the largest EC size of gobmk. However, this might lead
to the explosion of EC numbers. Third, perlbench cannot benefit
from increasing the level of sensitivity because the related
indirect call is called close to the main function. Using a higher
level of sensitivity will go into the C run-time (executed before
main) without improving security.

In short, call-site sensitivity improves the security of CFI
systems since the average EC size decreases while the largest

EC size remains the same or also decreases.

Effectiveness of adaptive call-site sensitivity: CFI-LB employs
the adaptive call-site sensitivity to balance security, perfor-
mance, and the number of ECs. As shown in Fig. 6, the number
of ECs can increase quickly when the level of sensitivity
increases. To address that, CFI-LB calculates, for each indirect
call, the sensitivity level that leads to the minimal average
EC size. Table IV shows the results of applying adaptiveness
to these benchmarks, including SPECint2006, the C/C++
benchmarks of SPECfp 2006, and NGINX. In particular, Fig. 6
shows that increasing the level of sensitivity does not improve
the security for hmmer, bzip2, and sjeng. Our adaptive algorithm
correctly sets their max levels to 0. The same is applicable to
astar, namd, and soplex. The algorithm can often assign level 0
to the majority of indirect calls. For example, 1,960 indirect
calls out of the 2,063 ones for xalancbmk are assigned to level 0
with an average EC size of 1.06. Overall, the final average EC
sizes are well under control except for gobmk and sjeng. The
structure of either programs is not very amicable to call-site
sensitivity. The last column shows the improvement of CFI-
LB over the context-insensitive CFI as measured by Eq. 2.
Note that a smaller QS indicates better security. As such,
the best improvement is h264ref, while context-insensitive CFI
can already provide sufficient protection for bzip2, hmmer, and
several other benchmarks.

We also evaluated our prototype with NGINX. We built NGINX
with OpenSSL, pcre, and zlib libraries, and used the NGINX
test-suite as the standard inputs. The results are shown in
Table IV as well. The largest EC has 62 targets and the
average EC size is 3.73. Unlike the benchmarks in SPEC
CPU2006, NGINX has 11 indirect calls located in the callback

103

6 30 |- —»— perlbench B
E —4— bzip2
o —k— gceC
ETS 20 —s— gobmk B
g —E— hmmer
E 10 | | —&— sjeng B
< —¢— h264ref
£
]
Z 0 | | | [
0 1 2 3
O 1 = = &]
2]
S
= 0.8 |- N
el
S 06 :
E
S04 .
Z | | | |
0 1 2 3
. ” - ‘
S a00f T~
Q
M
2 200 |- n
50 —
3
ol o — * il
0 1 2 3

Level of sensitivity

Fig. 6. The impact of call-site sensitivity on the number of ECs, average
EC size, and the largest EC size for C benchmarks in Spec CPU2006. Level
0 represents the traditional context-insensitive CFI. The number of ECs and
average EC size are normalized to fit in the figures. 429.mcf and 462.libquantum
have no indirect calls exercised. The curve for C++ benchmarks are similar.

functions. For example, during the initialization, the OpenSSL
library registers the OPENSSL_cleanup function to be called at
the normal process termination (via atexit). OPENSSL_cleanup
is thus a callback function called by an external module (i.e.,
glibc in this case). OPENSSL_cleanup contains an indirect
call that usually calls ss|_library_stop to stop the SSL library.
To protect this indirect call, CFI-LB has to limit the call
sites within the NGINX program because the external module
could be loaded at a different location each time the program
is run. To improve the protection of callback functions, we
could compile and link these modules statically into the main
program or update the CFGs at the run-time [38].

In short, adaptive call-site sensitivity can substantially im-
prove the security of CFI while curbing increases in the
number of ECs.

Effectiveness in preventing control flow hijacking: we used the
RIPE benchmark [51] and three real-world vulnerabilities
to test whether CFI-LB can detect and block control-flow
hijacking attempts. These three vulnerabilities consist of two

heap overflows that target a function pointer and a stack-
based overflow that targets the return address. The former
tests CFI-LB’s forward-edge protection while the latter tests
the effectiveness of CFI-LB’s backward-edge protection (i.e.,
SafeStack [44]). We modified the existing PoC exploits [37],
[42] to account for the difference in the code generated
by GCC and Clang. These PoC exploits assume that ASLR
is disabled. In reality, attackers often leverage information
leaks to learn the necessary locations before the attack. We
completely instrumented all the vulnerable programs with CFI-
LB and use their test-suites for the CFG generation.

RIPE: RIPE is a 32-bit buffer-overflow benchmark suite.
Since our prototype is based on the x86-64 architecture, we
modified a few lines of the assembly code in the benchmark
to make it work. During the evaluation, we first generated
the dynamic CFG with valid inputs that did not trigger the
buffer overflows. We then run the benchmark with CFI-LB
and triggered the buffer overflow to hijack the control flow.
All these attempts were detected and blocked by our system.

1 static PyObject *

2 sock_recvfrom_into(PySocketSockObject *s, PyObject *args, PyObject* kwds)
s 1
N

if (recvlen == 0) {

6 recvlen = buflen;
¥

s // there must be a check for overflow
o + if (buflen < recvlen) {
0o+ PyBuffer_Release (&pbuf) ;
oo+ PyErr_SetString(PyExc_ValueError,
12+ "buffer too small for requested bytes");
13+ return NULL;
o+ ¥
15
16 readlen = sock_recvfrom_guts(s, buf.buf, recvlen, flags, &addr);
1
s}

Fig. 7. CVE-2014-1912: the vulnerability and the patch
1 import socket
: r, w = socket.socketpair()
3 w.send(b'\x90' * 305 + '\xcO' + '\x65' + '\x51' + '\x00')
4+ r.recvfrom_into(bytearray(), 309)

Fig. 8. PoC exploit for Python CVE-2014-1912

000000000047caf0 <PyObject_Hash>:

1
2 .
3 47cb23: 48 89 cl mov rcx,rax
1 47cbhb26: 48 89 7d e0 mov QWORD PTR [rbp-0x20],rdi
4T7cb2a: 48 89 cf mov rdi,rcx
6 47cb2d: 48 89 45 d8 mov QWORD PTR [rbp-0x28],rax
7 47cb31: e8 ca 92 fa ff call 425e00 <i_cfilb3_reference_monitor>
s 47cb36: 48 8b 7d e0 mov rdi,QWORD PTR [rbp-0x20]
0 47cb3a: 48 8b 45 d8 mov rax,QWORD PTR [rbp-0x28]

10 47cb3e: ff dO call rax

1 if (tp->tp_hash != NULL)
2 return (*tp->tp_hash) (v);

Fig. 9. The execution of the hijacked function pointer

CVE-2014-1912: this is a heap overflow in Python-2.7.6 [10].
The root cause is the missing check of the buffer size and the

104

receive size in Python’s socket module, as shown in Fig. 7.
This vulnerability can be triggered by a malicious Python
program. In Python, the script memory is allocated on the
heap, sometimes adjacent to a Python object, which contains a
number of function pointers that can be hijacked by exploiting
this CVE. The PoC exploit in Fig. 8 overwrites the tp_hash
function pointer. This function pointer can be executed by the
indirect call (0x47cb3e) in Fig. 9. We took a close look at the
CFG for Python. This indirect call is protected by CFI-LB
with three call-site sensitivity. It contains 329 ECs with only
five valid targets (i.e., Python’s internal hash functions). CFI-
LB can detect any invalid target out of these five; and it can
further distinguish these five valid targets by the contexts. For
example, int_hash can only be called in 12 contexts.

- --- ftp/main.c:slurpstring() ---

1
2
3 406: char *sb stringbase;
4

= <--- This is our input. (can be massive)
407: char *ap = argbase;

<--- This buffer is 200 bytes.
458: S1:

6
7
s 463: case '\0':
o 464: goto OUT;
n 474:
12 475:
13 476:
u 477:
15 478: }
w o -
17 backtrace at overflow:

15 main()->cmdscanner ()->cd () ->another () ->makeargv () ->slurpstring ()

default:

*ap++ = *ksb++;
got_one = 1;
goto S1;

<--- Heap overflow

Fig. 10. Vulnerable code for EDB-ID 15705

v /ftp

2 ftp> open

3 (to) b'\x90' * 745 + '\xd4' + '\x80' + '\x48' + '\x00'

i+ usage: open host-name [port]

s ftp> open

¢ [iCFILB-LEVEL 1] Violation at 4796cb target to 4880d4 with context 46c804

Fig. 11. Simplified PoC for EDB-ID 15705 and the error message thrown
by CFI-LB

EDB-ID 15705: this is a heap overflow in the FTP client
of the GNU InetUtils package [19], as shown in Fig. 10.
The vulnerability can be exploited through a malicious FTP
command. Our PoC exploit uses a malicious open command
to overwrite a function pointer that can later be called by the
indirect call in cmdscanner function. CFI-LB uses one call-
site sensitivity for this indirect call. The indirect call can only
target two functions, setpeer and help. CFI-LB can detect any
invalid function addresses and impose the more restrictive
contexts on these two valid targets.

CVE-2016-2233: this is a stack-based overflow in HexChat-
2.10.0. It can be exploited by a remote IRC server. Our PoC
exploit leverages the exploits to overwrite the return address
on the stack. When the stack canary is disabled, the program
will cause a segmentation fault due to invalid memory access
by function __gconv, instead of executing the malicious code.
This is expected because SafeStack protects return addresses
by segregating them into a separate safe stack. As such, the

exploit failed to overwritten the return address, but instead
overwrote other data on the stack.

Summary: the quantitative analysis with SPEC CPU 2006 and
a complex program (NGINX) demonstrates the improvement
in the security of CFI made by the adaptive call-site sensitivity.
The experiment with the RIPE benchmark and real-world
vulnerabilities shows that CFI-LB can block control flow
hijacking attacks, hence maintaining control-flow integrity.

B. Effectiveness of Localized Concolic Execution

CFI-LB features the localized concolic execution to extend
the (incomplete) dynamic CFG with as few false positives as
possible. To evaluate this, we show the statistics to answer the
following two questions: how close the dynamic and concolic
CFGs combined is to the static CFG, and what are the main
differences between the dynamic and concolic CFGs. The
former can be answered with the set operation static-CFG \
(dyn-CFG U con-CFG) *; the latter can be answered with the
set operations dyn-CFG \ con-CFG and con-CFG \dyn-CFG. We
created the static CFG from CFL-AA, an Andersen-style alias
analysis in the official LLVM source code. Because CFL-
AA is context-insensitive, the static CFG accordingly has no
contexts. As such, we removed all the contexts in the dynamic
and concolic CFGs when calculating static-CFG \ (dyn-CFG U
con-CFG). The other two set operations are calculated with two
call-site sensitivity. Table V shows the results.

We found that the union of dyn-CFG and con-CFG, after
removing the contexts, is rather close to the static-CFG, except
for h2edref (see the 5" column). In other words, most of
the run-time control flows can be directly verified by CFI-
LB without the extra offline verification. Meanwhile, our
localized concolic execution performs well in finding new
control transfers that do not exist in dyn-CFG (the 6" and
7th columns). For example, con-CFG has 308 more entries
than dyn-CFG and only misses 14 entries from it for 403.gcc.

To check the correctness of con-CFG, we randomly picked
some parts of it and manually analyzed them. Overall, we
did not find any false positives for these benchmarks (false
positives are possible as stated earlier.) Using sjeng as an
example, we found that it contains a function pointer dispatch
table, which consists of six function pointers to handle the
normal cases and another one to handle errors. Because the
inputs to generate dyn-CFG only contain valid data, dyn-CFG
can never include this target. By using the concolic execution,
we can explore all the paths of the related functions and
successfully discovered this target. We also found some false
negatives caused by the limitations of the concolic execution
in general and the specific tool we use. For example, we found
the SMT solver failed to generate the strings starting with the
“# character, which would otherwise lead to three new targets.

To further test the effectiveness of this technique, we con-
ducted the experiments to compare con-CFG generated from
the small inputs to dyn-CFG generated from the large inputs.
Specifically, SPEC CPU2006 includes both a smaller test data

#\ returns the elements in the first operand but not in the second operand.

105

TABLE V
COMPARING STATIC, DYNAMIC, AND CONCOLIC CFGS FOR THE SPEC CPU 2006 BENCHMARKS. COLUMN 2 TO 4 SHOW THE TOTAL NUMBER OF
ENTRIES IN THESE CFGS, RESPECTIVELY. NOTE THAT NUMBER OF STATIC-CFG IS NOT DIRECTLY COMPARABLE TO THESE OF DYN-CFG AND CON-CFG
BECAUSE THE LATTER TWO CFGS HAVE CONTEXTS (HENCE MORE ENTRIES).

Benchmark static-CFG dyn-CFG con-CFG static-CFG \(dyn-CFG’ U con-CFG’) dyn-CFG \ con-CFG con-CFG \ dyn-CFG
400.perlbench 879 1374 1387 41 (4.66%) 0 (0%) 13 (0.94%)
401.bzip2 20 12 16 4 (20%) 0 (0%) 4 (25%)
403.gcc 2198 3831 4125 94 (4.28%) 14 (0.37%) 308 (7.47%)
445.gobmk 957 1882 1971 79 (8.25%) 23 (1.22%) 112 (5.68%)
456.hmmer 52 47 59 6 (11.54%) 0 (0%) 12 (20.34%)
458.sjeng 7 6 7 0 (0%) 0 (0%) 1 (14.29%)
464.h2564ref 711 262 479 206 (28.97%) 12 (4.58%) 229 (47.81%)

TABLE VI
COMPARING CONCOLIC AND DYNAMIC CFGS. DYN/CON-CFG-T IS DERIVED FROM THE SMALL TEST INPUTS; DYN/CON-CFG-R IS DERIVED FROM THE
LARGE REFERENCE INPUTS. OUR LOCALIZED CONCOLIC EXECUTION CAN DISCOVER MOST OF THE CONTROL TRANSFERS IN THE DYN-CFG-R USING
ONLY THE SMALL INPUTS.

Benchmark dyn-CFG-r dyn-CFG-t con-CFG-t dyn-CFG-r \ dyn-CFG-t dyn-CFG-r \ con-CFG-t Discovered
400.perlbench 1374 449 1051 925 323 (23.51%) 602
401.bzip2 12 12 16 0 0 (0%) 0
403.gcc 3831 2196 3929 1635 53 (1.38%) 1582
445.gobmk 1882 1102 1833 780 49 (2.60%) 731
456.hmmer 47 3 58 44 1 (2.13%) 43
458.sjeng 6 6 7 0 0 (0%) 0
464.h264ref 262 240 473 22 18 (6.87%) 4

set and a much larger reference data set. We run our localized
concolic execution based on the execution history generated
from the test data set (called con-CFG-t), and compared con-
CFG-t to the dynamic CFG generated from the reference data
set (called dyn-CFG-r). The results are shown in Table VI.
It demonstrates that our concolic execution can discover a
significantly larger CFG from the small inputs, comparable to
the CFG generated from the much larger inputs. For example,
if we run 403.gcc on the reference data set but with the
CFG generated from the fest data set, only 53 (1.38% of the
total control transfers in dyn-CFG-r, the 6" column) context-
sensitive control transfers need to be validated by the static
CFG. Note that the dynamic CFG from the reference data set
has 1,635 (the 5" column) more entries than that from the
test data set; most of which are successfully discovered by our
localized concolic execution.

Summary: this evaluation demonstrated the effectiveness and
efficiency of our proposed localized concolic execution in
extending the dynamic CFG close to the static CFG, even with
a small input data set. Consequently, our multi-scope CFG can
efficiently verify most run-time control transfers online.

C. Performance Evaluation

We evaluated the overhead of CFI-LB on the Intel core-i7
6700 processor (Skylake) with a base frequency of 3.4GHz
and 16GB of memory, running the 64-bit Ubuntu 16.04.3
LTS system. We used the SPEC CPU2006 benchmarks, in-
cluding all the SPECint 2006 benchmarks and all the C/C++
benchmarks in SPECfp 2006, and the NGINX benchmark for
the evaluation. Note that a few benchmarks had no overhead
because either their code did not use indirect calls or their

indirect calls were not executed by the benchmark inputs. In
the following, we exclude three such benchmarks from the
average (Average_ex in Fig. 12). For C++ based benchmarks,
we applied CFI-LB to both the C-style indirect calls and virtual
calls. We tested the performance of CFI-LB by the following
four configurations: CFI-LB without SafeStack or TSX, with
SafeStack only, with TSX only, and with both features.

The forward edge protection of CFI-LB incurred about 2.7%
of overhead on average, with a maximum of 5% (xalancbmk).
Note that the performance overhead of CFI-LB is decided
by how frequently indirect calls are executed. For example,
even though sjeng only had one executed indirect call, that
indirect call was executed 775,046,817 times during the
benchmark. Our prototype relies on the SafeStack to protect
return addresses. SafeStack only incurred an addition 0.5%
of overhead on average, with a maximum of about 1.5%.
Interestingly, it had negative performance impact on some
benchmarks. This is consistent with the original system [31].

We measured the performance of CFI-LB both with and
without the TSX support. TSX-based hardware transactional
memory is used by CFI-LB to prevent race conditions against
its reference monitors. As shown in Fig. 12, the average
performance overhead introduced by TSX was about 1.4%.
We also measured the false failure rate of transactions caused
by the false sharing or cache conflicts. The failure rate was
low at about 0.002%. Therefore, the false transaction abort
was not a concern for performance.

The average performance overhead of CFI-LB with both
SafeStack and TSX was about 4.8%, with a maximum of
8.4%. Note that the overhead introduced by SafeStack and
TSX cannot be simply added together. SafeStack changes the

106

10% T T T T T T T T T T

8% - - D w/o SafeStack or TSX
|:| w/ SafeStack

W wTsx

M w/ SafeStack and TSX

6% [~ @ -

40/0 I

Performance Overhead

2% [

0%

% %,

2 & &
S Q,
O)O’ 6’?{. K7

.) Vi
60)@ ‘;}@?9 /69(/ 696‘7 6® O/))OG QG%% %6/0 +${9/} /po/¢ 4L9» 4%’»
o Y T, S Ty T e e T,
2 % Ny Ve

Fig. 12. Performance overhead, Average_ex shows the average overhead excluding the three benchmarks that have no overhead.

stack layout and the program behavior. This may subtly change
the program’s performance under TSX: TSX is enforced at
the cache line level. When the stack layout is changed by
SafeStack, the program may have a different cache profile that
further affects the overhead of TSX. For example, it seems that
adding the TSX support incurred no additional overhead for
403.gcc but more overhead for benchmarks such as NGINX.
Other than the run-time performance, our offline analysis
process took about 4 hours for each benchmark measured
on an Intel Xeon E5-2630v2 (2.60GHz) machine with 32GB
memory. We consider this performance reasonable since the
offline analysis is conducted only once offline.
Summary: on average, CFI-LB introduced a low performance
overhead: 2.7% for the forward-edge protection and 4.8% for
the full protection.

V. DISCUSSION

In this section, we discuss the potential improvements and
the future work for CFI-LB.

First, CFI-LB is explicitly designed to protect its reference
monitors from race conditions. Some CFI systems are implic-
itly protected from race conditions because their reference
monitors are encoded in the registers only [2]. Any CFI
systems that rely on the compiler for register allocation cannot
provide this guarantee. This includes most recent CFI systems,
which implement their instrumentation in the LLVM IR [1],
[4], [34]. Only a few CFI systems are implemented by direct
binary instrumentation [2], [12]. Even such systems require
careful vetting to ensure that they are not susceptible to race
conditions. Moreover, this approach does not work for context-
sensitive CFI systems because of x86’s limited number of
registers. We address this challenge with TSX. Note that
CFI-LB cannot use the TSX instructions inside the existing
TSX-protected code sections of the program. Such conflict is
unlikely because TSX is often used to protect short critical
sections, which typically do not contain indirect calls.

Second, the security of CFI is decided by both the average
and the largest EC sizes. Unfortunately, our evaluation shows
that call-site sensitivity may not be effective in reducing the

largest EC size. The ability to reduce the largest EC size is
decided by the program structure itself and the maximum level
of call-site sensitivity. For example, the largest indirect call in
403.gcc is called by a recursive function. This makes it
difficult, if not impossible, for call-site sensitivity to reduce
the largest EC size. Path sensitivity is not very effective
either. For example, the largest EC size for SPEC CPU2006
benchmarks is 218 for PittyPat [18]. A follow-up work of
PittyPat significantly improves this situation [27]. In addition,
there are cases where increasing sensitivity helps but could
lead to the explosion of the number of ECs. To address that,
we could use a more powerful model of the call stack, e.g.,
a regular expression. This will allow us to support recursive
callers by combining the consecutive instances of the same
caller. We can also identify common programming patterns
that lead to this ineffectiveness and automatically transform
the program to make it more amicable to call-site sensitivity.

Third, the static CFG is constructed with the points-to
analysis, a known NP-hard problem [55]. Precise points-
to analysis algorithms often rely on context sensitivity to
improve precision; but they do not scale well for C/C++
programs. Many published precise points-to algorithms were
evaluated only with toy programs. The public availability
of these algorithms are even less common, let alone well-
maintained. After a long search, we find the best available
context-sensitive points-to algorithm at the time of writing
is the DSA algorithm, which has not been maintained for a
long time and contains known algorithmic errors [32], [33].
To temporarily relieve this situation, we propose the multi-
scope CFG and its localized concolic execution to significantly
extend the dynamic CFG. Our system can easily adopt a static
context-sensitive CFG when it becomes available.

Fourth, CFI-LB relies on offline analysis to check control
transfers within the static CFG but outside the dynamic CFGs.
An identified benign control transfer will be added to the
dynamic CFG, while a malicious one can be added to a
blacklist. This will gradually increase the scope of the dynamic
CFGs, making the offline analysis less frequent. The offline
analysis should be (mostly) automated to be useful. A simple

107

strategy is to black-list every abnormal control transfer that
leads to the program crash. Given the many exploit mitigation
mechanisms deploy in application, this strategy is potentially
effective. Overall, this is a complex problem that deserves its
own line of research [9]. We leave it as a future work. We
would like to mention that our localized concolic execution
makes the need for offline analysis much less burdensome —
as shown in Table VI, most benchmarks require analysis of
less than 55 control transfers.

Lastly, our localized concolic execution tries to explore
multiple paths that immediately lead to an indirect call in
order to discover new targets. A complimentary strategy is
to follow the def-use chain backwards and select the function
that defines the related function pointer as the starting function.
The intuition is that programmers often conditionally assign
to the function pointer in a single function. We can explore all
the paths of this function so that the function pointer can be
assigned to other values. However, this implies that the target
indirect call is included in the captured execution history. Our
current approach does not have this constraint. In addition, the
“define” function could be too far from the “use” function for
the concolic execution to handle. We plan to combine both
strategies to further improve the concolic CFG.

VI. RELATED WORK

In this section, we discuss the work closely related to
CFI-LB. In their seminal work, Abadi et al. introduced the
key concept of Control Flow Integrity (CFI) [2] that has
inspired a long stream of research [1], [6], [8], [14], [15], [16],
[18], [23], [36], [38], [39], [41], [50], [52], [53], [54]. The
original implementation of CFI uses a tag-based enforcement
mechanism. As such, it suffers from the imprecision caused
by equivalence classes, which is a common limitation of the
context-insensitive CFI systems. A context-insensitive CFI that
does not have this problem is HyperSafe [50], which uses a
dedicated jump table for each indirect call. However, the main
purpose of HyperSafe is to enforce the CFI for a hypervisor.
Accordingly, its performance overhead was not evaluated with
the standard benchmarks, such as SPEC CPU2006. A recent
survey by Burow et al. provides a comprehensive comparison
of the context-insensitive CFI systems [3]. Different from these
systems, CFI-LB is a context-sensitive system.

Recently, Intel has introduced numerous security features
in their processors. Many of these features are used in recent
CFI systems [4], [13], [18], [22], [24], [34], [48]. Table VII
compares some of these CFI systems. For example, CCFI
(Cryptographic CFI) leverages the hardware AES accelera-
tion to cryptographically authenticate code pointers in order
to protect them from malicious modification [34]. CCFI is
context-insensitive and uses a type-based CFG, in which an
indirect call can transfer to any address-taken functions that
have a compatible prototype. CFI systems that rely on the
hardware support often require to change the kernel, for
example, to control the hardware feature. Although CCFI does
not need the kernel privilege to access AES-NI, it still has to
change the signal handling code to authenticate the user signal

handler. Because CCFI needs to cryptographically authenticate
every code pointer, its performance overhead is rather high.
The recently announced pointer authentication on the ARM
v8.3 platform can accelerate the pointer authentication in
hardware [5]. However, there is no publicly available SoC
that implements this feature yet. CFIXX proposes the object-
type integrity to protect virtual calls in C++ programs [4].
Specifically, it stores the mapping between the object and its
type in the meta-data, and protects the meta-data with the
Intel MPX technology. CFIXX can prevent a wide variety
of vtable hijacking attacks [45]. CFI-LB can prevent most
vtable hijacking attacks because of its precise CFI policy.
Object-type integrity is a complementary policy to CFI [4].

PathArmor [48] and PittyPat [18] are two closely related
systems. They both implement the path-sensitivity CFI policy.
PathArmor relies on the Intel last branch record (LBR) to
record the most recent 16/32 branches. It then employs an
on-demand constraint-driven method to calculate a small rel-
evant part of the context-sensitive CFG and further validates
the control flow. For performance reasons, PathArmor only
validates the immediate paths before a small selected set of
sensitive syscalls. As such, PathArmor can only provide a
partial protection to the process. Meanwhile, PittyPat uses the
more powerful Intel processor tracing (PT) that can continu-
ously track a process’ control flow. Intel PT hence has higher
performance and storage overhead than LBR. To address that,
PittyPat redirects the process tracing data to a different process
and relies on another CPU core to offload the verification.
The protected process and the verifier are synchronized at
the selected syscalls, i.e., the verification is only performed at
these (ten) syscalls. However, since Intel PT provides a more
complete history, PittyPat can verify the whole execution path
leading to the syscall. As such, PittyPat has broader coverage
than PathArmor, but it reduces the usable CPU cores and
limits the number of processes it can protect simultaneously.
CFI-LB instead enforces the call-site sensitivity. Technically,
path sensitivity is more fine-grained than call-site sensitivity
because they can take individual branches into consideration.
CFI-LB excels at enforcing the protection for the whole
program all the time. It also has much lower overhead, given
that both PathArmor and PittyPat only enforces the protection
at the selected syscall boundary.

The CFG construction is still a mostly unsolved problem for
CFI systems. Many CFI systems use a coarse-grained CFG.
For example, some CFI systems assume that each indirect call
can legitimately transfer to any address-taken functions [20],
[25], [26], [47]. An improvement over that is to only allow an
indirect call to transfer to address-taken functions that have
compatible types [1], [34], [38]. To support multiple modules,
modular CFI allows run-time updates to the CFG in order to
protect the inter-module indirect calls [38]. The way PittyPat
verifies the control flow is interesting. It does not maintain a
CFG; it instead uses the recorded execution path to calculate
the valid run-time control transfers. This is somewhat similar
to PathArmor’s constraint-based CFG construction in that
both use the past execution history to constrain the possible

108

TABLE VII

COMPARE SOME CFI SYSTEMS THAT USE HARDWARE SUPPORT

CFI Systems

CCFI

PathArmor

PittyPat

CFI-LB

Context

context insensitive

path sensitive

path sensitive

call-site sensitive

Hardware support

Intel AES-NI

Intel last branch record

Intel processor tracing

software-based, Intel TSX/CET
if available

limited to paths before seven

entire execution leading to the

every indirect call/jump, rely-

context-sensitive CFG

online validation

Coverage authenticate all code pointers . . ing on the shadow stack to pro-
sensitive syscalls sensitive syscalls
tect returns
CEG type-based CFG on-demand, constraint-driven | no pre-computed CFG, using multi-scope CFGs

Kernel changes

sigaction modifications
to verify code pointers

kernel module to monitor path
and intercept syscalls

kernel module to control Intel
PT and intercept syscalls

no kernel changes

valid control transfers. CFI-LB instead uses the multi-scope
CFG that combines a context-insensitive CFG with context-
sensitive dynamic and concolic CFGs. Our experiments show
that our localized concolic execution can significantly extend
the dynamic CFG with few false positives. There are also many
systems that do not rely on the CFG, but use heuristics to
detect anomaly in the control flow. For example, kBouncer
and ROPecker [7], [40], look for anomalous control patterns
at sensitive locations.

VII. CONCLUSION

We have presented the design, implementation, and evalu-
ation of CFI-LB, an adaptive call-site sensitive CFI system.
CFI-LB has two unique features: adaptive call-site sensitivity
and the multi-scope CFG. The former balances the security
and the performance by allowing each indirect call to decide
its own level of sensitivity; the latter aims at improving the
security of CFI even if a precise context-sensitive CFG is
not available by using multiple CFGs and combining the
online and offline verification. In addition, CFI-LB is the
first CFI system that can explicitly guarantee the atomicity
of its reference monitors. Our evaluation shows that CFI-
LB can significantly improve the security over the traditional
context-insensitive CFI systems and incur a small, acceptable
performance overhead.

VIII. ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
insightful comments that helped improve the presentation of
this paper. Zhi Wang was partially supported by National
Science Foundation (NSF) under Grant 1453020; Yajin Zhou
was partially supported by the National Natural Science Foun-
dation of China (NSFC) under Grant 61872438. Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect
the views of NSF or NSFC.

[71

[8]

[10]

[11]

[12]

[13]

[14]

[15]

109

REFERENCES

Niu, Ben and Tan, Gang , “Per-input Control-flow Integrity,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 914-926.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
Integrity,” in Proceedings of the 12th ACM conference on Computer
and communications security. ACM, 2005, pp. 340-353.

N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,
and M. Payer, “Control-Flow Integrity: Precision, Security, and
Performance,” ACM Comput. Surv., vol. 50, no. 1, pp. 16:1-16:33, Apr.
2017. [Online]. Available: http://doi.acm.org/10.1145/3054924

N. Burow, D. McKee, S. A. Carr, and M. Payer, “CFIXX: Object Type
Integrity for C++,” in Proceedings of the 2018 Network and Distributed
System Security Symposium, 2018.

A. Can, A. Krishnaswamy, and R. Turner, “Code Pointer Authentication
for Hardware Flow Control,” Dec. 6 2016, uS Patent 9,514,305.

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
Flow Bending: On the Effectiveness of Control-Flow Integrity,” in
Proceedings of the 24th USENIX Security Symposium, vol. 14, 2015,
pp. 28-38.

Y. Cheng, Z. Zhou, Y. Miao, X. Ding, H. DENG et al., “ROPecker:
A Generic and Practical Approach for Defending against ROP Attack,”
2014.

J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete Control-
flow Integrity for Commodity Operating System Kernels,” in Security
and Privacy (SP), 2014 IEEE Symposium on. 1EEE, 2014, pp. 292-307.
W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio, and V. P.
Kemerlis, “Retracer: Triaging crashes by reverse execution from
partial memory dumps,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE °16. New York,
NY, USA: ACM, 2016, pp. 820-831. [Online]. Available: http:
//doi.acm.org/10.1145/2884781.2884844

“CVE-2014-1912 https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-1912.

T. H. Dang, P. Maniatis, and D. Wagner, “The Performance Cost of
Shadow Stacks and Stack Canaries,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security,
ser. ASIA CCS 15, 2015.

L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Niirnberger, and A.-R. Sadeghi, “MoCFI: A Framework to Mitigate
Control-flow Attacks on Smartphones,” in NDSS, vol. 26, 2012, pp. 27—
40.

L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sulli-
van, O. Arias, and Y. Jin, “HAFIX: Hardware-assisted Flow Integrity
Extension,” in Proceedings of the 52nd Annual Design Automation
Conference. ACM, 2015, p. 74.

L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-assisted Fine-grained
Control-flow Integrity: Towards Efficient Protection of Embedded Sys-
tems against Software Exploitation,” in Proceedings of the 51st Annual
Design Automation Conference. ACM, 2014, pp. 1-6.

L. Davi and A.-R. Sadeghi, “Building Control-flow Integrity Defenses,”
in Building Secure Defenses Against Code-Reuse Attacks. — Springer,
2015, pp. 27-54.

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28
[29]

[30]
[31]

[32]

[33]

[34]

[37]

L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
Gadgets: On the Ineffectiveness of Coarse-grained Control-flow Integrity
Protection,” in Proceedings of the 23Rd USENIX Conference on Security,
ser. SEC’14, 2014.

L. De Moura and N. Bjgrner, “Z3: An Efficient SMT Solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337-340.

R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient
Protection of Path-sensitive Control Security,” in 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX Associ-
ation, 2017, pp. 131-148. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity 1 7/technical- sessions/presentation/ding
“EDB-ID-15705,” https://www.exploit-db.com/exploits/15705/.

U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “XFI:
Software Guards for System Address Spaces,” in Proceedings of the 7th
symposium on Operating systems design and implementation. USENIX
Association, 2006, pp. 75-88.

I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control Jujutsu: On the Weaknesses of
Fine-grained Control-flow Integrity,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 901-913.

X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding Control Flows Using In-
tel Processor Trace,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2017, pp. 585-598.

E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
Control: Overcoming Control-flow Integrity,” in Proceedings of the 2014
1IEEE Symposium on Security and Privacy, ser. SP *14, 2014.

Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “PT-CFI: Transparent Backward-
edge Control Flow Violation Detection Using Intel Processor Trace,” in
Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy. ACM, 2017, pp. 173-184.

B. Hardekopf and C. Lin, “Semi-Sparse Flow-sensitive Pointer Analy-
sis,” in Proceedings of the 2009 ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, January 2009.

M. Hind and A. Pioli, “Which Pointer Analysis should I Use?” in ACM
SIGSOFT Software Engineering Notes, vol. 25, no. 5. ACM, 2000, pp.
113-123.

H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing unique code target property for control-flow
integrity,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’18. New
York, NY, USA: ACM, 2018, pp. 1470-1486. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243797

Intel 64 and IA-32 Architectures Software Developers Manual, Intel.
Intel, “Control-flow Enforcement,” https://
software.intel.com/sites/default/files/managed/4d/2a/
control-flow-enforcement-technology-preview.pdf, 2018.

Intel, “Intel Pin Tool,” http://intel.ly/2jc3TSy, 2018.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-pointer Integrity,” in 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14).
Broomfield, CO: USENIX Association, 2014, pp. 147-163. [Online].
Available: https://www.usenix.org/conference/osdil4/technical-sessions/
presentation/kuznetsov

C. Lattner, A. Lenharth, and V. Adve, “Making Context-sensitive Points-
to Analysis with Heap Cloning Practical for the Real World,” in
Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI *07, 2007.

LLVM Forum, “LLVM DSA - Reproduce the Result in PLDI 07 Paper,”
http://lists.llvm.org/pipermail/llvm-dev/2015-May/085359.html, 2018.
A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazieres, “CCFI:
Cryptographically Enforced Control-flow Integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 941-951.

D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and
G. Wang, “Understanding the Reproducibility of Crowd-reported

[35]

[36]

[38]

[39]

[40]

[41]

[42]
[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Microsoft, “The Evolution of CFI Attacks and Defenses,”
https://github.com/Microsoft/MSRC-Security-Research/tree/master/
presentations/2018_02_OffensiveCon, 2018.

V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque Control-flow Integrity,” in Proceedings of the 22th Network
and Distributed System Security Symposium, ser. NDSS ’15, 2015.
Security Vulnerabilities,” in 27th USENIX Security Symposium
(USENIX Security 18), Baltimore, MD, 2018. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity 1 8/presentation/mu

B. Niu and G. Tan, “Modular Control-flow Integrity,” ACM SIGPLAN
Notices, vol. 49, no. 6, pp. 577-587, 2014.

Niu, Ben and Tan, Gang, “Rock]JIT: Securing Just-in-time Compilation
Using Modular Control-flow Integrity,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2014, pp. 1317-1328.

V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent ROP
Exploit Mitigation Using Indirect Branch Tracing,” in USENIX Security
Symposium, 2013, pp. 447-462.

M. Payer, A. Barresi, and T. R. Gross, “Fine-grained Control-flow
Integrity through Binary Hardening,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2015, pp. 144-164.

“PoC for CVE’s,” https://github.com/VulnReproduction/LinuxFlaw.
Quarkslab, “Triton Symbolic Engine,” http://bit.ly/2AKOLCX, 2018.
“Clang SafeStack,” https://clang.llvm.org/docs/SafeStack.html.

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit Object-oriented Programming: On the Difficulty
of Preventing Code Reuse Attacks in C++ Applications,” in Proceedings
of the 36th IEEE Symposium on Security and Privacy. 1EEE, 2015.
N. Stojanovski, M. Gusev, D. Gligoroski, and S. J. Knapskog, “By-
passing Data Execution Prevention on Microsoft Windows xp sp2,” in
Availability, Reliability and Security, 2007. ARES 2007. The Second
International Conference on. 1EEE, 2007, pp. 1222-1226.

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-edge Control-flow Integrity
in GCC & LLVM,” in USENIX Security Symposium, 2014, pp. 941-955.
V. van der Veen, D. Andriesse, E. Goktas, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical Context-sensitive
CFL,” in Proceedings of the 22Nd ACM SIGSAC Conference on Com-
puter and Communications Security, ser. CCS ’15, 2015.

C. Vulnerabilities and Exposures, “CVE List of Memory Corruption,”
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=memory-+corruption.
Z. Wang and X. Jiang, “Hypersafe: A Lightweight Approach to Provide
Lifetime Hypervisor Control-flow Integrity,” in Security and Privacy
(SP), 2010 IEEE Symposium on. 1EEE, 2010, pp. 380-395.

J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen,
“RIPE: Runtime Intrusion Prevention Evaluator,” in In Proceedings of
the 27th Annual Computer Security Applications Conference, ACSAC.
ACM, 2011.

Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: Detecting Violation
of Control-flow Integrity Using Performance Counters,” in Dependable
Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP Interna-
tional Conference on. 1EEE, 2012, pp. 1-12.

C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical Control Flow Integrity and Ran-
domization for Binary Executables,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy, ser. SP *13, 2013.

M. Zhang and R. Sekar, “Control Flow Integrity for COTS Binaries,” in
Proceedings of the 22Nd USENIX Conference on Security, ser. SEC’13,
2013.

J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, “On the Value of Static Analysis for Fault Detection in
Software,” IEEE transactions on software engineering, vol. 32, no. 4,

pp. 240-253, 2006.

110

