
STEROIDS for DOPed Applications: A Compiler for
Automated Data-Oriented Programming

Jannik Pewny
Ruhr-Universität Bochum, Germany

jannik.pewny@rub.de

Philipp Koppe
Ruhr-Universität Bochum, Germany

philipp.koppe@rub.de

Thorsten Holz
Ruhr-Universität Bochum, Germany

thorsten.holz@rub.de

Abstract—The wide-spread adoption of system defenses such
as the randomization of code, stack, and heap raises the bar
for code-reuse attacks. Thus, attackers utilize a scripting engine
in target programs like a web browser to prepare the code-
reuse chain, e.g., relocate gadget addresses or perform a just-
in-time gadget search. However, many types of programs do
not provide such an execution context that an attacker can use.
Recent advances in data-oriented programming (DOP) explored
an orthogonal way to abuse memory corruption vulnerabilities
and demonstrated that an attacker can achieve Turing-complete
computations without modifying code pointers in applications.
As of now, constructing DOP exploits requires a lot of manual
work—for every combination of application and payload anew.

In this paper, we present novel techniques to automate the
process of generating DOP exploits. We implemented a compiler
called STEROIDS that leverages these techniques and compiles
our high-level language SLANG into low-level DOP data struc-
tures driving malicious computations at run time. This enables an
attacker to specify her intent in an application- and vulnerability-
independent manner to maximize reusability. We demonstrate the
effectiveness of our techniques and prototype implementation by
specifying four programs of varying complexity in SLANG that
calculate the Levenshtein distance, traverse a pointer chain to
steal a private key, relocate a ROP chain, and perform a JIT-
ROP attack. STEROIDS compiles each of those programs to low-
level DOP data structures targeted at five different applications
including GStreamer, Wireshark, and ProFTPd, which have
vastly different vulnerabilities and DOP instances. Ultimately,
this shows that our compiler is versatile, can be used for both 32-
bit and 64-bit applications, works across bug classes, and enables
highly expressive attacks without conventional code-injection or
code-reuse techniques in applications lacking a scripting engine.

Index Terms—Data-Oriented Programming, Exploitation,
Compiler, Steroids, Slang

I. INTRODUCTION

Attackers have to overcome more and more obstacles to

exploit an application given that defense mechanisms such

as stack protections, data-execution prevention (DEP), address

space layout randomization (ASLR) and control-flow integrity

(CFI) [1]–[3] are nowadays widely deployed. Modern defenses

often require that an attacker adapts her exploit to the current

state of the application she is attacking. For this reason, many

modern exploits target browsers or PDF readers, which come

with a built-in scripting engine. Utilizing the computational

capabilities of these scripting engines, e. g., JavaScript or

Flash, the attacker can repeatedly leverage a memory error,

probe memory, find gadgets just-in-time, and perform complex

computations to make the code-reuse chain compatible to the

target application’s security model. However, system defenses

like execute-only memory (XOM) and its relatives [4]–[7],

CPI [8] and Readactor [9], [10] aim to mitigate even advanced

just-in-time code-reuse attacks.

An alternative line of attacks targets non-control data [11].

These so-called data-oriented attacks (DOAs) can have con-

sequences just as severe as code-reuse attacks, but neither

alter code pointers nor rely on the present code randomiza-

tion. Despite DOAs being less well-explored than code-reuse

attacks, there have been efforts to ensure data integrity [12]–

[19]. Nevertheless, efficient mitigation of DOAs with strong

security guarantees remains a challenging and open problem.

Data-oriented programming (DOP) is an extension of DOA,

which manipulates non-control data to use the application’s

own operations to perform arbitrary computations of the at-

tacker’s choice. Thus, they could provide the execution context

modern code-reuse methods need, even in applications which

lack a scripting engine. We dub this a bring your own scripting
engine (BYOSE) attack, which is more versatile and potentially

even more harmful than DOAs alone, and arguably makes

securing data flow an even more pressing topic.

The state of the art in DOP is mostly concerned with

searching for DOP gadgets [20] or considers rather simple

programs [21]. However, using DOP gadgets for non-trivial

DOP programs is left to manual work, as the resulting exploits

are highly application- and vulnerability-dependent. While

existing work showed that diverse and powerful DOP gadgets

are available, it is unclear which DOP gadgets are actually

necessary or can be expressed through others, or which

minimal sets of DOP gadgets achieve useful expressiveness

in different DOP attack modes.

In this paper, we close this gap: we provide novel insights

into the flexibility of DOP, introduce a high degree of automa-

tion for the construction of DOP exploits, and demonstrate that

complex attack payloads work across different applications

and vulnerabilities. More specifically, we present a high-level

programming language called SLANG, which can be used

to describe DOP programs. Using descriptions of the DOP

gadgets available from a specific vulnerability of a specific

application (conceptually, the output of the gadget search [20],

[22]), we use an automated way to craft the data structures that

trigger DOP gadgets to carry out the computation described

in the DOP program. Since the SLANG scripts are designed

to be application-independent, the available DOP gadgets

usually do not immediately yield all necessary operations

to express the attacker’s intent. To tackle this problem, we

support and encode recipes for various operations, i. e., ways to

combine them to express either one another or more high-level

operations. Implicitly, this creates a graph structure, which we

call an Operations Graph (Op-Graph). Given such an Op-

Graph, we translate the attacker’s script to use only DOP

gadgets present in the target application. As such, most of the

manual effort to create a DOP program for one application

can be reused to exploit other vulnerabilities or applications

with different sets of DOP gadgets.

To demonstrate the practicality of our techniques, we

implemented our approach in a tool called STEROIDS. It

can automatically build different DOP programs for different

applications with different defense mechanisms. E. g., one of

our scripts expects to be run on a randomized binary [23],

and searches gadgets at runtime to ultimately mount a just-in-

time code-reuse attack. This effectively bypasses the protection

offered by, say, Binary Stirring [24] or Compiler-assisted Code

Randomization [25]. One key element is that the attacker’s

script does not have to be modified to be compiled for

different vulnerabilities or different applications. Furthermore,

our experiments include examples to highlight various features

of our compiler, namely (i) to bootstrap additional DOP

gadgets, (ii) to compile to branch-free code to compensate for

lacking conditional jumps, and (iii) to support an interactive
mode if only a single DOP gadget can be executed at a time.

Ultimately, our results show that DOP is not esoteric, but

can indeed be utilized to reliably execute complex attack

payloads in target programs. These BYOSE attacks transfer

the possibility of advanced code-reuse attacks, such as JIT-

ROP, to target applications without a built-in scripting engine.

In summary, our main contributions are as follows:

• We provide novel insights regarding the minimal require-

ments for successful DOP exploitation. We can push

the boundaries by bootstrapping new DOP instructions,

utilizing branch-free code and an interactive mode.

• We develop novel techniques to automate the construction

of DOP programs and enable the reuse of exploits across

target applications and vulnerabilities.

• We present our prototype implementation STEROIDS,

which can compile exploits specified in our high-level

scripting language SLANG for a given target application.

• We demonstrate the practicality of our techniques

and prototype by implementing complex programs in

SLANG and automatically compiling them to DOP pro-

grams in binary form. Our SLANG scripts include ROP

chain relocation and a runtime gadget search. We show

that BYOSE enables just-in-time code-reuse attacks for

applications without a built-in scripting engine and thus,

extends the set of potential targets.

II. TECHNICAL BACKGROUND

Before diving into the details of our approach, we briefly

introduce the necessary technical background information on

data-oriented programming needed to understand the building

blocks of our method.

Code-reuse attacks. The motivation for return-to-libc at-

tacks [26], return-oriented programming (ROP) [27] and its

variants [28]–[31] was the wide-spread adoption of the W⊕X
policy, which prohibits the execution of writable data sections

rendering code injection infeasible. These so called code-

reuse attacks have in common that they reuse pieces of

existing code, which are called ROP gadgets, and employ a

mechanism to chain these gadgets by creating or modifying

code pointers. Code-randomization defenses [24], [32]–[38]

shuffle and modify gadgets, forcing attackers to relocate their

ROP chain or even search new gadgets to construct a new

ROP chain on the fly (JIT-ROP [39], [40]). To mitigate just-

in-time code-reuse attacks, many defenses have been proposed

that hide code and code pointers [7], [9], [10], [41]–[43] or

aim to preserve the control flow [1]–[3], [8], [44].

Data-only attacks. Leveraging memory corruptions to modify

non-control data is an orthogonal attack vector [11], [22],

[45]. The attacker corrupts data structures or data pointers to

modify the data flow. In this way, the program’s logic can be

tricked into leaking sensitive information like private keys [22]

or passing attacker-controlled content to access control data

structures or critical functions such as execve. The existing

efforts to prevent DOAs [12]–[19] impose a high performance

overhead or do not provide strong security guarantees.

Data-oriented programming. Similar to ROP, DOP aims

to achieve a high degree of expressiveness, but without

modifying code pointers. The attacker utilizes a memory

corruption vulnerability to modify existing data structures or

to inject new data structures. The ultimate goal of DOP is to

repurpose the logic of existing pieces of code (DOP gadgets)

to perform the attacker desired computation (DOP operations).

However, arbitrarily chaining of gadgets spread across the

program, as is possible with ROP, is not possible for DOP.

A certain proximity in the control-flow graph is required to

ensure continuous execution and selection of the next DOP

gadget. Conceptually, two methods to chain DOP gadgets

exist: First, the non-interactive mode utilizes an existing loop

in the program with DOP gadgets in its loop body to ensure

continuous execution. Additionally, a mechanism is necessary

that selects the next data structure like a linked list or an array

of structs. Often the loop condition needs to be modified

to keep the loop running, which can be accomplished with

the memory corruption or the execution of the first DOP

gadget. Since the payload contains the trigger for the memory

corruption and the data for all instructions, the attacker needs

no further interaction with the target application. Second, in

the interactive mode, the attacker initiates the loop iterations

separately by repeatedly leveraging the memory corruption

and feeding the data structures that trigger the desired DOP

gadgets. The motivation for this mode is that the attacker

may not be able to extract state of the target program, e.g.,

if the memory corruption has no read capabilities. In this

case adapting a code-reuse payload on the attacker side is

severely hampered. That being said, if the attacker can extract

state, she can adapt following DOP gadgets for an even more

efficient adaptive interactive mode. For the remainder of the

paper, we will assume that this is not the case, though.

We define the following three steps to launch a DOP attack:

Gadget search: Find DOP gadgets that are reachable directly

or indirectly by the memory corruption vulnerability. The

scope depends on the bug, but can range from structures

on the active stack frame to the whole program. Fur-

thermore, the outputs of DOP gadgets must be readable

by the following DOP gadgets. This step also involves

searching gadget dispatcher loops or establish an outside

mechanism to chain gadgets.

DOP instance setup: Collect path constraints to reach the

basic blocks containing DOP gadgets and setup data

structure templates that trigger desired DOP gadgets. In

the non-interactive mode, one also needs to setup the

mechanism that feeds the required data structures and

triggers the next cycle.

Payload preparation: The native gadgets of the DOP in-

stance often provide constrained and unusual operations.

For example, some DOP instances lack a controllable

program counter, conditional operations, or even basic

arithmetic and data movement. Thus, this step involves

bootstrapping a convenient set of operations and creating

a stream of operations that compensates lacking features.

Finally, the collection of data structure contents and

inputs for the memory corruption must be compiled.

Previous work [20] focused on the automation of the gadget

search. While they also performed DOP instance setup and

payload preparation, they did so in a mostly manual fashion. In

contrast, Block-Oriented Programming [21] provides a higher

degree of automation, but its program synthesis is NP-hard.

Thus, it can mainly solve the constraints for DOP programs

that are not too complex, and rather belongs to the step of

DOP instance setup.

In this paper, we pursue orthogonal research by focusing

on automating the payload preparation. We leave the gadget

search to related work and interface the DOP instance setup.

That is, we define a file format for this stage and process it

accordingly in the payload preparation. The key design idea to

avoid NP-hardness is to work with unconstrained data flow and

inputs in later steps, i. e., the gadgets are arbitrarily stitchable

and work for all inputs. Almost all manual work that is left

to the attacker belongs to her custom payload or to the DOP

instance setup, which can be seen as retargeting our prototype

compiler STEROIDS to a new “platform”.

III. AUTOMATED DOP EXPLOIT COMPILER

In this section, we describe the techniques that enable

automated compilation of DOP programs under consideration

of constrained DOP gadgets, and provide a high-level overview

of STEROIDS’s components and their interactions.

Concretize

Build
Data Structure

Concrete Data-Structure

Data Requirements

Low-Level DOP-Asm
Lower

High-Level DOP-Asm
Op-Graph

Gadget-Defs

DOP-Script

Driver
Protocol

Mode
Branch-Free
Prepare Mem
Interactive

1

4

5

Data-View-Switch3

2

app-speci c
DOP instance

setup

Compile

Fig. 1: Workflow of STEROIDS

A. Assumptions and Attacker Model

Our assumptions are aligned with previous research and we

adopt the general scenario given in the previously reported

DOP instances: First, we assume that the target application is

protected with DEP, ASLR, and advanced control-flow hijack

mitigations such as fine-grained CFI or fine-grained load-time

code randomization. Second, we assume the presence of a

memory corruption vulnerability. Our test cases make use of

both stack-based vulnerabilities and heap-based vulnerabilities

(see Section V). Lastly, we assume that an input triggering the

vulnerability is known.

B. Overview

Figure 1 provides an overview of the inputs, stages, and

intermediary artifacts of our approach. Note that we focus on

the concepts first and give examples for the artifacts and more

detail about their format later in this section.

The dashed rectangle on the bottom left represents the DOP

instance setup with its two components: The gadget definitions
and the driver. The gadget definitions specify the necessary

constraints for the data structures driving the execution of

a specific DOP gadget present in the application. Naturally,

these constraints are highly specific to both the application

and the vulnerability. Conceptually, they directly result from

findings of the gadget search [20]–[22], but are set manually

in our approach. However, to correctly judge the necessary

effort, one has to keep in mind that a gadget definition in

the five target applications we evaluate (see Section V) is on

average only about ten lines long, and that one only needs

to define about half a dozen of them (see Section VI-B). In

context of compilers, the gadget definitions are analogous to

the instructions of a new architecture.

The driver represents the interface to the vulnerable appli-

cation (e. g., it writes to a file or opens a TCP connection

to trigger the initial vulnerability). Given that this is highly

specific to the exploit and the application’s input stream, we

again rely on the attacker to supply the driver.

Now follows the centerpiece of this paper, the payload

preparation. We separate the automatic compilation of DOP

exploits into five stages, which are reflected in the design

of our prototype implementation (see Figure 1). After the

attacker specified her intent using our high-level programming

language, SLANG, we first compile (�) her DOP script into an

assembly-like format: High-Level DOP-Asm. This High-Level

DOP-Asm is independent of the application, that is, it may

use DOP gadgets which the application does not provide.

In step �, we use a set of recipes, which encode how to

express DOP gadgets through other DOP gadgets. We use

these recipes and the Op-Graph they implicitly define through

their interdependencies, to lower the High-Level DOP-Asm

into Low-Level DOP-Asm. The latter uses only DOP gadgets

from the gadget definitions, i. e., only DOP gadgets available

for this specific vulnerability and application. For the most

part, the recipes and Op-Graph can be reused for multiple

applications, unlike the application-specific gadget definitions.

The Low-Level DOP-Asm is meant to be read with execu-

tion in mind, but we have to think in terms of data driving

the execution in context of DOP. Thus, in the data-view-
switch (�), we use the content of the gadget definitions. This

results in the data requirements, which are the constraints for

a data structure that would execute the DOP script if it were

placed in the vulnerable application.

In step �, we actually build the data structure fulfilling the

formerly created data requirements. Since this involves po-

tentially expensive constraint-solving, the data structures can

contain placeholders instead of concrete values. An additional

concretization (�) step can then quickly replace constants or

addresses leaked at runtime.

Lastly, we pass the final data structure back to the driver,

in order to execute it in the target application.

C. Modes

The mode element in Figure 1 represents an accumulation

of compiler flags triggering different program transformations,

and indicates the DOP gadget supply mode required for the

specific target DOP instance. There are three separate, but

partially interlocking optional modes: branch-free, memory

preparation, and interactive.

Branch-Free. If one cannot synthesize conditional jumps for

the application, one cannot easily express if/else statements.

Listing 1 shows how to use arithmetics1 to express case

distinction [46]: All operations are executed on the right

side, whereas one needs to conditionally skip operations

on the left side. That is, the right side can do without a

conditional goto. This transformation of an operation

must fulfill two properties: First, it must only have an effect,

if the here-bit is set and second, it may only assume that the

values it uses are properly initialized, if the here-bit is set.

Thus, we compute a here-bit at the start of every basic

blocks by comparing a state-variable to a basic block’s

ID. Then, we can simply change the state-variable instead

of using gotos. The result is that the execution sequence

1This example uses an equality operator, which produces a one if the values
are equal and a zero otherwise. Alternatively, one can place alternative values
in an array and compute different indices, or use conditional DOP gadgets.

of basic blocks is no longer important, only that they are

executed often enough.

Listing 1: Conditional and Branch-Free Code

t = x + y
i f (z == 3) :

r = t

t = x + y
h e r e = z == 3
r = h e r e * t + (1− h e r e) * r

Memory Preparation. When DOP gadgets are placed in

separate buffers, e.g., in the interactive mode, it may not be

possible to place persistent variables next to the DOP gadgets

using them. However, one can use DOP gadgets to place

the variables somewhere in memory, before the remainder of

the DOP script is executed. This phase therefore collects all

variables, translates their initial values into immediate values

used by DOP gadgets, and transforms the script in order to

use the addresses the variables are written to.

Interactive. A goto DOP gadget is not necessary in the

interactive mode, because the attacker can decide which op-

eration to send next. However, this also places the burden to

decide which operation to send next on the attacker. This is

inherently problematic if the execution state is not known to

the attacker, e. g., if her DOP script requires case distinctions

or loops. Luckily, due to the branch-free transformation, it only

matters that an operation is executed often enough, because

additional executions have no effect. Thus, one big loop would

theoretically suffice to execute any program, e. g., if the DOP

gadgets are saved in a linked list, which the attacker can

corrupt to form a circle. However, executing only what is

needed is obviously more performant.

For reducible programs [47], we can automatically generate

a protocol which details how often to execute which sequence

of basic blocks. Using well-known techniques, we analyze

the CFG, inline functions, and dissect the program into the

building blocks of structured programming: sequences, which

are executed in-order, selections (if/else), for which both the

true path and the false path are executed once, and iterations,

for which we rely on the attacker for annotations in the DOP

script to hint the number of repetitions.

D. Artifacts

Now that we have discussed the stages of our approach, let

us give more details on the used artifacts.

High-Level Language: SLANG. Our tool STEROIDS provides

a high-level language for the development of DOP programs.

Our STEROIDS programming language, SLANG, provides

• compound expressions

• typed variables (addresses, bytes, int16, int32...)

• type-sensitive arrays

– constant initialization: strings, int-arrays, hex-dumps

– automatic length-variable for constant initialization

• structured control-flow

– if/else blocks

– loops: for, while, repeat . . . until, infinite

– break/continue

• (recursion-free) procedures

This is in contrast to Qool [48] for ROP or MinDOP [20] for

DOP, which provide only “list-of-statements” languages. Since

the exemplary scripts in Section IV show that our language

is rather straightforward and conventional, we refrain from

showing the formal grammar of SLANG in this paper, both

for brevity and to omit technicalities.

The compilation from SLANG to High-Level DOP-Asm

itself is also straightforward (e. g., the elements of structures

control flow are compiled to checks, labels and gotos).

Compound expressions are parsed and compiled into single

two-operand operations for each node in the parse tree, using

temporary variables, if necessary. Array accesses multiply the

index with the size of an array element, before using the result

as an offset after dereferencing the array’s address.

DOP assembly. While SLANG is used to define the attacker’s

intent, DOP assembly is used as an intermediary step, but also

as a convenient language for the recipes and for inline-use in

SLANG. It is low-level and assembly-like, where each line

holds a command with its operands. Additionally, it features

• typed variables (addresses, bytes, int16, int32...)

• conditional operations

• labels as jump-targets

• macros, e. g.,

– to generate unique labels or variable names

– to reserve only one temporary variable, if a gadget is

used multiple times

– to perform compile-time computation

• compiler directives, e. g., to tell the compiler

– to advance a program counter

– to increase the size of a packet

For a simple example, refer to Listing 2. Note that the

computation could also be done byte-wise, such that one

requires only 28 ∗ 4 instead of 232 loop iterations.

Listing 2: Recipe to synthesize an add, using

mov, dec, inc and a conditional goto. Suffixes

for the bit-width of the operations and operands are omitted.

add d s t s r c
i n t cpy
mov cpy s r c
: s t a r t

i f z e r o g o t o cpy : end
dec cpy
i n c d s t

go to : s t a r t
: end

Operations Graph. Recipes encode how to synthesize higher-

level operations from simpler ones. The Op-Graph is created

simply by parsing a set of recipes and drawing edge sets from

an operation to the operations used in a specific recipe.

To illustrate our approach, a recipe to express the add
DOP operation (*p += *q) is given in Listing 2. The Op-

Graph in Figure 2 includes the dependencies defined in the

recipe, and shows that add uses five other DOP operations,

indicated by the bold edges. Furthermore, it shows that the

application only has two DOP gadgets: load (*p = **q)

and a conditional goto, indicated by the bold nodes.

loadif_zero_goto

inc decgoto mov

add

Fig. 2: Op-Graph corresponding to the recipe from Listing 2

for synthesizing an add.

A recursive graph search on the Op-Graph starting at the

add-node, shows each DOP operation in this recipe requires

only other DOP operations, which themselves require only

DOP gadgets present in the application. Thus, this recipe can

provide an add DOP operation to the attacker, even though

the application does not have an add DOP gadget.

A goto can be synthesized using a conditional goto
with an always-true dummy condition, and a mov (*p = *q)

can be implemented using a load with one additional indirec-

tion, but expressing inc/dec through a load may be a little

surprising: In Section V-B we describe how to use a lookup

table to achieve this feature.

The lowering of High-Level DOP-Asm to Low-Level DOP-

Asm requires only macro expansion along the found paths to

the DOP gadgets: We successively substitute a DOP operation

with the body of its recipe, taking care to substitute recipe’s

parameters with the DOP operation’s arguments, until we end

up using only DOP gadgets. These are then expanded using

their gadget definitions to form the data requirements.

For convenience, if a DOP operation cannot be synthesized

because of missing DOP gadgets, our compiler generates an

And/Or-graph from the recipes, which reports all possible

alternatives of which DOP operations one would have to

implement to complete said recipes. Furthermore, we designed

our Op-Graphs to be combinable trivially, so simple file

concatenation allows reusing recipes for other applications.

DOP-Gadget Definition. In DOP, one uses skillfully crafted

data structures to drive the program to perform specific opera-

tions. Thus, at one point, one has to switch from the execution-

perspective to the data structure-perspective that is actually

used in the application (see Listing 3 for an example). The

language we use to define data structures is fairly simple:

It supports symbols and constants, which may be initialized

to specific addresses and values, memory dereferences and

offsets, where the latter offers a typed array-index formulation

as syntactic sugar.

Listing 3: Artificial example of a DOP gadget.

struct s { int * va lue , * from , * t o ; } ;
struct s * p t r = . . . ;
// memory corruption of ptr
if (p t r−>v a l u e == 3)

* (p t r−>t o) = *(p t r−>from) ;

ptr dst

src
4: from

8: to

0: val = 3
struct s

Fig. 3: Data structure to invoke Listing 3’s DOP gadget.

Listing 4: Gadget definition / Data structure requirements for

the data structure from Figure 3 to feed the DOP gadget from

Listing 3. The address of ptr is an input to the compiler,

while src/dst are the parameters of the DOP gadget.

mov d s t s r c
p t r d e r e f o f f s e t (0) = 3
p t r d e r e f o f f s e t (4) = s r c
p t r d e r e f o f f s e t (8) = d s t

For example, Listing 4 defines the data structure from

Figure 3 to trigger a mov operation. These data requirements

are then transformed into constraints for the Z3 SMT Solver:

We require that, at a certain position in the buffer, there is

an address (ptr). Somewhere else in the buffer, there must

be the value 3, and ptr must point to it. This value must

be followed by another pointer (from), which must have the

value given by the attacker as the second parameter (src),

and yet another pointer (to), which must have the value of

the first parameter (dst).

While it is not necessary for this simple example, our

compiler can handle multiple dereferences and offsets on both

sides of the equation, e. g., to write to a member in a struct.

Protocol. The protocol holds nested sequences of basic blocks

and, if they occur in a loop, optionally how often to execute

that loop. We opted for S-Expressions as an easy-to-parse

format. E. g., we translate the protocol

(BB1, (3, BB2, BB3), BB4)
into the trace

BB1, BB2, BB3, BB2, BB3, BB2, BB3, BB4.

Note that a protocol is only required in the interactive mode,

where DOP gadgets can be combined arbitrarily. Thus, the

protocol is not part of the data requirements and only needs

to be passed to the driver.

E. Implementation Details

We implemented STEROIDS on Linux in Python and use

the Z3 SMT Solver to solve the constraints of the data
requirements. We compiled DOP programs for 32-bit and 64-

bit Linux target applications. Conceptually, it should also work

for other operating systems since the generated data structures

by themselves are not OS-dependent.

Optimizations. STEROIDS is meant to provide maximum

flexibility in its compile targets, since essentially every DOP-

instance offers different DOP gadgets, and we therefore chose

generality over efficiency. Still, when emitting DOP assembly,

STEROIDS tries to use the simplest DOP operation. E. g.,

by emitting inc/dec instead of add/sub, or by avoiding

the oftentimes rather expensive neq/eq DOP gadgets when

comparing against a constant, in favor of calculating the

condition of a conditional DOP gadget at compile time.

Furthermore, we allow annotations for weighted edges in

the Op-Graph. By default, a DOP gadget native to the target

application has a weight of one and a goto a weight of ten to

account for repeated execution of a loop-body. Our compiler

can then sums the weights of all the used DOP gadgets and

pick the recipes with the lowest cumulative weight. STEROIDS

also reduces swapping when lowering complex expression, and

it does not add or subtract zero. Furthermore, it tries to avoid

multiplying by one, e. g., when computing the indices to an

array access, if the array is defined as a byte array.

IV. DOP SCRIPTS

This section presents a selection of high-level exploit pay-

loads implemented in SLANG. They not only demonstrate the

capabilities of DOP and STEROIDS regarding expressiveness

and complexity of payloads, but also security implications, be-

cause they feature ROP chain relocation and on-the-fly gadget

search against targets without a built-in scripting engine.

Listing 5: Slang-code to compute the Levenshtein distance.

b y t e [] s = "kitten"
b y t e [] t = "sitting"

b y t e [5 6] d

func i d x (i n t the row , i n t t h e c o l , i n t wid th)
i d x = the row * wid th + t h e c o l

func min (i n t a , i n t b , i n t c)
min = a
if (b < min)

min = b
if (c < min)

min = c

for j from 0 to s . l e n g t h + 1
call i d x (0 , j , s . l e n g t h + 1)
d [i d x] = j

for i from 0 to t . l e n g t h
call i d x (i + 1 , 0 , s . l e n g t h + 1)
d [i d x] = i + 1

for j from 0 to s . l e n g t h
i n t j p l u s 1 = j + 1

call i d x (i , j + 1 , s . l e n g t h + 1)
i n t d e l c o s t = d [i d x] + 1

call i d x (i + 1 , j , s . l e n g t h + 1)
i n t i n s c o s t = d [i d x] + 1

call i d x (i , j , s . l e n g t h + 1)
i n t s u b c o s t = d [i d x]
if (s [j] != t [i])

s u b c o s t += 1

call min (d e l c o s t , i n s c o s t , s u b c o n s t)
call i d x (i + 1 , j + 1 , s . l e n g t h + 1)
d [i d x] = min

A. A classic algorithm: Levenshtein distance

We chose the Levenshtein distance [49] as an introductory

example, because it is a well-known algorithm and allows to

assess the compilation and execution times for the applica-

tions. It computes the edit distance between two strings, i. e.,

the number of operations necessary to transform one string into

the other. In particular, our SLANG implementation in Listing 5

features: 1) Nested for-loops, requiring checking values for

equality and conditional jumping. 2) 2D-array operations, i. e.,

memory access uses indices, which are computed using mul-

tiplication. 3) Numeric comparison and conditional execution

to compute the minimum of three numbers. 4) Functions to

compute minimum and indices.

B. SSL pointer-chain dereference

In OpenSSL, the data structure for saving an SSL private

key is fairly complicated: From a base object (ssl_ctx), one

has to successively follow a chain of eight pointers at different

offsets in their respective data structures, to finally reach the

secret key (see Listing 6). We adapted this example from Hu et.

al [20], because it shows the use of a high-level description for

a non-trivial BYOSE-attack. Naturally, not every application

uses SSL private keys and such a base object may not always

be withing immediate reach in every application. However, this

is still a realistic attack, which is impossible without either an

adaptive multi-step attack leaking data or a scripting engine.

Note that one should not judge the script’s complexity by it’s

brevity: Our experiments will show that executing it without

optimization can require thousands of DOP gadgets.

Listing 6: Slang-code to retrieve a private key from SSL.

The a d d r e s s o f (o r o f f s e t t o) s s l c t x i s
g i v e n as a p a r a m e t e r t o t h e c o m p i l e r .
add r p −> s s l c t x

i n t [] o f f s e t s = [10 0 4 20 24 0 0]

for i from 0 to o f f s e t s . l e n g t h
p =* p
p += o f f s e t s [i]

At t h i s p o i n t , p p o i n t s t o t h e p r i v a t e key and can
be c o p i e d t o an a d d r e s s o f t h e a t t a c k e r ’ s c h o i c e .

C. ROP-chain Relocation

To account for ASLR, one can relocate a return-oriented

programming chain (ROP chain), which means adjusting the

addresses of the ROP gadgets (ROP gadgets) in the ex-

ploit buffer using a dynamically retrieved address. Attackers

usually utilize a built-in scripting engine to perform this

step, but this example accomplishes this task using DOP,

demonstrating that this kind of attack can be applied to target

applications without a built-in scripting engine. As Listing 7

shows, the attacker merely provides the address of a code

pointer (addr_of_code_pointer), like a return address

on the stack or a function pointer, and the offset between

the code pointer and the image base (offset_to_base).

Furthermore, she prepares the exploit buffer using the offset

between the image base and the ROP gadgets, as it would be in

a non-randomized address layout. Again, the brevity indicates

rather SLANG’s expressiveness than the script’s complexity: It

may very well require executing thousands of DOP gadgets.

Listing 7: Slang code to relocate a ROP chain.

b y t e [] r o p c h a i n = { . . . }

A ROP−c h a i n h o l d s da t a , mixed wi th a d d r e s s e s
o f ROP−g a d g e t s . Th i s a r r a y h o l d s t h e o f f s e t s
o f t h o s e a d d r e s s e s i n t h e ROP−c h a i n b u f f e r .
i n t g a d g e t o f f s e t s [] = [0 x0C 0 x14 0 x24 0 x28 0x2C]

a dd r image base =* a d d r o f c o d e p o i n t e r
image base −= o f f s e t t o b a s e

R e l o c a t e each g a d g e t .
for i from 0 to g a d g e t o f f s e t s . l e n g t h

r o p c h a i n [g a d g e t o f f s e t s [i]] += image base

Listing 8: An exemplary ROP chain to execute

execve("/bin/sh") in 32-bit Linux.

0 x00 : / / b i 0 x18 : &b u f f e r
0 x04 : n / sh 0x1C : &(pop ecx ; r e t)
0 x08 : 00 00 00 00 0 x20 : &b u f f e r + 8
0x0C : &(pop eax ; r e t) 0 x24 : &(pop edx ; r e t)
0 x10 : 0B 00 00 00 0 x28 : &b u f f e r + 8
0 x14 : &(pop ebx ; r e t) 0x2C : &(i n t 0 x80)

D. Just-in-time return-oriented programming (JIT-ROP)

The relocation approach from the previous example does

not work anymore, if a binary is protected with fine-grained

code randomization such as Binary Stirring [24], because

most of the previously known ROP gadgets are eliminated.

Instead, an attacker can employ JIT-ROP to dynamically scan

the process memory to search required gadgets on-the-fly, and

assemble the ROP chain in the exploit buffer accordingly.

Our implementation probes the program’s code memory for

specific gadgets and then uses their locations in a freshly

generated ROP chain. Just like the other examples, the Slang

script in Listing 9 can be compiled and executed for interactive

and non-interactive mode DOP instances without changes.

Listing 9: Slang-code to scan the memory for ROP gadgets.

pop eax , pop ebx , pop ecx , pop edx , i n t 0 x80
b y t e [] g b y t e s = {58 c3 5b c3 59 c3 5 a c3 cd 80}
i n t [] g l e n g t h s = [2 2 2 2 2]
i n t [] g o f f s e t s = [0 x0C 0x14 0x24 0x28 0x2C]

a dd r s t a r t a d d r =* a d d r o f c o d e p o i n t e r

func i s g a d g e t (add r a , b y t e [] gadge t , i n t g l e n g t h)
for i from 0 to g l e n g t h

if (g a d g e t [i] != a [i])
return 0

return 1

b y t e [] c u r g b y t e s = g b y t e s
for j from 0 to g o f f s e t s . l e n g t h

a dd r a t = s t a r t a d d r
loop

call i s g a d g e t (a t , c u r g b y t e s , g l e n g t h s [j])
if (i s g a d g e t == 1)

r o p c h a i n [g o f f s e t s [j]] = a t
break

a t += 1
c u r g b y t e s += g l e n g t h s [j]

TABLE I: Comparison of the evaluated DOP-instances.

1: Implicitly, because the conditional command is present.

2: There is only one packet in memory at a time, thus one

packet cannot modify the contents of the next packet.

3: Implicitly, through self-modifying DOP.

4: Synthesized from mov and add DOP gadget sequence.

5: Implicitly, through interactive mode/branch-free code.
In

te
rp

re
te

r

W
ir

es
ha

rk

G
S

tr
ea

m
er

M
in

i-
S

er
ve

r

P
ro

F
T

P
d

Arithmetic
inc (*p += 1) � �1 � � �
conditional inc

(if(...) *p += 1) � � � � �
add (*p += *q) � � � � �
sub (*p -= *q) � � � � �
mul (*p *= *q) � � � � �
gte (*p = *p ≥ *q) � � � � �
Movement
mov (*p = *q) � � � � �1

conditional mov
(if(...) *p = *q) � � � � �

load (*p = **q) � � � �1 �
conditional load

(if(...) *p = **q) � � � � �

store (**p = *q) � � (�)3 �2,4 �
Control-Flow
goto �1 � � (�)5 (�)5

conditional goto � � (�)3 (�)5 (�)5

calculated goto � � � (�)5 (�)5

Mode
interactive � � � � �
self-modifying � �2 � �2,4 �

V. APPLICATIONS WITH DOP INSTANCES

We compiled and executed the example DOP scripts above

for the five different applications we present in this section.

Note that we only crafted the first of them: The other four were

not “homemade” by us. Table I provides a comparison of the

DOP instances with respect to the available DOP gadgets.

A. Interpreter

This bytecode interpreter is an exemplary application, which

loads a file filled with bytecode into memory and then in-

terprets the embedded instructions. Thus, this DOP instance

is compatible with the non-interactive gadget chaining mode,

although it does not require the exploitation of a memory error.

The interpreter has three arithmetic instructions: addi-

tion, subtraction, and multiplication. It also has an instruc-

tion to move data, and a conditional goto to modify

the control-flow. Since the application internally uses an

instruction-counter, both a goto and a calculated goto
can be implemented by modifying its value.

The interpreter’s comparably rich set of DOP gadgets is by

far not complete: E. g., there are no comparison operators for

(in)equality. Also, since the operand size is fixed to 32 bit,

it is not immediately suitable to work on single bytes. Most

importantly, this DOP instance lacks load/store gadgets.

Challenges. To interact with memory outside the DOP in-

stance, we bootstrapped the load/store gadgets using self-
modifying DOP. Since the data structures for all DOP gadgets

are already in memory, an operation can alter the operands of

other operations. We leverage a mov to overwrite the source or

destination of another mov with values computed at runtime.

Thus, we can simulate native load/store gadgets. Note

that mov is the “weakest” of the three basic data movement

DOP operations, and thus, any of the three can be used to

synthesize the other two. This however, may not hold without

self-modifying DOP. As we will see in the Section VI, this

application shows that DOP gadgets such as add and mul are

very important for the efficiency of the overall DOP-instance.

B. Wireshark

The packet analyzer Wireshark suffered from a stack-buffer

overflow (CVE-2014-2299), which ultimately results in packet

contents overflowing local variables (specifically cinfo) and

parameters (specifically packet_list). Listing 10 shows

the relevant lines for this application’s DOP gadgets.

Detailed descriptions are available in the literature [20],

[50], so we only give a brief summary of triggering the DOP

gadgets here. Setting specific values to struct members of

packet_list and cinfo enables mov/load/store and

conditional inc DOP gadgets. However, the condition

and the target of the conditional inc are not indepen-

dent of one another, as they stem from the same value. Thus,

one has to set up a fake packet_list data structure in

memory, and use a mov/inc/mov-sequence to increment

an arbitrary memory address. Additionally, a fake linked-list

pointing at itself has to be employed to create an endless

loop and keep the DOP instance running. Furthermore, the

file position indicator serves as a virtual instruction pointer:

manipulating its value results in a non-linear sequence of

packets being read and enables a goto. The exploit payload

is given at one go, but the data structures are being loaded to

memory one by one. Thus, this DOP instance has properties

of interactive and non-interactive modes: single-shot exploit,

native goto, but no self-modifying DOP.

Listing 10: Partial Wireshark source code showing the lines

for mov/load/store and conditional inc DOP gadgets.

r e c o r d = p a c k e t l i s t−>p h y s i c a l r o w s [row] ;
r e c o r d−>c o l t e x t [c o l] =

(g c h a r *) c i n f o−>c o l d a t a [c o l] ;
if (! r e c o r d−>c o l t e x t l e n [c o l])

++ p a c k e t l i s t−>c o n s t s t r i n g s ;

Challenges. Arithmetic operations are severely hampered

since the only arithmetic DOP gadget is an inc, but expres-

sive programs can still be compiled and the resulting DOP

programs are efficient enough to pose a security threat.

To synthesize an add using the recipe given in Listing 2,

we implemented an 8-bit dec using a 256-byte lookup table.

This table is placed at a 256-byte aligned address, and its

ith value is initialized to i − 1 mod 256. Now, we can write

the value we want to decrement into the lowest byte of the

address to the lookup table, and load the value saved there. The

implication of this construct is severe: We crafted an arithmetic

DOP operation using only data-movement DOP operations.

C. Gstreamer

The Gstreamer multimedia framework suffered from a heap-

corruption vulnerability (CESA-2016-0004) in its decoder

for FLIC files, which are GIF-like animations. In particular,

the vulnerability repeatedly allows to write arbitrary byte-

sequences to arbitrary, positive offsets. The decoding happens

in a fresh thread of a fresh process and since a thread’s

heap is usually aligned to 64 MB, the last three bytes of the

addresses of multiple relevant heap objects are basically static.

Evans published an exploit for this vulnerability and the write-

up contains lots of technical details [51]. The author makes

heavy use of partial pointer overwrites (namely, the last three

bytes to keep the unknown first bytes intact) to modify the

addresses used by two memcpys to move data arbitrarily,

to dereference pointers and even to abuse the frame-time

calculation to perform addition. To do so, a fake GstPad-

instance is created to avoid leaving the main loop, and data is

copied into the input buffer to create new DOP gadgets, i. e.,

self-modifying DOP is used. Ultimately, a code-reuse attack is

launched by crafting a call to the system-function. Listing 11

shows the details relevant for DOP.

Unlike the other applications, this one does not use a 32-bit

address space, and thus shows that STEROIDS can also deal

with 64-bit applications. Furthermore, this DOP instance does

not rely on a stack corruption, but leverages a heap corruption,

demonstrating that STEROIDS works across bug classes.

Challenges. While the exploit by Evans is certainly nifty, we

have to go significantly beyond the published write-up.

In GStreamer, data is first read in 4 KB-sized chunks

into a linked-list of GstMemory-objects. A class called

GstAdapter is then responsible to merge these chunks of

memory to accommodate the size the decoder actually needs.

In this specific decoder, every frame is freshly allocated and

therefore, their addresses become more unpredictable over

time. Evans did not have to deal with this, because the entire

exploit fit into the first 4 KB-chunk. However, reallocation is

not acceptable for larger DOP programs: Our examples easily

grew to 90 KB. Thus, we bootstrap our DOP programs by

first copying their main content into the frame-buffer and then

creating a fake GstAdapter-object to trick the application

into thinking that there is only one big memory object.

This not only facilitates reliable frame-wise self-modifying

DOP, but also allows to modify the skip-, size- and

assembled_len-variables of the GstAdapter-object to

redirect DOP execution to arbitrary frames. Conceptually, this

still belongs to the steps of gadget search and DOP instance

setup to facilitate the execution of DOP gadgets, which is not

in this paper’s scope. We thus do not automate this task. In

practice however, we used our flexible compilation and recipe

mechanism to make it considerably easier. The second chal-

lenge is the addressing. The instructions that place constant

data use relative offsets, but the memcpys naturally require

absolute addresses. Furthermore, the predictable addresses are

all in the three byte-vicinity around the frame-buffer. Thus,

a second bootstrap-step dynamically discloses the first bytes

of the heap-objects and fixes the addresses of all indirectly

addressed DOP-variables. Note that our compiler generates

both these steps automatically.

As for the actual DOP gadgets, the mov-, load- and

add-instructions were already described by Evans [51] and

are rather straightforward. However, the arbitrary store-

gadget was more challenging, because the native code does

not contain the required data flow. We constructed the store-

gadget by overwriting operands of a mov-gadget at run time

utilizing self-modifying DOP. While conditional goto
is not a strict requirement for Turing-complete computation,

it helps to avoid unreasonable large payload sizes for com-

plex DOP programs. We use the fact that the FLIC-decoder

skips frames with the wrong header ID and we leverage

the fake GstAdapter and self-modifying DOP to skip

frames by modifying their header IDs in order to construct

a conditional goto-gadget.

Listing 11: Partial GStreamer source code showing reading

from an arbitrary address to the frame buffer’s start (dest),

placing of constant data at a chosen location in or after the

frame buffer, writing to an arbitrary address, and the addition.

f l x d e c o d e d e l t a f l i (. . .) {
. . .
// read; attacker controls content of flxdec
memcpy (d e s t , f l x d e c−>d e l t a d a t a , f l x d e c−>s i z e) ;

// attacker also controls contents of data...
s t a r t l i n e = (d a t a [0] + (d a t a [1] << 8)) ;
l i n e s = (d a t a [2] + (d a t a [3] << 8)) ;
d a t a += 4 ;
d e s t += (f l x d e c−>hdr . wid th * s t a r t l i n e) ;

while (l i n e s −−) {
. . .
c o u n t = * d a t a ++;
while (c o u n t −−) {

. . .
// ... which determines offset and written value

* d e s t ++ = * d a t a ++;
}
}
}
. . .
g s t f l x d e c c h a i n (. . .) {

. . .
while (. . .) {
// calls flx_decode_delta_fli
f l x d e c o d e c h u n k s (. . .) ;
. . .
// write; attacker controls content of flxdec
memcpy (f l x d e c−>d e l t a d a t a ,

f l x d e c−>f r a m e d a t a , f l x d e c−>s i z e) ;
. . .
// add
f l x d e c−>n e x t t i m e += f l x d e c f r a m e t i m e ;

}
. . .

}

D. Mini-Server

Hu et al. [20] modeled this application after an FTP-Server

to serve as an example for DOP. However, please note that

it is in no way tailored to our compiler. The application

suffers from a stack-based buffer overflow when reading data

from a socket into a local buffer. Invoking the three DOP

gadgets given in Listing 12 is fairly straightforward. However,

one has to take care to preserve local variables, i. e., to

reset connect_limit with each DOP-packet. Also, the

parameter buf for readData is pushed onto the stack only

once and needs to be restored each iteration.

Challenges. The mov DOP gadget cannot move all values,

e.g., the value STREAM triggers another gadget. Thus, we

opted to use the load to implement a general purpose mov
for this application. We also had to use a temporary scratch

space for the conditional load, because its else-case

clobbers some adjacent values.

This DOP instance lacks the very important store gadget,

which is necessary to write to arrays and other memory

locations. Due to the interactive mode we cannot leverage

self-modifying DOP to synthesize store from mov/load.

Luckily, the mov and add DOP gadget are executed in

sequence in a single packet. Thus, we can use the mov to

modify the parameters of the add DOP gadget. This yields a

store-add combination: *(*p+4) += *q, where the 4 stems

from the different offsets for typ and total. Adjusting that

offset leads to a **p += *q DOP gadget. To convert this

into a pure store, we first use this DOP gadget to add the

value at **p to itself, effectively multiplying it by two. In base

two, this introduces a zero at the lowest bit. By repeating this

32 times, we can store a zero at a location of our choice.

Finally, we invoke this DOP gadget a 33rd time, adding *q

to the zero, which results in the desired store-DOP gadget

(**p = *q). Again, the implication is severe: We used an

arithmetic gadget (add) to achieve data-movement2.

Listing 12: Partial Mini-Server source code showing the

conditional load, mov, and add DOP gadgets. size,

srv, type and connect_limit are local variables.

while (c o n n e c t l i m i t −−) {
r e a d D a t a (sockfd , buf) ; // stack buffer overflow
if (* t y p e == NONE) break ;
if (* t y p e == STREAM) // conditional load

* s i z e = *(s rv−>cur max) ;
else {

s rv−>t y p = * t y p e ; // mov
s rv−> t o t a l += * s i z e ; // add

}}

E. ProFTPd

An integer overflow, which results in a stack-based buffer

overflow, in the FTP server ProFTPd (CVE-2006-5815) allows

the attacker to write almost arbitrarily into the process’ mem-

ory. As a result, multiple DOP gadgets are available, which

allow Turing-complete computation. There are six functions

involved and the example is well-documented in the liter-

ature [20], [50], so we omit the vulnerable code. ProFTPd

2Other constructs are possible, too. E. g., using only dec and mul: to
move q to p, one multiplies p by 0, decrements it, multiplies it by −1 and
finally multiplies it by q.

allows an interactive DOP-mode, but needs two packets per

DOP gadget.

Challenges. Triggering the conditional mov gadget was

straightforward. The add DOP gadget operates on a fixed

global data structure, so one has to first move the two operands

into said data structure, invoke the add, and then fetch the

result. The load and store gadgets need to perform the

double-dereferencing in two steps, which can be performed as

a regular two-packet DOP gadget, but one needs additional

movs to place the parameters accordingly.

F. nginx

A flaw in the chunked size parser enables the attacker to

inject a very large size number. Due to an unsafe unsigned to

signed conversion that number can be interpreted as negative

bypassing a buffer size check, which leads to a stack-based

buffer overflow (CVE-2013-2028). Previous work [20] ana-

lyzed this bug, but ruled it out for DOP. We achieved a proof-

of-concept DOP instance, albeit with limited capabilities.

Challenges. The target data structure

ngx_http_request_t is used in many places, is

therefore heavily constrained and clobbers many struct fields.

We resolved this by rarely moving the struct in memory

and fulfilling the constraints with memory preparation.

Even though a conditional load and byte inc
are available, the interactive mode impedes synthesizing

mov/store. While this DOP instance can compute

arithmetic operations and move values among the limited

number of write slots, the store-constraint prevented us

from running complex DOP scripts.

VI. EVALUATION

To evaluate the capabilities of STEROIDS, we have compiled

each of our four showcase DOP scripts against all five different

applications from the last section. We then measured both

compilation time and runtime, the size of the generated DOP

program, and the number of executed DOP gadgets. Influences

on runtime, results for optimized DOP scripts, and the number

of necessary DOP gadgets are also discussed.

A. Quantitative Analysis

We conducted our experiments on Ubuntu 18.04.1 LTS,

using a single core of an Intel i7 @ 2.9 GHz with 4 GB RAM.

For the Levenshtein algorithm, we measured the runtime of

comparing a 7-character string against an 8-character string.

Since not every application comes with SSL, we artificially

added the relevant data structure into the program, and mea-

sured how long it took to dereference it. For the Relocator,

we measured how long it took to relocate a given ROP chain.

In our JIT-ROP example, however, the runtime of the algo-

rithm depends heavily on where in memory the ROP gadgets

are located. For comparable results, we thus normalized the

algorithms to always scan exactly one kilobyte of memory.

Our results are summarized in Table II and Table III.

The compile time scales roughly linear with the number of

DOP gadgets. One DOP gadget takes about 150ms, which is

TABLE II: Evaluation of DOP programs compiled for three non-interactive applications: Interpreter, GStreamer, and Wireshark.

1: Optimizations: Loop unrolling; using variables instead of array.

G
St

re
am

er
W

ir
es

ha
rk

In
te

rp
re

te
r

Levenshtein SSL-Deref Relocator JIT-ROP JIT-ROP1

DOP gadgets 183 17 23 99 56
Compile Time 23.14s 1.53s 1.61s 12.11s 1.85s
... per DOP gadget 0.12s 0.09s 0.07s 0.12s 0.03s
Execution Time 0.29s 0.19s 0.20s 0.51s 0.49s
... per DOP gadget 0.50μs 1898.89μs 2115.79μs 0.14μs 0.35μs
Executed DOP gadgets 5855 99 95 35982 14180

DOP gadgets 4407 1930 1419 2503 2689
Compile Time 179.75s 108.96s 91.62s 133.37s 107.89s
... per DOP gadget 0.04s 0.06s 0.06s 0.05s 0.04s
Execution Time 8.43s 0.75s 0.70s 77.85s 13.39s
... per DOP gadget 2.81μs 3.59μs 3.84μs 2.91μs 2.85μs
Executed DOP gadgets 2,994,468 210,989 195,758 26,733,658 4,691,568

DOP gadgets 2284 265 317 740 1079
Compile Time 467.89s 59.72s 102.47s 227.07s 334.75s
... per DOP gadget 0.20s 0.22s 0.36s 0.31s 0.31s
Execution Time 16.33s 1.45s 1.59s 228.50s 149.58s
... per DOP gadget 84.75μs 728.91μs 447.12μs 86.52μs 81.03μs
Executed DOP gadgets 192,676 1,992 3,565 2,640,980 1,845,845

TABLE III: Evaluation of DOP programs compiled for two interactive applications: Mini-Server and ProFTPd.

1: Optimization: Loop-Check against constant.

2: Optimization: Loop unrolling; no branch-free transformation, since it is only one Basic Block.

3: Optimization: Using a single 16-bit-compare instead of two 8-bit compares. *: Estimated.

Pr
oF

T
Pd

M
in

i-S
er

ve
r

Levenshtein Levenstein1 SSL-Deref SSL-Deref2 Relocator Relocator2 JIT-ROP3 JIT-ROP1

DOP gadgets 5466 4789 762 141 1112 37 594 316
Compile Time 807.37s 686.47s 93.91s 17.68s 117.43s 10.86s 80.54s 50.40s
... per DOP gadget 0.14s 0.14s 0.12s 0.12s 0.11s 0.29s 0.14s 0.16s
Execution Time 5360.64s 420.36s 14.71s 0.62s 61.48s 0.25s *22,956.00s 190.67s
... per DOP gadget 1.28ms 1.28ms 1.39ms 4.46ms 1.28ms 6.83ms *1.28ms 1.28ms
Executed DOP gadgets 4,178,599 327,671 11,269 141 47,921 37 17,894,894 148,625

DOP gadgets 2946 2813 354 126 607 72 501 195
Compile Time 471.37s 447.27s 59.83s 23.56s 98.94s 21.74s 84.17s 33.15s
... per DOP gadget 0.16s 0.16s 0.17s 0.19s 0.16s 0.30s 0.17s 0.17s
Execution Time 3245.78s 1641.69s 6.93s 0.59s 49.21s 0.56s *20,008.00s 123.95s
... per DOP gadget 1.31ms 1.31ms 1.32ms 4.69ms 1.31ms 7.18ms *1.31ms 1.31ms
Executed DOP gadgets 2,472,032 1,250,336 5,243 126 37,452 72 15,238,408 96,406

mostly spent by the SMT solver to create the data structures.

Naturally, more complex data structures have a tendency to

take longer, especially when they are nested or when there

are arrays involved. However, unless the available space for

a data structure is very close to the minimal space necessary,

we found the compile time to be fairly stable.

Note that this step can oftentimes be parallelized, if one

decouples the compilation of single DOP gadgets. This can

also be used in the interactive case, e. g., for GStreamer.

However, since we evaluated on a single core, the additional

overhead of starting separate processes may outweigh the

benefit of simpler constraint solving. Furthermore, we noted

that a noteworthy portion of a program’s DOP gadgets are

usually identical, which makes caching an attractive time saver

during development.

A comparison of the number of executed DOP gadgets in

Table II (e. g., for the Levenshtein algorithm) shows that the

non-interactive mode enables efficient execution of DOP pro-

grams, even if the underlying application offers only minimal

arithmetic capabilities. For the Interpreter, the runtime is even

clearly dominated by the time to start the process (e. g., for the

Relocator). However, a single DOP gadget in the interactive

mode is roughly three orders of magnitude slower, because

network-interaction dominates the runtime, despite using a

local loopback interface in our experiments.

The DOP instance in Wireshark is non-interactive, but it

reads the data structure for every single DOP gadget from

a file. Hence, it spends a large amount of its runtime with

file I/O. Similarly, GStreamer invokes costly malloc- and

memcpy-operations for every DOP gadget, even before the

actual gadget is executed. Nevertheless, the biggest impact

of runtime stems from the lack of powerful DOP gadgets

for arithmetic, in particular for equality comparisons and

multiplications, which are utilized for array accesses. E. g. a

subtraction operation would remedy this situation. This effect

is most pronounced in the Wireshark example, because it does

not even have an efficient add, which then has to be expressed

through repeated inc.

While the execution time naturally has a certain variance,

the chosen DOP programs are deterministic and there are many

executed DOP gadgets. This seems to average out the execu-

tion time per DOP gadget in individual target applications,

especially since the runtime is usually dominated by factors

other than computation.

These experiments show that STEROIDS facilitates the

automatic compilation of DOP programs from a high-level

language. Especially since the intermediary High-Level DOP-

Asm and Low-Level DOP-Asm scripts are kept around, we

argue that the generated programs can serve as an even more

useful starting point for hand-crafted optimization.

If one reduces the number of the aforementioned problem-

atic operations in SLANG, e. g, by using different variables

instead of arrays or using pointer-arithmetic instead of array-

indices to reduce multiplications, one can speed up the DOP

program considerably (see last column of Table III). Especially

when the number of loop iterations is known beforehand,

the costly equality-check against a variable can be avoided.

Instead one compares with a constant, which can often be

implemented with a much cheaper conditional DOP operation

(see last column of Table II). For a small and fixed number of

iterations one can also unroll the loop to avoid the comparison

altogether.

In the interactive gadget chaining mode, the attacker may

not know the current state, e.g., specific values of variables,

of the DOP instance during runtime. Consequently, computed

branches are not supported, because the Driver on the attacker

machine has no means to evaluate branch decisions and select

the next DOP gadget. This branch-free transformation of the

code has a huge performance impact. First, it increases the

number of DOP operations. Second, loops cannot be exited

early, because the attacker does not know whether the loop-

condition is met and must therefore iterate, until an upper

approximation of loop iterations is reached. This is especially

critical for nested loops (e. g., in Levenshtein or JIT-ROP).

B. Implemented DOP operations

DOP operations fall into three separate categories: First, the

DOP gadgets, which are implemented as gadget definitions,

require the data-view of DOP. They are a little tricky to

implement and they are highly specific to both the application

and the vulnerability, so that it is unlikely that they can be

reused. Luckily, one has to implement only very few of them.

As Table IV shows, a new target application requires about five

of these with an average length of 8.6 lines of code. GStreamer

is the clear exception, because only the DOP operation to write

constant data is implemented in this way.

Second, application-specific DOP operations, which are

implemented in Low-Level DOP-Asm. They also have to deal

with the oddities of the application, e. g, clobbered adjacent

values, input values for which they do not work or application-

specific variables. It is important, however, that these DOP

operations do not export such behavior, i. e., they define

clean High-Level DOP-Asm. Since the execution-view is more

familiar, and since one deals with expected, albeit cumbersome

behavior, they are much easier to implement. However, it is

still unlikely that such a recipe can be reused for another

application. There are again only about five of these DOP

operations necessary to support a new application, because

TABLE IV: Number of implemented DOP operations.

Different operand sizes were ignored for this table, as recipes

for conversion are all reusable, and usually just use temporary

variables to zero-extend or save parts of the operands.

In
te

rp
re

te
r

W
ir

es
ha

rk

G
S
tr

ea
m

er

M
in

i-
S
er

ve
r

P
ro

F
T

P
d

As Gadget definitions 6 5 1 5 5
∅ lines of code 3.8 14 9 5 11.2

App-specific 3 8 6 6 5
∅ lines of code 2.6 6.6 4.2 18.6 5.6

Reusable 5 11 11 16 11
∅ lines of code 6.2 10.5 8.3 4.7 4.6
Shared 5 5 8 13 11

they usually only serve to correct the oddities of the underlying

DOP gadgets. Wireshark in particular has to deal with this,

which explains the high count of application-specific DOP

operations. The exceptionally high line count for these DOP

operations for the Mini-Server is caused by a single outlier:

The store-add-to-store-gadget requires 72 lines.

Lastly, there are reusable DOP operations. They use only

properly working DOP operations and are thus fairly easy to

implement, despite using more lines. As Table IV shows, one

needs roughly a dozen of these to execute all the DOP pro-

grams from our experiments on a particular target application.

More importantly, Table IV also shows that, if one keeps

the distinction between these three categories in mind, e. g.,

with a naming convention to rule out accidental mix-ups, one

can reuse many DOP operations. For example, four of the five

target applications share the recipe for mul and sub. All in

all, about 75 % of the DOP operations without application-

specific oddities actually are reused. Also note the high count

for the Mini-Server and ProFTPd. Both require the branch-

free mode, which in turn requires gadgets that only have an

effect, if the here-bit of a basic block is set. Not a single

DOP operation from this category had to be implemented

additionally to support ProFTPd.

In summary, to support four algorithms, we needed about

15-20 recipes per application, each having roughly 10 lines.

While they may require domain knowledge to circumvent the

app’s peculiarities, writing them is (roughly) as simple as

writing assembly. We found that about half of the recipes can

be reused from other applications, and that they furthermore

share certain patterns, which makes writing new recipes easier.

Over time, we expect that more recipes can be reused and that

therefore less recipes need to be implemented from scratch.

Finally, note that an attacker is likely to only implement a very

limited number of DOP gadgets for one specific payload.

VII. DISCUSSION

In this section, we discuss the security implications of the

possibility to write complex DOP programs, limitations of our

approach, and possible future work.

A. DOP Expressiveness

Our experiments have clearly shown that more powerful

DOP instances lead to more efficient DOP programs. Still, it is

also clear that remarkably little is necessary for DOP. E. g., our

branch-free transformation not only shows that the interactive

mode is just as expressive as the non-interactive mode, but also

that neither a virtual program counter nor conditional DOP

gadgets are necessary.

Furthermore, we have shown in the Interpreter example,

that the data-movement DOP gadgets can express one an-

other, i. e., that having either mov or load or store can

be sufficient. The Wireshark example again lowers the bar

for Turing-complete DOP by showing that one can express

arithmetic gadgets through data-movement, while the Mini-

Server example shows that data-movement gadgets can express

arithmetics. Lastly, none of our exemplary real-world target

applications has a native logical gadget.

B. System Interaction

I/O is certainly useful, but we argue that arbitrary compu-

tations in another program’s memory are useful on its own,

e. g., to change the program’s state or to compute values for

further attack steps, like the DOP scripts in our evaluation.

Naturally, DOP can only interact with the system, if the

necessary system calls happen to be reachable via data flows.

In this case, a recipe for a system call DOP gadget could

be crafted. Alternatively, one would have to alter the control

flow, i. e., use a recipe to wrap redirection, system call and

return. While this could certainly be facilitated by DOP, one

would cross the border of pure DOP. Similar to traditional

code-reuse, an attacker is much more likely to use DOP to

bootstrap an additional attack-phase to accomplish the chosen

task in an easier way.

C. Security Implications

Our exemplary DOP scripts demonstrate how DOP and

BYOSE can aid in leaking sensitive memory, in relocating

a ROP chain to bypass coarse-grained code-layout random-

ization, and in finding ROP gadgets on-the-fly to bypass fine-

grained code-layout randomization. However, there are other

attacks against more powerful defense primitives, which also

require a scripting environment. Thus, applications lacking a

scripting environment are immune to those attacks, unless,

of course, DOP is possible. E. g., one can bypass coarse-

grained CFI [52] by probing the memory for ROP gadgets still

usable even with the CFI policy in place. Evans et al. [53]

bypassed the 64-bit version of code-pointer integrity (CPI),

which protects sensitive pointers, by efficiently locating the

safe-region it uses to hide its metadata. Furthermore, variants

of XOM are vulnerable to runtime attacks deducting not-yet-

protected bytes [54].

We believe the recent progression of DOA and DOP indicate

that the research community should consider protecting data-

flow and data structures when designing new systems defenses.

D. Limitations

Our research prototype has several limitations, which we

want to discuss here together with their implications.

Data-Pointers. Our attacks may require a few data pointers

or offsets as input, which may have to be leaked or guessed

first. It can be argued that there are situations, where this is

not excluded by the presence of ASLR (e. g., static modules,

info leaks, process forks using the same memory layout,

incompatible defenses, etc.), but it means that our exploits

technically may not circumvent traditional ASLR. However,

regarding code-reuse attacks, defenses like fine-grained code

randomization [24] would be a stronger drop-in replacement

for ASLR, but since they do not need to modify the data

layout they are likely not to require such hard-to-guess data

pointers. Furthermore, analogously to attacks targeting code-

pointers [55], the GStreamer example shows that there are

applications, in which relative offsets instead of absolute

addresses suffice for DOP-attacks.

End-to-End Exploitation. While we deem this work to be

a substantial improvement in automating DOP, it does not

result in the fully automated construction of end-to-end DOP

exploits. Firstly, the definitions of an application’s DOP gad-

gets are not generated automatically. While we, conceptually,

use the output of previous work [20], the format and details

of said definition require manual effort. Secondly, embedding

the data structure in the application’s input and interfacing

the application is left to the attacker, although our tools

automatically generate the invocations to the interface.

Optimizations. Our prototype STEROIDS uses little traditional

compiler optimization, like constant folding or common subex-

pressions reuse. However, in exploitation, a slightly better or

smaller program may not merely be faster, but increase the

chance of success substantially.

E. Future Work

Naturally, many technical limitations mentioned above can

be seen as future work. However, we also want to discuss what

we feel to be conceptual gaps in our understanding of DOP.

Confined and arbitrary code-execution. Further examination

of the gap between DOP and arbitrary code-execution may be

worthwhile. E. g., DOP may enable Turing-complete compu-

tation, but its results can not always be saved in a suitable

format to interact with the outside of the DOP bubble.

Multi-Stage Bootstrapping. Our prototype does not reason

about incomplete or constrained DOP gadgets, but instead re-

lies on the attacker to create definitions or recipes for sufficient

DOP gadgets. Similarly, the possibilities of executing multiple

DOP gadgets in one step, like the mov-add to implement

the store for Wireshark or the double-mov to implement

the store/load for ProFTPd, are yet to be fully explored.

An adaptive interactive mode, which uses info leaks to adapt

the sequence or content of following DOP gadgets would also

pose an interesting opportunity. If the search for DOP gadgets

would support such bootstrapping, we suspect that many more

applications would allow BYOSE-attacks.

Defenses. Concrete DOP attacks can be prevented in many

ways: Fixing underlying vulnerabilities, data layout ran-

domization, data obfuscation, or constrained read-/write-

targets [12], [50]. Since DOP is arguably even more complex

than ROP, there are likely even more subtle ways to hamper

attackers. However, it remains a challenge to create efficient,

easy-to-apply defenses, which constricts the very concept of

DOP and DOAs.

VIII. RELATED WORK

This section provides an overview over orthogonal attacks

threatening modern defense mechanisms, the state of the art

for data-only attacks, and defenses trying to prevent data-only

attacks.

A. Orthogonal Attacks

Counterfeit-object oriented programming (COOP) [56]

achieves ROP-like capabilities using only full-function gadgets

comprised of the methods of suitably crafted objects, without

violating the non-C++-specific Control-flow graph (CFG).

Crash Resistance [57] allows to probe memory, even though a

careless probe should crash the application. In combination

with a full-function reuse technique, this can thwart code

randomization and schemes for information hiding. Blind

ROP [30] uses a side-channel to locate gadgets in an otherwise

unknown binary with a stack-buffer vulnerability. This requires

that the attacked server-application is restarted after a crash,

without being rerandomized. Control-Flow Bending [58] is a

code-reuse attack that exploits the coarse-grained nature of

some CFI implementations. They chain pairs of calls to stan-

dard library functions such as memcpy/printf and control

their arguments to achieve Turing-complete computation on

the data plane.

Conti et al. [59] show that current CFI- and Shadow Stack-

implementations are vulnerable to attackers controlling stack-

values though a heap-based vulnerability. Göktas et al. [52]

show that coarse-grained CFI does not prevent the execution of

call-site gadgets and entry-point gadgets. Control Jujutsu [60]

can circumvent even fine-grained CFI with a shadow stack,

because modern applications often use coding practices, which

exceed the limits of current pointer analysis. Snow et al. [61]

presented multiple attacks highlighting implementation pit-

falls of destructive code-read (DCR)-based defenses, whereas

BGDX [54] shows a more general attack deducing the location

of not-yet-protected gadgets.

Q [48] is conceptually similar to this work in that they

provide a language for exploit programming, too. The key

difference is that a) their language is more low-level than

SLANG, b) their languages is based on ROP gadgets, which

are much more regular across applications and easier to reuse.

The authors of Microgadgets [62] define classes of ROP

gadgets, and, trying to use those members with the fewest

bytes, implement higher-level operations. E. g., using multiple

xor-gadgets to implement a store, which is similar in

concept to our recipes, but without supporting the automatic

selection or recombination we achieve.

B. Data-Only Attacks

Chen et al. [11] have shown that attacking non-control-data

can have consequences just as severe as code-reuse attacks.

Memory Cartography [45] is an automatic way to create a

net of memory references to navigate reliably through data

structures, and can be used it to create data-only exploits

(DOE), which are robust to ASLR. Hu et al. presented a tech-

nique called dataflow stitching [22], which analyses potentially

corruptible data-flow in an application, especially with regard

on how to chain individual data-flows. However, their attacks

are targeted to enable specific attacks targeting the peculiarities

of a particular application, much in the spirit of Chen et al..

Based on these stitching techniques, however, they recently

developed what is now called DOP [20]. The authors not only

show that DOP often allows Turing-complete computation,

but also that DOP gadgets are frequently available. However,

they focus mainly on gadget search, and leave both the DOP

instance setup and the payload preparation to manual work.

Block-Oriented Programming [21] accepts a script in a

high-level language and a read/write-primitive as input. In a

nutshell, it then tries to solve the constraints a given program

has, to ultimately synthesize the script using data-oriented

techniques. It does so with a high degree of automation, but the

authors also show that their approach of program synthesis via

constraint solving is NP-hard. Thus, the synthesized programs

are rather simple, essentially only making sure that some

data ends up in a sensitive sink. We would argue that these

programs still belong to the step of DOP instance setup.

In contrast, this paper is mostly not concerned with DOP

gadget search, or the DOP instance setup, but instead focuses

on the payload preparation, which is automating the process of

creating the data structures that drive an application to execute

the many instructions of a DOP program.

C. Defenses against Data-Oriented Attacks

Current countermeasures against data-flow attacks seem to

mirror those against control-flow attacks. Lin et al. [19] and

SALADS [18] randomize the layout of data structures. Both

data-randomization [16] and Data Space Randomization [17]

masks data in-between uses by XOR-ing them with random

values. The authors of HARD [15] take this concept to the

hardware-level, with a customized RISC-V architecture. These

five techniques are based on introducing randomness, but may

not protect all data and furthermore require source code, which

makes them unsuitable for protecting commercial off-the-shelf

(COTS) binaries. ValueGuard [14] inserts canary values in-

between buffers and other data to detect a buffer overflow.

Bhatkar et al. [63], shuffle functions, randomize heap object-

locations and location of the stack, and use separate stacks for

stack buffers. Both approaches significantly hamper DOAs, but

may not protect against such attacks in all cases (especially if

they are not based on buffer overflows).

Analogous to CFI, Data-flow integrity (DFI) [13] uses

a statically determined data-flow graph to restrict the data-

flow at runtime. Write-integrity testing (WIT) [12] analyses

a program to color instructions and memory objects. It then

ensures at runtime that instructions only write to objects with

a matching color. CUP [64] combines memory-maps with fat-

pointers to ensure spatial and (probabilistic) temporal memory

safety, even for stack-variables. HardScope [50] carries the

concept of a variable’s visibility-scope from the source code

to the runtime. These techniques incur high overhead, even

despite the fact that HardScope is implemented with hardware

support on an open-source microcontroller.

Exploits are naturally brittle, so we would expect most

defenses to thwart most unmodified DOP programs. In com-

parison to code-flow transfers, data is very dynamic and

touched virtually everywhere in a program, which makes it

hard to reason about and inefficient to check its integrity.

Thus, we expect that it will be even harder to create efficient

defenses, which prevent DOAs in principle rather than by

chance. E. g., the authors of HardScope acknowledge that

preventing the advanced exploit against GStreamer [51] that

we also use in our experiments is more challenging, because

it corrupts a heap object it could use legitimately as well.

Similar to CFI bypasses, some DOAs may fall through the

cracks, e. g., due to unprotected modules, false metadata, or

coarse class-granularity.

IX. CONCLUSION

In the last decade code-reuse defenses gained a lot of atten-

tion in academia and industry, which led to their wide-spread

adoption. However, the mitigations of the orthogonal DOA and

DOP attacks are still in the early stages of development.

In this paper we demonstrate that even constrained DOP in-

stances can be escalated in expressiveness to execute complex

DOP programs. We show that DOP programs aid in bypassing

code-reuse defenses to launch advanced code-reuse attacks

such as JIT-ROP. This BYOSE feature of DOP transfers

a whole class of just-in-time attacks to targets without a

built-in scripting engine. Our high-level SLANG language can

be used to implement portable DOP exploits and our DOP

compiler STEROIDS automatically constructs the required low-

level data structures to run them in target applications. We

hope that our results raise the awareness for DOA and DOP in

the research community and aid in the development of systems

defenses that consider the mitigation of these attacks.

ACKNOWLEDGMENT

This work was supported by the European Research Council

(ERC) under the European Union’s Horizon 2020 research

and innovation programme (ERC Starting Grant No. 640110

BASTION). In addition, this work was supported by the

German Federal Ministry of Education and Research (BMBF

Grant 16KIS0592K HWSec).

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity: Principles, implementations, and applications,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 13, no. 1,
2009.

[2] M. Zhang and R. Sekar, “Control Flow Integrity for COTS Binaries,”
in USENIX Security Symposium, 2013.

[3] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical Control Flow Integrity and Random-
ization for Binary Executables,” in IEEE Symposium on Security and
Privacy, 2013.

[4] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny,
“You Can Run but You Can’t Read: Preventing Disclosure Exploits in
Executable Code,” in ACM Conference on Computer and Communica-
tions Security (CCS), 2014.

[5] J. Gionta, W. Enck, and P. Ning, “HideM: Protecting the Contents of
Userspace Memory in the Face of Disclosure Vulnerabilities,” in ACM
Conference on Data and Application Security and Privacy (CODASPY),
2015.

[6] A. Tang, S. Sethumadhavan, and S. Stolfo, “Heisenbyte: Thwarting
Memory Disclosure Attacks Using Destructive Code Reads,” in ACM
Conference on Computer and Communications Security (CCS), 2015.

[7] J. Werner, G. Baltas, R. Dallara, N. Otterness, K. Z. Snow, F. Monrose,
and M. Polychronakis, “No-Execute-After-Read: Preventing Code Dis-
closure in Commodity Software,” in ACM Asia Conference on Computer
and Communications Security (ASIA-CCS), 2016.

[8] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer Integrity,” in USENIX Conference on Operating Systems
Design and Implementation (OSDI), 2014.

[9] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A. R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical Code Randomization
Resilient to Memory Disclosure,” in IEEE Symposium on Security and
Privacy, 2015.

[10] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A. Sadeghi, T. Holz, B. D. Sutter, and M. Franz, “It’s a TRaP: Table
Randomization and Protection against Function-Reuse Attacks,” in ACM
Conference on Computer and Communications Security (CCS), 2015.

[11] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data Attacks Are Realistic Threats,” in USENIX Security Symposium,
2005.

[12] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
memory error exploits with wit,” in IEEE Symposium on Security and
Privacy, 2008.

[13] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in USENIX Conference on Operating Systems
Design and Implementation (OSDI), 2006.

[14] S. V. Acker, N. Nikiforakis, P. Philippaerts, Y. Younan, and F. Piessens,
“Valueguard: Protection of native applications against data-only buffer
overflows,” in Information Systems Security - International Conference
(ICISS), 2010.

[15] B. Belleville, H. Moon, J. Shin, D. Hwang, J. M. Nash, S. Jung, Y. Na,
S. Volckaert, P. Larsen, Y. Paek, and M. Franz, “Hardware assisted
randomization of data,” in Symposium on Recent Advances in Intrusion
Detection (RAID), 2018.

[16] C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, and M. Castro, “Data
randomization,” Technical Report TR-2008-120, Microsoft Research,
2008. Cited on, Tech. Rep., 2008.

[17] S. Bhatkar and R. Sekar, “Data space randomization,” in Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2008.

[18] P. Chen, J. Xu, Z. Lin, D. Xu, B. Mao, and P. Liu, “A practical
approach for adaptive data structure layout randomization,” in European
Symposium on Research in Computer Security (ESORICS), 2015.

[19] Z. Lin, R. D. Riley, and D. Xu, “Polymorphing software by randomizing
data structure layout,” in Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2009.

[20] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-Oriented Programming: On the Expressiveness of Non-control
Data Attacks,” in IEEE Symposium on Security and Privacy, 2016.

[21] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks,” in ACM Conference on
Computer and Communications Security (CCS), 2018.

[22] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
generation of data-oriented exploits,” in USENIX Security Symposium,
2015.

[23] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
Software Diversity,” in IEEE Symposium on Security and Privacy, 2014.

[24] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary Stirring:
Self-randomizing Instruction Addresses of Legacy x86 Binary Code,”
in ACM Conference on Computer and Communications Security (CCS),
2012.

[25] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis,
“Compiler-assisted code randomization,” in IEEE Symposium on Secu-
rity and Privacy, 2018.

[26] C0ntex, “Bypassing non-executable-stack during exploitation using
return-to-libc,” http://www.infosecwriters.com/
text resources/pdf/return-to-libc.pdf, 2010.

[27] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Transactions
on Information and System Security (TISSEC), 2012.

[28] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented pro-
gramming: A new class of code-reuse attack,” in ACM Asia Conference
on Computer and Communications Security (ASIA-CCS), 2011.

[29] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans. Inf.
Syst. Secur., vol. 15, no. 1, pp. 2:1–2:34, 2012.

[30] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking Blind,” in IEEE Symposium on Security and Privacy, 2014.

[31] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security, 2010.

[32] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address Space
Layout Permutation (ASLP): Towards Fine-Grained Randomization of
Commodity Software,” in Annual Computer Security Applications Con-
ference (ACSAC), 2006.

[33] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
Gadgets: Hindering Return-Oriented Programming Using In-place Code
Randomization,” in IEEE Symposium on Security and Privacy, 2012.

[34] P. Team, “PaX address space layout randomization (ASLR),”
http://pax.grsecurity.net/docs/aslr.txt.

[35] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely
Rerandomization for Mitigating Memory Disclosures,” in ACM Confer-
ence on Computer and Communications Security (CCS), 2015.

[36] L. Davi, A. Dmitrienko, S. Nürnberger, and A.-R. Sadeghi, “Gadge me
if you can - secure and efficient ad-hoc instruction-level randomization
for x86 and ARM,” in ACM Asia Conference on Computer and Com-
munications Security (ASIA-CCS), 2013.

[37] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space random-
ization,” in USENIX Security Symposium, 2012.

[38] A. Gupta, S. Kerr, M. S. Kirkpatrick, and E. Bertino, “Marlin: A fine
grained randomization approach to defend against ROP attacks,” in
International Conference on Network and System Security (NSS), 2013.

[39] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-
R. Sadeghi, “Just-In-Time Code Reuse: On the Effectiveness of Fine-
Grained Address Space Layout Randomization,” in IEEE Symposium on
Security and Privacy, 2013.

[40] ——, “Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization,” in IEEE Symposium on Security
and Privacy, 2013.

[41] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code Randomization Resilient to (Just-In-Time) Return-
Oriented Programming,” in Symposium on Network and Distributed
System Security (NDSS), 2015.

[42] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan,
P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and W. Aiello, “Shuffler:
Fast and Deployable Continuous Code Re-Randomization,” in USENIX
Conference on Operating Systems Design and Implementation (OSDI),
2016.

[43] M. Backes and S. Nürnberger, “Oxymoron: Making Fine-grained Mem-
ory Randomization Practical by Allowing Code Sharing,” in USENIX
Security Symposium, 2014.

[44] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “ASLR-
Guard: Stopping Address Space Leakage for Code Reuse Attacks,” in
ACM Conference on Computer and Communications Security (CCS),
2015.

[47] R. Tarjan, “Testing flow graph reducibility,” in ACM Symposium on
Theory of Computing, 1973.

[45] R. Rogowski, M. Morton, F. Li, K. Z. Snow, F. Monrose, and M. Poly-
chronakis, “Revisiting browser security in the modern era: New data-
only attacks and defenses,” in IEEE European Symposium on Security
and Privacy (EuroS&P), 2017.

[46] R. Rojas, “How to make zuse’s z3 a universal computer,” IEEE Annals
of the History of Computing, 1998.

[48] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening
made easy,” in USENIX Security Symposium, 2011.

[49] L. Yujian and L. Bo, “A normalized levenshtein distance metric,” IEEE
transactions on pattern analysis and machine intelligence, vol. 29, no. 6,
pp. 1091–1095, 2007.

[50] T. Nyman, G. Dessouky, S. Zeitouni, A. Lehikoinen, A. Paverd,
N. Asokan, and A. Sadeghi, “Hardscope: Thwarting DOP with hardware-
assisted run-time scope enforcement,” 2017. [Online]. Available:
http://arxiv.org/abs/1705.10295

[51] C. Evans, “Advancing exploitation: a scriptless 0day exploit against linux
desktops,” https://scarybeastsecurity.blogspot.de/2016/11/0day-exploit-
advancing-exploitation.html, Nov. 2016.

[52] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
Control: Overcoming Control-Flow Integrity,” in IEEE Symposium on
Security and Privacy, 2014.

[53] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe,
S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi, “Missing the
Point(er): On the Effectiveness of Code Pointer Integrity,” in IEEE
Symposium on Security and Privacy, 2015.

[54] J. Pewny, P. Koppe, L. Davi, and T. Holz, “Breaking and fixing de-
structive code read defenses,” in Annual Computer Security Applications
Conference (ACSAC), 2017.

[55] E. Göktaş, B. Kollenda, P. Koppe, E. Bosman, G. Portokalidis, T. Holz,
H. Bos, and C. Giuffrida, “Position-independent Code Reuse: On the
Effectiveness of ASLR in the Absence of Information Disclosure,” in
IEEE European Symposium on Security and Privacy (EuroS&P), Apr.
2018.

[56] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. R. Sadeghi, and
T. Holz, “Counterfeit Object-oriented Programming: On the Difficulty
of Preventing Code Reuse Attacks in C++ Applications,” in IEEE
Symposium on Security and Privacy, 2015.

[57] R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz, “Enabling
Client-Side Crash-Resistance to Overcome Diversification and Informa-
tion Hiding,” in Symposium on Network and Distributed System Security
(NDSS), 2016.

[58] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in USENIX
Security Symposium, 2015.

[59] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen,
M. Qunaibit, and A.-R. Sadeghi, “Losing control: On the effectiveness
of control-flow integrity under stack attacks,” in ACM Conference on
Computer and Communications Security (CCS), 2015.

[60] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of fine-
grained control flow integrity,” in ACM Conference on Computer and
Communications Security (CCS), 2015.

[61] K. Z. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose, and M. Poly-
chronakis, “Return to the Zombie Gadgets: Undermining Destructive
Code Reads via Code Inference Attacks,” in IEEE Symposium on
Security and Privacy, 2016.

[62] A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and M. Franz,
“Microgadgets: Size does matter in turing-complete return-oriented pro-
gramming.” in USENIX Workshop on Offensive Technologies (WOOT),
2012.

[63] S. Bhatkar, R. Sekar, and D. C. DuVarney, “Efficient techniques for
comprehensive protection from memory error exploits,” in USENIX
Security Symposium, 2005.

[64] N. Burow, D. McKee, S. A. Carr, and M. Payer, “Cup: Comprehensive
user-space protection for c/c++,” in ACM Asia Conference on Computer
and Communications Security (ASIA-CCS), 2018.

