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Abstract—Direct Anonymous Attestation (DAA) is a crypto-
graphic scheme that provides Trusted Platform Module (TPM)-
backed anonymous credentials. We develop TAMARIN modelling
of the ECC-based version of the protocol as it is standardised
and provide the first mechanised analysis of this standard. Our
analysis confirms that the scheme is secure when all TPMs are
assumed honest, but reveals a break in the protocol’s expected
authentication and secrecy properties for all TPMs even if only
one is compromised. We propose and formally verify a minimal
fix to the standard. In addition to developing the first formal
analysis of ECC-DAA, the paper contributes to the growing body
of work demonstrating the use of formal tools in supporting
standardisation processes for cryptographic protocols.

Index Terms—Direct Anonymous Attestation, symbolic verifi-
cation, TAMARIN PROVER, authentication, secrecy.

I. INTRODUCTION

Devices such as laptops, smartphones and tablets, which

connect to the Internet, are commonplace. Trusted computing

is one approach that enhances the security on these devices

by installing a “root of trust” (RoT), e.g., through a Trusted

Platform Module (TPM) [1], [2], ARM TrustZone Trusted

Execution Environment [3], Intel Software Guard Extensions

(SGX) [4], etc. These roots of trust are used to attest that

devices are in a “trustworthy” state, meaning that the devices

behave as expected for a specific purpose. It is desirable that

such device attestations be conducted in a privacy-preserving

manner to protect users, and reduce the knowledge adversaries

may learn. Two popular anonymous attestation schemes are

Direct Anonymous Attestation (DAA) [5] for the TPM, and

Enhanced Privacy ID (EPID) [6] for Intel’s SGX. In this paper

we focus on TPMs.

A TPM is a resource-constrained cryptographic co-processor

which is embedded within a commodity device which we

refer to as the host. The TPM supports (i) isolation: separate

and protected from the host in the event of compromise; (ii)
protected execution: ensures the operation is executed and not

interfered with; and (iii) secure storage: storage which is only

accessible by the TPM if the host is in a trustworthy state. The

Trusted Computing Group (TCG) reports there are billions of

TPMs installed in branded PCs, laptops and servers [7].

DAA is an anonymous digital signature scheme that provides

authentication and privacy, to ensure the integrity of devices.

There are two variants of a DAA scheme built from public-key

cryptosystems, the RSA-DAA and the Elliptic Curve based ECC-

DAA scheme respectively [8], [9], [10]. The ECC-DAA variant

is more efficient for low-end resource constrained devices [10]

which is appropriate for hardware RoTs.
ISO/IEC 20008-2:2013 [11] is implemented and deployed

widely today within TPMs, more specifically, including three

DAA related mechanisms: Mechanism 2 is an RSA-DAA scheme,

which is implemented in the TPM 1.2 specification Mechanism

3 is the EPID scheme, which does not split the TPM and host

operations, and which in the literature is called pre-DAA

and Mechanism 4, the focus of this work, is an ECC-DAA

scheme, which is implemented in early versions of the TPM

2.0 specification. The TPM API of ECC-DAA in the TPM 2.0

specification is designed to support two ECC-DAA schemes:

Mechanism 4 and a modification of Mechanism 3 with the

splitting operations. ISO/IEC 20008-2:2013 Mechanism 4 relies

on the use of a “secure and authentic channel” but leaves such

a mechanism out of scope. The standard refers to Chen et

al. [10] to provide an appropriate mechanism. Throughout this

paper we refer to the combination of ISO/IEC 20008-2:2013

Mechanism 4 and the recommended ways of implementing a

secure and authentic channel as I-MECH4.
Brickell et al. [12] state that an ECC-DAA scheme must

satisfy the notions of correctness, user-controlled anonymity

and user-controlled traceability. Intuitively these correctness,

security and privacy properties mean the following:

• Correctness: valid signatures are verifiable and linkable,

when needed;

• User-controlled anonymity: the identity of a device cannot

be revealed from the signature;

• User-controlled traceability: the host controls whether

signatures can be linked.

The ISO/IEC standard directly cites Brickell et al. [12] as the

reference for the scheme’s security and privacy properties.
There have been substantial efforts from the academic

community in the development of proofs analysing ECC-

DAA, including simulation [5], game-based [13] and more

recently within the UC-model [14]. The formal methods tool

PROVERIF [15] has been used to analyse symbolic abstractions

of DAA [16], [17], [18], [19]. These symbolic analysis efforts

have not covered the host and TPM being split roles. All of

these endeavours have helped to both find weaknesses in DAA

and guide the design decisions of future releases of DAA [20].
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A. Contributions

Our contribution in the paper is a complete, terminating

and provable symbolic model for the suite of ECC-DAA op-

erations with proofs of the security and privacy properties

analysed using the TAMARIN PROVER (TAMARIN) [21]. We

present a symbolic verification of the ISO/IEC 20008-2:2013

Mechanism 4, which is implemented in TPM 2.0. The analysis

performed covers all operations of the ECC-DAA scheme:

SETUP, JOIN, SIGN, VERIFY and LINK. Our main contributions

in this work are as follows:

1) We develop a symbolic model of I-MECH4. We model the

TPM and the host as two separate actors that communicate

over a secure channel. Note that our model does not restrict

the number of TPMs or hosts. The split of the hosts and

TPMs is consistent with recent computational proofs. The

roles of the hosts and TPMs are clearly separated and the

communication between the roles is not under the control

of an adversary, thus requiring the use of a secure channel.

We provide a faithful abstraction of the operations of ECC-

DAA which includes a representation of splitting an host

and a TPM that is not covered by previous work.

2) We have defined a method for performing symbolic non-

interactive zero-knowledge proofs for ECC-DAA within

TAMARIN. We provide the first concrete example of zero-

knowledge proofs in TAMARIN that did not require any

modifications or additions to the tool. The formal model

can be used in other protocol analysis containing zero-

knowledge proofs.

3) This is the first symbolic model to prove all security and

privacy properties of I-MECH4. Our analysis revealed a

man-in-the-middle attack such that the compromise of a

single TPM means that no other TPM can be authenticated

reliably, and secrecy cannot be guaranteed. We proposed

a solution for I-MECH4 based on the privacy CA protocol

by Chen et al. [22], [23], and this provably fixes the attack

found.

4) We present a clear mapping and encoding of I-MECH4

and its associated properties in a corresponding TAMARIN

model. Our model is annotated against the standards

document, which provides an easy way to validate that

the formal model is a faithful representation of the

standardised scheme. It also provides a foundational

formal model for future symbolic ECC-DAA analysis within

TAMARIN.

We provide all the artefacts needed to reproduce our results

in [24].

B. Related Symbolic Analysis Work

Our work significantly goes beyond the state-of-the-art

symbolic analysis of DAA schemes in the literature. Previous

symbolic analysis work by Backes et al. [16] introduced a

framework in the applied π calculus, for the reasoning and anal-

ysis of non-interactive zero-knowledge within the PROVERIF

tool. Preliminary analysis of the RSA-DAA operations was used

as a case study for their framework. The analysis revealed a

weakness in the JOIN operation showing that if a TPM A was

compromised and its endorsement key leaked then an adversary

could perform a JOIN impersonating A. This attack was then

fixed in the operation by including a TPMs identity in the zero-

knowledge proof. Additional analysis of RSA-DAA anonymity

in SIGN was performed, and showed that two DAA signatures

were indistinguishable. Work by Backes et al. analysed the

initial proposal by Brickell, Camenisch and Chen [5] and pre-

dates the standardisation of RSA-DAA in ISO/IEC 20008-2 2013

Mechanism 2. They do not consider a secure and authentic

channel. In this paper we find a similar attack even though our

model follows the recommended way of building a secure and

authentic channel.

Smyth et al. [17] found a vulnerability of the RSA-DAA

scheme where user privacy could be violated in the pres-

ence of a corrupt ISSUER and VERIFIER which collude. They

demonstrated that if a VERIFIER uses the same linking property

(basename) as the ISSUER, then the identity of a PLATFORM

can be revealed. An ISSUER could also be a VERIFIER and it is

not unreasonable that this single entity would have the same

basename in both operations. This is possible due to the way

in which the basename is computed, e.g., hash(bsn) for both

JOIN and SIGN. The privacy violation is fixed by making a

minor alteration to the RSA-DAA scheme which introduces a 0
or 1 bit in the computation of basename, e.g., hash(0 ‖ bsn),
for the operations JOIN and SIGN respectively thus preserving

untraceability. Again this work pre-dates the standardisation of

DAA in ISO/IEC 20008-2 2013, and the model was developed

using the initial standard defined by the TCG in version 1.2

revision 85 [25] in 2005.

Additional research on the ECC-DAA scheme by Smyth et al.

was presented in [18]. It is important to note that their model

does not provide a full abstraction of the scheme, because the

JOIN operation is omitted. Additionally, in the SIGN operation

the adversary was forbidden from re-blinding signatures which

limits the adversary ability. The authors analysed the user-

controlled anonymity property of ECC-DAA using observational

equivalence and this was shown to hold. However, no general

conclusions regarding anonymity could be made due to the

level of abstraction of the model. The authors state that the

focus of their work was on the ISO/IEC 20008-2:2011 draft

standard.

While a number of different symbolic modelling tools exist

including TAMARIN and PROVERIF, we chose TAMARIN to

model ECC-DAA due to the class of protocols it has successfully

been able to analyse including TLS 1.3, eVoting, public-key

infrastructure and Intelligent Transportation Systems [26], [27],

[28], [29].

C. Paper Organisation

The paper is organised as follows. In Section II we describe

the ECC-DAA scheme, its suite of protocols and the security

and privacy properties claimed by Brickell et al. in [12].

Section III describes an overview of the fundamentals of the

TAMARIN PROVER and our TAMARIN model. In Section IV, we

describe our threat model and formalise the security and privacy
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guarantees. Section V describe our results and Section VI

provides conclusions and future work.

II. ECC-BASED DIRECT ANONYMOUS ATTESTATION

In this section we provide a concise description of the

ECC-DAA scheme’s operations, as defined in ISO/IEC 20008-

2:2013 [11], necessary for understanding our symbolic model.

Direct Anonymous Attestation [5] is an authentication

mechanism that enables the provision of privacy-preserving

and accountable authentication services. ECC-DAA is based on

group signatures that give strong anonymity guarantees, unlike

traditional digital signature mechanisms [30], [31], [32] that

are used to provide entity authentication, non-repudiation and

data integrity.

Traditional digital signature mechanisms enable the holder(s)

of a private key to generate a digital signature for a message.

The related verification key (public key) is then used to verify

the validity of a signed message. In contrast, an anonymous

digital signature mechanism is a special class of a digital

signature where no (authorised or unauthorised) entity can

discover the identity of the user who signed the message.

As with traditional digital signature mechanisms, anonymous

digital signature mechanisms are based on asymmetric cryp-

tography. The difference between traditional digital signature

mechanisms and anonymous digital signatures is that to verify

an anonymous signature a user makes use of a group public

key (group signature) or multiple public keys (ring signature),

neither of which is bound to an individual user.

The ECC-DAA scheme is an anonymous digital signature

mechanism, and the motivation for applying ECC-DAA is the

ability to split the signer role between a secure device (TPM),

and a commodity computing device (host). In ISO/IEC 20008-

2:2013 Mechanism 4 a TPM is referred to as a principal signer

and a host is referred to as an assistant signer. Throughout

the paper a principal signer is referred to as PSIGNER and

an assistant signer as ASIGNER. Essentially, a PSIGNER can

sign any arbitrary message collaboratively with an ASIGNER

which is the commodity device. This split utilises the high

level of security offered by a PSIGNER, in conjunction with

the computational ability and storage capacity offered by an

ASIGNER (see [10] for a practical example).

An ECC-DAA scheme considers a set of entities: ISSUERs,

ASIGNERs, PSIGNERs, and VERIFIERs; the ASIGNER and PSIGNER

together form a trusted PLATFORM. The ISSUER is a trusted

third-party responsible for attesting and authorising PLATFORMs

to join the network of PLATFORMs. A VERIFIER is any other

system entity or trusted third party that can verify a PLATFORM’s

credentials in a privacy-preserving manner using ECC-DAA

operations; without the need of knowing a PLATFORM’s identity.

The ECC-DAA scheme is a two-phase process with five

operations. Phase one consists of SETUP and JOIN, while phase

two uses SIGN, VERIFY and LINK. The interactions between

entities involved in the JOIN, SIGN and VERIFY operations are

shown in Figure 1. The DAA notation followed in this paper

are as presented in the ISO/IEC 20008-2:2013 [11] document.

Briefly, [x]P is a multiplication operator that takes a positive

integer x and a point P on an elliptic curve. The ’+’ operator

represents addition, ’−’ operator is subtraction, and ’‖’ operator

is the concatenation of two data items.

We next describe each of the ECC-DAA operations in turn.

SETUP: The SETUP operation initialises the system with the

security parameters (Ki, P1), for each of the operations and

long-term parameters of the ISSUER, and these parameters are

published to all entities. Prior to this operation, we assume

during the manufacture time of a PSIGNER, an endorsement

key-pair (skekps
/ pkekps

) is embedded by the manufacturer in

read-only memory (ROM) and ISSUERs have access to public

endorsement keys. Furthermore, a unique internal secret value

DAASeed is set, and a monotonic counter (cnt) is implemented on

the PSIGNER. An external counter is available to the ASIGNER.

The ISSUER also generates its ECC-DAA key-pair (skI / pkI ),

and publishes its public key.

JOIN: This operation of the ECC-DAA scheme is run between

a PLATFORM (the ASIGNER and PSIGNER) and an ISSUER. The

JOIN operation executes as shown in Figure 1a and upon

successful completion attests a PLATFORM as being a genuine

member of the group. The PLATFORM receives a credential

(cre) from the ISSUER for use in future communications with

VERIFIERs. The cre attests that the PSIGNER is valid, and the

PSIGNER computes the D element of cre containing the ECC-

DAA secret key tsk. The communication is conducted over a

public channel between the ISSUER and an ASIGNER. The TCG

recommends that encryption is applied to this communication

using the TPM endorsement keys [33].

SIGN / VERIFY: The SIGN operation is run between a given

PSIGNER and its associated ASIGNER when a VERIFIER sends

a message to be signed to the ASIGNER. The VERIFIER then

performs the subsequent VERIFY operation. Other VERIFIERs in

the group can also verify a signed message. Figure 1b describes

the various steps of the SIGN and VERIFY operations, and the

interaction between entities.

An ASIGNER initiates the SIGN operation when it receives

a message, nV , from a VERIFIER. The ASIGNER SIGN step of

the operation constructs one portion of the ECC-DAA signature

which includes randomising the ASIGNER’s credentials cre

yielding R, S, T and W . The VERIFIER basename, bsn, which

is either a fixed string value associated with the VERIFIER or

not specified (denoted by the special symbol ⊥), determines

whether J is a randomly selected group element or fixed as

H1(bsn). The latter case is used when signatures are required

to be linkable. The ASIGNER sends its part of the ECC-DAA

signature to the PSIGNER which then uses these values to

construct a proof of knowledge of its secret key tsk which

it returns to the ASIGNER. The ASIGNER completes the SIGN

operation by incorporating the various computed values into

the signature σ, which the VERIFIER can now use to verify

that the message has been signed by a PLATFORM that is a

member of the group. These proofs convince a VERIFIER that

a message is signed by a ECC-DAA key that was certified by

the ISSUER, without knowledge of the PSIGNER’s ECC-DAA key

or cre (VERIFY). Of course, the VERIFIER has to trust that the

ISSUER only issues cres to valid PSIGNERs.
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PSigner

skekps , pkI

ASigner

pkI

Issuer

pkekps , skI

Issuer Join One

Fresh

km, nI .

{|km, nI |}pkekps
{|km, nI |}pkekps

PS Join One

tsk←PRF (DAASeed||KI ||cnt)

Decrypt message

to recover km and nI

Fresh u, Compute:

Q2← [tsk]P1; U ← [u]P1
v ← H2(P1||Q2||U ||pkI ||nI)

w ← u+ [v]tsk
γ ←MAC(Q2, v, w)km

Q2, v, w, γ Q2, v, w, γ

Issuer Join Two

verifyMAC(m,γ, km) = accept

Compute

U ′ ← [w]P1− [v]Q2;
v′ ← H2(P1||Q2||U ′||pkI ||nI)

if v′ �= v then abort

Fresh r

Generate creI ←< A,B,C >

A← [r]P1; B ← [skI ]A
C ← [skI ]A+ [rskI ]Q2

{|creI |}pkekps
{|creI |}pkekps

PS Join Two

Decrypt message to recover creI

Compute D ← [tsk]B
cre←< A,B,C,D >

cre

AS Join Four

verifyCre(A,B,C,D, pkI) = accept

store cre

aliveness

(a) JOIN operation

PSigner

tsk

ASigner

cre, pkI , bsn

Verifier

bsn, pkI

Verifier Sign One

Fresh nV , m

nV , m

ASigner Sign One

Fresh l

Randomise ĉre ← <R, S, T, W>

R← [l]A; S ← [l]B
T ← [l]C; W ← [l]D

Compute

c← H3(R,S, T,W, nV )
if bsn = ⊥ then

Fresh J

else J ← H1(bsn)

c, J, S,m, bsn

PSigner Sign One

Compute

K ← [tsk]J
Fresh nT , r

Compute

R1 ← [r]J ; R2 ← [r]S
h←

H4(c||m||J ||K||bsn||R1||R2||nT )
s← compute_s(r, tsk)

K, h, s, nT

ASigner Sign Two

Construct signature

σ ←< R,S, T,W,

J,K, h, s, nV , nT >

σ, m

Verifier Verify One

verifyBlindCre(R,S, T,W, pkI)
= accept

R′

1 ← [s]J − [h]K
R′

2 ← [s]S − [h]W
c′ ← H3(R||S||T ||W ||nV )

h′ ←
H4(c

′||m||J ||K||bsn||R′

1||R
′

2||nT )
if h′ �= h then abort

(b) SIGN/VERIFY operation

Fig. 1: Symbolic representation of ECC-DAA message flow diagrams

LINK: The LINK operation may be used by a VERIFIER to

check if two or more signatures, σ, are linked. Linkability

is controlled in ECC-DAA by the value of the basename bsn

either being set or unset. If bsn = ⊥ then an ASIGNER will

select a fresh group element, J , uniformly at random, else

it computes J = H1(bsn). The ASIGNER then sends J to its

PSIGNER, which then computes K = [tsk]J . Thus, if J is

always a hash of bsn then a PLATFORM’s messages will be

linkable because J and K remain constant in all ECC-DAA SIGN

responses. This assumes that each of the signatures came from

the same PLATFORM signed with its ECC-DAA secret key tsk.

III. MODELLING THE PROTOCOL IN TAMARIN

A. The TAMARIN PROVER

TAMARIN [21], [34] is a state-of-the-art protocol verification

tool for symbolic modelling. It supports unbounded verification,

mutable global state, and flexible user- defined equational

theories. Protocols are modelled using multiset rewriting rules

and properties are specified in a first-order logic fragment.

The tool offers automatic verification succeeding in many

cases, as well as an interactive verification mode with manual

proof tree traversal. The tool provides both proofs, and

disproofs by counter-example, but may not terminate due to

the undecidability of the underlying problem.

Dolev-Yao adversary. We use the standard adversary in

the symbolic model: the Dolev-Yao (DY) adversary [35]. The

DY adversary is a very strong network adversary, with full

control over the network: it can intercept, block, replay, and

send any message on the network. Additionally, the adversary

learns all the content in all messages it sees, unless they are

cryptographically protected. Furthermore, if the DY adversary

knows (or has derived) the appropriate keys, it can encrypt and

decrypt messages. The cryptography used is assumed perfect,

i.e., the hash functions used are cryptographically secure and

the adversary cannot encrypt or decrypt messages without

knowledge of the right key. The precise capabilities of the

adversary and the assumptions on the cryptographic primitives

used are encoded in the equational theory specified.

Terms and equations. In a symbolic model, all messages

are described as terms, for example aenc(m, pk(k)) represents

the asymmetric encryption of some plaintext m under a public

key pk(k), rather than dealing with bitstrings and probabilities,

as is done in the computational model. Then, one defines a

signature Σ as a number of operators, e.g., aenc, each equipped
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with an arity, i.e., the number of arguments it accepts (Note that

Σ is not a cryptographic signature). Terms are constructed by

applying operators to constants, variables, and other operators

recursively.

The cryptographic properties of the used primitives are then

specified as equations. The example of asymmetric encryption

introduced above would also contain a decryption operator

adec, and an equation adec(aenc(m, pk(k)), k) = m that

allows extracting the plaintext message m using the private

key k associated with the used public key pk(k). Note that

the equations specified completely characterise all possible

derivations, as the perfect cryptography assumption is used,

meaning there is no other way to break the used primitives.

A set of equations, together with the underlying signature, is

called an equational theory. TAMARIN allows convergent (i.e.,

both confluent and terminating) equational theories [36] that

additionally satisfy the Finite Variant Property [37].

Facts, states, rules, and labelled multiset rewriting.
Distinguished terms, called facts, consisting of a top-level

fact symbol of fixed arity and with standard terms as arguments,

build the state. Specifically, a state is a finite multiset of facts,

and it represents the current state of a protocol’s execution,

including all participants local states, the adversary knowledge,

and messages currently on the network. The distinguished

Fr(x) fact represents fresh values and the semantics of all

other facts is given by the specified rules. The rules model

the possible actions of protocol participants as well as the

adversary actions.

Rules are given as triples, written [l]--[a]->[r] with l, a,

r finite sequences of facts, representing the premises, actions,

and conclusions respectively. As a general DY is considered, a

modelling convention is that messages are sent to the network

using a special Out fact, received from the network by In and

the adversary knowledge is represented by K facts. Note that the

adversary can apply all the equations given in the equational

theory specified and modify messages as it wants, assuming it

has the necessary cryptographic keys available.

The set of rules specifying the protocol and adversary then

yields a labelled transition system, with the initial state being

the empty multiset. TAMARIN changes its state multiset by

finding an applicable rule, i.e. one whose premises match

existing facts within the current state multiset to obtain a new

state multiset where the facts used in the premise are replaced

with those from the rule’s conclusion. The actions associated

with each rule instance in the execution yield the trace. Each

rule instance and all associated actions are timestamped with

the timepoint of their occurrence with ordered timepoints.

Properties are then specified on top of the action trace using

first-order logic. First, we give an example protocol, and then

will consider properties in more detail.

Example 1. Let us consider a simple protocol that sends a

message encrypted under a public key. The first rule creates

a public/private key pair, which can be used arbitrarily often.

The second rule describes the sender, which picks a fresh

value to send, and looks up the intended recipient’s public

key and outputs that value encrypted under this key. The third

rule shows the recipient receiving this message, looking up its

own private key k and accepting the message only if it was

encrypted under the related public key pk(k). Otherwise the

rule cannot be triggered.

Create: [Fr(~k)]--[]->[!Ltk($A,~k),!Pk($A,pk(~k))]
Send: [!Pk($R,pubk), Fr(~m)] --[Sent(~m)]-> [Out(aenc(~m,pubk))]
Receive: [!Ltk($R,k), In(aenc(m,pk(k)))] --[Received(m)]-> []

Security property specification. Trace properties such

as secrecy and agreement are expressed as first-order logic

formulae. These formulae introduce variables to reason about

the ordering of actions traces ([38] provides more detail). A

formula φ may hold on trace tr and we lift the semantics

to a set of traces Tr. We say a formula holds for all traces

when it is satisfied by any trace in the set (which we use to

prove security properties), and we say that there exists a trace

satisfying the formula (“exists- trace” semantics) when there

is at least one trace on which the formula holds. We use this

semantics in general to show that some protocol is executable,

or a specific state can be reached.

Example 2. Extending Example 1 we define an executable
property which states that the final rule may be executed:

lemma executable_example: exists-trace
"Ex z #i. Received(z) @#i"

and this formula is satisfied in the example by executing

the three rules once each, in order, with the message being

forwarded from the Send rule’s Out fact to the Receive rule’s

In fact by the network adversary.

An additional feature we make use of is that of restrictions.

Restrictions are useful to limit the set of traces one wants

to consider in protocol analysis. We employ a number of

restrictions on our model of ECC-DAA to restrict the branching

behaviour.

In addition to trace properties, TAMARIN supports equiv-

alence properties as well. These are necessary for privacy

properties such as unlinkability. For equivalence properties it is

required that two instances of the protocol are indistinguishable

for the adversary. The instances are defined by use of diff -terms

(taking two arguments), and in essence yield two versions of the

same protocol, with the differences limited to the terms under

the diff -operator. TAMARIN checks observational equivalence

on this (see [39] for details) by comparing the two resulting

systems and ensuring that the adversary cannot distinguish the

two for any protocol execution and adversary behaviour.

B. The model

Using the TAMARIN PROVER we implemented a symbolic

model of ECC-DAA that captures the behaviour and split roles

of I-MECH4. Our model captures these behaviours in the

presence of a DY adversary. From Figure 1b it is clear that the

functionality of the protocol is different depending on whether

the basename (bsn) is fresh or fixed. This distinction is best

captured using different variants of our model to aid traceability

and will only be important during the analysis. It would have

been possible to produce one model to reflect the functionality
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of both J being fixed and fresh but this would have meant

duplication of rules and introduction new state facts to control

the firing of the rules. This would have made the model less

readable. By producing two variants of the model it means that

the rules within each variant are more easily matched to the

functionality of the ECC-DAA scheme and provides a traceable

mapping to the standards document.

Our model is more comprehensive than [18] as it is finer-

grained and closer to the standards document. In addition, we

also, for the first time, capture in a symbolic setting, all the

authentication and privacy properties of ECC-DAA in a single

model. The full TAMARIN model is available [24] and contains

23 rules and comprises of over 1300 lines of TAMARIN code.

We begin by describing the equational theory for our ECC-

DAA models. We construct a signature, Σ, to capture the

cryptographic operators, where aenc/2 is a binary operator

and more generally f/n introduces an n-ary operator called f .

Σ = {aenc/2, adec/2, pk/1, MAC/2, verifyMAC/3,

accept/0, H2/5, multp/2, plus/2, minus/2, U/2,

calcU/1, verifyCre/5, verifyBlindCre/5, H1/1,

H3/5, H4/8, PRF/3, compute_s/2, calcR1/1,

calcR2/1, checkAnon/5, deanon/0}
The aenc, adec and pk operators come from the

asymmetric-encryption built-in. The multiplication operator

is represented as ’multp’, addition by ’plus’, and subtraction

by ’minus’. The properties of the other operators in Σ are

defined as equations and we describe each in turn.

Equation 1. Message Authentication Codes (MAC): To

model MACs used in the JOIN operation for providing authen-

tication and integrity during the challenge-response between a

PSIGNER and ISSUER we define the following equation:

verifyMAC(m,MAC(m, k), k) = accept

Given a message m, the MAC of m signed under key k,

and the key k, we can model that a MAC has been signed

and constructed correctly with knowledge of k. Successful

application of this equation will reduce to the accept constant.

Equation 2. DAA Credential Verification: ECC-DAA has two

different credential verification stages, one which verifies that

a credential, cre, received by the ISSUER and signed by a

PSIGNER was correctly constructed in the JOIN operation. The

other allows other VERIFIERs to verify a randomised credential

ĉre in the SIGN operation.

One of the final steps of the JOIN operation is to verify

that the credentials, (A,B,C), are received from the ISSUER

and that the element D constructed by the PSIGNER, that is

dependent on B also originates from the same ISSUER. To

achieve this we express the equation verifyCre to take A, B,

C, D and the ISSUER’s pkI as inputs. If the ISSUER’s secret

key embedded within A, B, C and D corresponds to the same

ISSUER pkI , then the cre is valid.

verifyCre(A,B,C,D, pk(skI)) = accept

The equation in the model fully defines A, B, C and D to be

the appropriate terms, for example A is multp(creRandom,P1).

During the VERIFY operation VERIFIERs are required to

validate the randomised credential, ĉre=< R,S, T,W >
that is constructed from A, B, C and D by multiplying

i by a randomly chosen factor l. The randomising of the

credential takes place during the SIGN operation by the ASIGNER,

where each element of the cre is randomised by l; for

example, multp(l,multp(creRandom,P1)), etc. The validation

is expressed as the equation verifyBlindCre, and as in the

previous equation ensures that the secret key of the ISSUER

and public key of the ISSUER match. Again R, S, T and W
in the equation are fully expanded in the model.

verifyBlindCre(R,S, T,W, pk(skI)) = accept

The following two equations capture our mathematical

abstractions of the ECC-DAA non-interactive proof of knowledge

within our ECC-DAA model.

Equation 3. Calculation of U ′:
The zero-knowledge proof of knowledge (ZKPK) in the

ISSUER JOIN Two step of the JOIN operation (Figure 1a) is that the

two values of the hash H2, i.e., v and v′, are computed equally

by the PSIGNER and ISSUER respectively. The structures of the

hashes are identical, differing on only the U term. Therefore,

to demonstrate ZKPK in the symbolic setting we are required

to show that U ′ is equal to U during the construction of the

ISSUER’s v′. This is defined using the following equation.

calcU(minus(multp(w,P1),multp(v,Q2))) = U(u, P1)

The functionality of the equation represents the following

reduction:

U ′ = [w]P1− [v]Q2

= [u+ vtsk]P1− [v][tsk]P1

= [u]P1 + [vtsk]P1− [vtsk]P1

= [u]P1

= U

In the TAMARIN model the equation is fully expanded to

define w and v explicitly and what we show here is the structure

of the equation.

Equation 4. DAA Signature Verification: The ZKPK in

the ECC-DAA VERIFY operation requires that the two hash

values, i.e., h and h′, are the same, and h is defined in

PSIGNER SIGN One in Figure 1b. Their H4 structures are

identical apart from the R1 and R2 terms in h and R′
1 and R′

2

terms in h′. Therefore, we provide two equations to state that

R′
1 reduces to R1 and similarly for R′

2:

calcR1(minus(multp(s, J),multp(h,K))) = multp(r, J)

and R′
2 is equal to R2:

calcR2(minus(multp(s, S),multp(h,W ))) = multp(r, S)

Similar to the above calcU equation the details of each term

within calcR1 and calcR2 are fully expanded in the TAMARIN

model.
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Equation 5. DAA De-anonymisation: In the event a PSIGNER

DAA key, tsk, is compromised and known by the adversary, it

is possible to identify messages produced by a specific PSIGNER.

We captured this in the checkAnon equation which takes as

its input the following terms from a given ECC-DAA signature:

checkAnon(S,W, J,K, tsk) = deanon

If the tsk matches in these formulae then the signature can be

linked to the PSIGNER whose tsk was revealed. The function-

ality of the equation represents the following computation:

S = [l]B

W = [l]D = [l][tsk]B = [tsk][l]B = [tsk]S

K = [tsk]J

Hence, an adversary with knowledge of a PLATFORMs DAA

key, tsk, and DAA signatures can check whether W and K
can be computed by multiplying S and J by tsk respectively

to reveal whether the PLATFORM produced the signature.

Channels. Chen et al. [10] note that the communication

between an ASIGNER and a PSIGNER is done in a secure

manner. In our TAMARIN model we define the communication

between these two entities over a Secure Channel to provide an

appropriate abstraction. Secure channels have the property of

being both confidential and authentic. This means that an

adversary can neither modify nor learn messages that are

sent over the channel. They have previously been used in

TAMARIN [40] and we follow their modelling ideas.

Secure channel communication uses two rules, ChanOut_S

and ChanIn_S, to create an extra layer of abstraction based on

linear facts to explicitly model secure channels. This prevents

communication being broadcast via the adversary, over the

standard In and Out channels.

rule ChanOut_S:
[ Out_S( $A, $B , x ), !Paired( $A, $B ) ]
--[ ChanOut_S( $A , $B, x ) ]->
[ Sec( $A, $B, x ) ]

The fact Out_S($A,$B,x) models that the PSIGNER or ASIGNER

(A, B or vice versa) sends a message x on the secure channel.

The persistent fact !Paired($A,$B) is a predicate on the channel

storing state information about the one to one association

between a ASIGNER and PSIGNER. This ensures that only the

designated PSIGNER can communicate with its corresponding

ASIGNER. The conclusion of the rule is a linear fact containing

the message x, that the adversary cannot see or forge.

rule ChanIn_S:
[ Sec( $A, $B, x ) ]
--[ ChanIn_S( $A, $B , x ) ]->
[ In_S( $A, $B , x ) ]

The linear fact Sec(...) ensures that the secure channel is

replay protected, i.e., when the message x is consumed by

one of the paired entities, x is not stored to be replayed later

as a consequence of the shared In_S($A,$B,x) fact which is

not known to the adversary. The secure channel is justified as

being replay protected as this channel is only ever used on the

PLATFORM between the ASIGNER and PSIGNER.

Recall that in a JOIN operation the communication between

an ISSUER and a PSIGNER needs to be encrypted under the

public endorsement key. Note that — unlike the secure channel

between PSIGNER and ASIGNER— this communication can be

observed by the adversary, as shown in Figure 2.

C. Model Abstractions and Restrictions

To simplify the number of cases in the proof, we consider

the VERIFIER to be an abstract role. This means that a VERIFIER

is not a PLATFORM in our model whereas in reality it could

be another PLATFORM or some other device, e.g., embedded

device. An abstraction of this role is possible as a PSIGNER is

not required to verify a ECC-DAA signature. We have abstracted

the ISSUER’s public key (X,Y ) and private key (x, y) to pkI
and skI respectively.

The most important abstraction is how we modelled “a
secure and authentic channel between the principal signer and
the group membership issuer”, since the definition of such a

channel was outside the scope of the standards document. As

stated earlier ISO/IEC 20008-2:2013 refers to Chen et al. [10]

who propose the use of a MAC and the TCG propose the

use of a public endorsement key [33] to create a secure and

authentic channel within Mechanism 4. The model of using a

MAC is already captured by Equation 1 and in the next section

we describe our abstraction of the TCG mechanism.

We also employ a number of restrictions in our model of

ECC-DAA (we refer to them as A1 - A6 to avoid confusion with

R1 and R2 in the model description):

A1 - Single Issuer: We consider the ISSUER to be a distinct

role in the protocol. This choice has been made to simplify

the proof, and it is important to note that the ISSUER can still

be a corrupt entity.

A2 - Unique Pairing: We constrain a PSIGNER to belong to

a single unique ASIGNER, and a ASIGNER to have exactly one

PSIGNER. This models an ideal system and is representative of

the real world.

A3 - Single Platform Initialisation: Once a PLATFORM

has performed its SETUP to generate its unique values and

endorsement key-pair, it is not allowed to do this again. This

restriction captures the manufacture process where secrets are

installed to a PSIGNER at manufacture time.

A4 - Equality checks: We use the TAMARIN equality

restriction so that all instances of an equality action in a trace

ensure that both arguments within an action are equal. We use

them for modelling the verification of MACs, cre, ĉre and

ECC-DAA signatures.

A5 - Inequality checks: Such checks are used to ensure that

two arguments of a check are not equal in a trace. This is used

specifically during the PLATFORM initialisation rule to specify

the ASIGNER and PSIGNER identities are different, which is also

the case in practice.

D. Modelling the ECC-DAA operations

In Section II we noted that there are five ECC-DAA operations

and each of them match to one or more TAMARIN rules. This

section summarises the mapping from operations to TAMARIN
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Fig. 2: Network with all communication routed through the adversary

rules and provides some illustrative examples. The SETUP

operation corresponds to two rules, one to capture the setup of

the ISSUER and one to setup a PLATFORM. The LINK operation

maps to one rule. The JOIN operation maps to eight rules,

representing ISSUER JOIN One etc. from Figure 1a and three

of the rules represent the forwarding of messages from the

ISSUER to the PSIGNER via the ASIGNER over the secure channel.

Similarly the SIGN operation maps to four sign rules. The

VERIFY operation maps to two rules in order to capture the

behaviour of a VERIFIER verifying the message it sent and

verifying a message sent by a different VERIFIER.
The rule for setting up a PLATFORM is defined as follows:

rule PLATFORM_SETUP:
let pk_ek = pk( ~sk_ek ) in

[ Fr( ~sk_ek ) ]
--[ PlatformInit (), PlatformStart( $AS , $PS ),

Create( $PS ), Neq($AS , $PS),
UniqueExecJoin( ’PS_SETUP ’ ),
Unique_Pairing( $PS ),
Unique_Pairing( $AS ) ]->

[ !F_PSEk($PS ,~sk_ek),!F_PSPkEk($PS ,pk_ek),
!F_Paired($PS ,$AS),!F_Paired($AS ,$PS),
St_PlatformInit( $AS , $PS ),
Out( pk_ek ) ]

The PLATFORM_SETUP rule initialises the PLATFORM, which is

a combination of an ASIGNER and PSIGNER.
In the premise three fresh terms are generated to compute

the tsk and the PSIGNER endorsement key-pair. The ISSUER

parameters Ki are also required in the generation of tsk. There

are a number of action labels, for example Unique_Pairing

that captures the restriction A2. The conclusion of the rule

stores the generated terms and introduces a linear fact to

control moving to the next step of the ECC-DAA scheme. Note

that the persistent fact !F_PSPkEk stores a PSIGNER’s public

endorsement key. The fact that this key is installed in the

PSIGNER at manufacturing time and shared with the ISSUER

is modelled using the Out(pk_ek) fact. Note that this also

makes the key available to the adversary in our model. The

public endorsement key, pkekps
is only ever used in the JOIN

operation by the ISSUER so that the ISSUER can authenticate to

a PSIGNER. This is shown in the following fragment of the

PS_JOIN_ONE rule:

rule PS_JOIN_ONE:
let

tsk = PRF( ~DAASeed , Ki , ~cnt )
pk_ek = pk( sk_ek )
msg = aenc( < ’ISSUER_REQ ’, km , ni >, pk_ek )
gamma = MAC( < ’gamma ’, P1 , Q2 , v, w >, km )
...

in
[ In_S( $AS , $PS , msg ), Fr(~ DAASeed), Fr(~cnt),

!F_IssuerKi( $I, Ki ), ...
]
--[ ... HonestPS( tsk ) ... ]->
[ Out_S( $PS , $AS , <’PS_RESP_OUT ’, ..., gamma > )

!F_PSDaaSeed( $PS , ~DAASeed ),
!F_PSCnt($PS ,~cnt),!F_PSTsk($PS ,tsk) ]

The tsk is generated using a pseudo-random function, PRF,

which was introduced as part of Σ. It provides a fine-grained

traceable abstraction to the construction of tsk, rather than

a fresh term. While these example rules do not allow the

adversary to learn the secret endorsement key, skekps
, or the

secret DAA key tsk, we have also defined two additional

TAMARIN rules that allow the adversary to learn the secret

keys. This models a possible threat of corrupted PLATFORMs

that can be identified during the security analysis. Recall that

that I-MECH4 requires a secure and authentic channel for

communication between PLATFORMs and ISSUERs and within

the model a MAC is constructed to ensure the integrity of Q2,

v and w in the JOIN operation. The verification of the MAC

occurs in another rule in the JOIN operation, and this is where

Equation 1 is called.

One example of a SIGN rule is as follows:

rule PS_SIGN_ONE:
let

PSSign = < ’PSSign ’, c, ~J, S, nv , bsn >
tsk = PRF( DAASeed , Ki , cnt )
K = multp( tsk , ~J )
R1 = multp( ~randS1 , ~J )
R2 = multp( ~randS1 , S )
h = H5( c, nv, ~J, K, bsn , R1, R2, ~nt )
s = compute_s( ~randS1 , tsk )
PSResp = < ’PSSignResp ’, K, h, s, ~nt >

in
[ In_S( $AS , $PS , PSSign ), Fr( ~nt ),

Fr( ~randS1 ), !F_PSTsk( $PS , tsk ) ]
--[ PSSignOne( ), DAASign( tsk , ~J, nv ),

UniqueExecSign( ’PS_SIGN_ONE ’ ) ]->
[ Out_S( $PS , $AS , PSResp ) ]
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Goal Lemma Model A Model B

G1 functional_correctness_group_verification � �

G2 functional_correctness � �

G3 functional_correctness_dishonest_send � �

G4 aliveness � �

G5 weak_agreement_any_reveal � �

G6 weak_agreement × ×

G7 ni_agreement_any_reveal � �

G8 ni_agreement × ×

G9 i_agreement × ×

G10 secrecy_cre × ×

G11 can_be_deanonymised � �

G12 user_controlled_independent_link_tokens � n/a

G13 user_controlled_linkability n/a �

Goal Observational Equivalence Model C

G14 unlinkability �

Fig. 3: Summary of Results

This rule represents the PSIGNER SIGN One step in Figure 1b

where the input to the rule over the secure channel In_S are

the terms produced by the ASIGNER from ASIGNER SIGN One

in Figure 1b. The premise also generates two fresh terms nt

and randS1, which correspond to nT and r respectively. The

ECC-DAA key, tsk, is known by the PSIGNER and is used in

the generation of K which, together with the term J , is used

for controlled traceability of signed messages to a PLATFORM.

The first action in the PS_SIGN_ONE rule simply denotes what

rule is being fired, and the others support the expression of

security and privacy properties. The conclusion securely outputs

PSResp to the ASIGNER which includes K to control traceability,

the hash h capturing the proof of knowledge for the ECC-

DAA SIGN operation, and s which is needed to recompute h by

the VERIFIER and a nonce nT .

IV. THREAT MODEL AND PROPERTIES

All the properties we establish for our ECC-DAA model are

identified in Figure 3. We use � to indicate that the property

holds, and × is used when the property does not hold. Recall

in Section III-B two variants of the model were introduced

and they are referred to as Model A and Model B in Figure 3

respectively. Model A represents the basename being unset

whereas Model B represents the basename as a constant. In

the analysis of unlinkability in Section IV-C we introduce and

justify Model C.

A. Threat Model

As stated in Section III-A the model considers a Dolev-Yao

adversary. Notably, the DY can compromise a PSIGNER to gain

knowledge of the secret endorsement key, and the secret DAA

key. Additionally, the adversary can corrupt the ISSUER and

learn its secret key.

B. Security Properties

In this section we focus on how we encode the correctness,

authentication, and secrecy properties, as given by goals G1
- G10. We provide the TAMARIN code for lemmas G1 and

G6 as examples in Appendix B. The definition of correctness

from [12] simply refers to a correct execution of the scheme.

Normally within a symbolic setting correctness is a notion that

applies over all traces. Hence correctness here in a symbolic

setting is also in the context of a single run of the protocol (and

uses exists-trace) but we refer to it as functional correctness
to avoid confusion. Our lemmas not only encode correctness

from [12] we also explore correctness of a group signature to

build confidence in our model.

In the model we additionally define authentication lemmas

to determine what level of authentication the scheme satisfies.

This enables us to establish the authentication in the scheme

in the usual way using formal analysis.

G1 Functional Correctness (group verification): ISO/IEC

20008-2:2013 Mechanism 4 [11] defines that group sig-

nature verification is required for ECC-DAA which means

there exist two VERIFIERs, one that sends a message to

be signed by a PLATFORM, and another VERIFIER that veri-

fies the message. This property is captured by our lemma

functional_correctness_group_verification which states that

there exists a send from one VERIFIER that is then signed by

a signer PLATFORM, and verified by a different VERIFIER than

the one which sent the message to be signed.

G2 Functional Correctness: We encode the ECC-DAA prop-

erty as one lemma. The lemma states that if both the PLATFORM

and VERIFIER are honest, the signatures and their links will

be accepted by a VERIFIER. This means that the following

must have occurred: A) SETUP has occurred and the ISSUER

has generated its secret key and published its parameters. B)

JOIN has successfully executed under the ISSUER secret key

and parameters, therefore producing a ECC-DAA credential

including the PSIGNERs generated ECC-DAA key (tsk). C) SIGN

has produced a ECC-DAA signature σ0 on the message m0 with

tsk and a randomised credential ĉre. Given the steps A, B

and C have successfully executed then a ECC-DAA VERIFY on

σ0 has executed to accept the signature.

G3 Functional Correctness of SIGN in presence of an
adversary: The lemma is used to prove the ECC-DAA SIGN

operation, in the presence of an adversary that sends a message

on the network. The intuition for this lemma is that there

exists a VERIFIER that receives and verifies a signed ECC-DAA

message which may have been sent by the adversary or the

adversary has corrupted a PLATFORM so that she could forge

a message. Given the capabilities of the adversary she would

be able to generate and inject a message on the network and

request that a signer executes the SIGN protocol and signs

the message. This would result in a signed message that was

crafted by the adversary, which all other group members would

be able to verify. This property is captured by our lemma

functional_correctness_dishonest_send.

G4 − G9 Authentication in JOIN: In [41], Lowe identifies

a hierarchy of authentication specifications. In this paper we

explore which form of authentication as defined by Lowe the

ECC-DAA scheme satisfies: aliveness, weak agreement, non-
injective agreement and injective agreement.

Aliveness is a form of authentication which guarantees that

when an initiator A completes a run of the protocol, apparently

interacting with another agent B, then B has run the protocol,
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1 lemma secrecy_cre:
2 "All A B x #i. Secret(A,B,x) @ i
3 ==>
4 not(Ex #k. K(x) @ k)
5 |(Ex C #r. IssuerKeyReveal(C) @ r & Honest(C) @ i)
6 |(Ex C #r. RevealEK(C) @ r & Honest(C) @ i)
7 |(Ex C #r. RevealTsk(C) @ r & Honest(C) @ i)"

(a) secrecy_cre (G10)

1 lemma can_be_deanonymised: exists -trace
2 "Ex AS PS sigma tsk #i #j #k #l.
3 ( PlatformStart(AS, PS) @ i
4 & RevealPSTsk(PS, tsk) @ j
5 & ASSendFullSignature(AS, PS, sigma)@ k
6 & DeAnonymised(PS , tsk , sigma) @ l )"

(b) can_be_deanonymised (G11)

1 lemma user_controlled_independent_link_tokens:
2 "All k kP j jP #i .
3 CompareLinkTokens(k,kP ,j,jP) @ i
4 & not(j = jP)
5 ==> not(k = kP)"

(c) user_controlled_independent_link_tokens (G12)

1 lemma user_controlled_linkability:
2 "All k kP j jP #i .
3 (All #i #j x . UniqueExecJoin(x) @ i
4 & UniqueExecJoin(x) @ j
5 ==> #i = #j)
6 & CompareLinkTokens(k,kP ,j,jP) @ i
7 & j = jP
8 ==> k = kP"

(d) user_controlled_linkability (G13)

Fig. 4: Secrecy and User-controlled Linkability lemmas

but not necessarily with A. In the ECC-DAA scheme the initiator

A is the ISSUER and an agent B is a PLATFORM.

Weak agreement is a slightly stronger form of authentication

that guarantees when an initiator A completes a run of the

protocol apparently with another agent B, then B has also been

running the protocol apparently with A. This gives a stronger

claim about the ISSUER running with a PLATFORM.

Lowe’s non-injective agreement is a stronger authentication

property than weak agreement; it adds a further condition to

ensure that the two agents, A and B, agree on the roles they

are taking and agree on the data items used in their message

exchange. In the ECC-DAA scheme non-injective agreement

would guarantee that the ISSUER and a PLATFORM both agree

upon the completion of a JOIN operation. This means that

in the JOIN operation, the contents of the received messages

correspond to the sent messages for the specific JOIN session.

Lowe [41] also defines injective agreement as an authentica-

tion property. Injective agreement adds a further constraint on

top of non-injective agreement, which is that there is a unique

matching partner run for each completed run of an agent. The

idea of injective agreement is to prevent relay attacks.

We capture these properties in lemmas as G4, G5, G6, G7,

G8 and G9 respectively. Note that weak agreement and non-

injective agreement are captured two lemmas respectively. The

first variant of the lemmas enables us to prove authentication

if any key reveal has happened and if keys have been revealed

then the lemma hold vacuously. The second variant of the

lemmas guarantees that both the PSIGNER and ISSUER are honest

when a PSIGNER has authenticated to an ISSUER (i.e. they have

completed the JOIN operation) but all other entities may have

leaked their keys by that point.

G10 Secrecy in JOIN: The lemma is used to prove secrecy of

a credential cre in the ECC-DAA JOIN operation. The intuition

for this lemma is that the ISSUER and a PLATFORM have

established a shared secret, since the cre is sent to a PLATFORM

encrypted under its public endorsement key. We model this by

the adversary not knowing the cre, unless any of the involved

parties keys have been revealed. This means that the ISSUER’s

key has been revealed, or the endorsement key reveal of the

used PLATFORM, or the tsk key reveal of the used PLATFORM.

This property is captured by our lemma secrecy_cre.

C. Privacy Properties
The purpose of this section is to capture the user-controlled

anonymity, and user-controlled tracability properties of ECC-

DAA by Brickell et al. [12].
G11 and G14 User-controlled Anonymity: User-controlled

anonymity [12] requires two properties to hold. Firstly

anonymity, it is hard to recover the identity of the signer

from its signature unless its secret key is known. Secondly

user- controlled unlinkability, ensures that an adversary cannot

tell if the signatures were produced by one or two PSIGNERs.
Within TAMARIN unlinkability is established via observa-

tional equivalence (G14). The intuition behind this is that

the adversary is given two signatures from one signer, or

one each from two signers. However, the adversary is unable

to distinguish between these two instances. To encode this

in TAMARIN requires augmenting our model to generate

two signatures from one PLATFORM, or two signatures from

two different PLATFORMs. It is possible to express this using

TAMARIN rules in the existing models but the resultant state

space was too large for exploration. Therefore, we developed a

third model, Model C, to support this analysis which simplified

the model of the JOIN operation but did not reduce the

adversary’s capability as a result of the simplification. With

this revised model observational equivalence holds applying

diff on two signatures, and hence unlinkability is established.
As stated above anonymity should not be broken unless the

key is leaked. Therefore, the unlinkability above already covers

the case that anonymity cannot be broken when the key is not

revealed. Model C does not permit a tsk key to be revealed

and since two signatures cannot be distinguished to be from the

same or different PSIGNERs then this undesirable behaviour is
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not possible. In models A and B which do allow for a tsk reveal,

we formulate an additional lemma, can_be_deanonymised

(G11). It states that, if the tsk is known to the adversary

then the identity of the PLATFORM is revealed and therefore

anonymity is broken. Thus G14 and G11 together address

user-controlled anonymity.

G12− 13 User-controlled Traceability: The user-controlled

traceability [12] requires two properties to hold; the first

property is unforgeability and relies on the perfect cryptography

assumption; while the second one is user-controlled linkability.

In our ECC-DAA model we do not need to capture the first

property as a lemma because the symbolic method relies on

cryptography being perfect.

The second property means that if two ECC-DAA signatures

are computed with the same bsn, i.e., the J values are equal,

then signatures are linkable as coming from the same PLATFORM.

Alternatively, if the ECC-DAA signatures are computed with two

different bsns and hence the J values are different then the

signatures are unlinkable. The LINK operation in the ECC-DAA

scheme is used to ascertain whether signatures are linkable.

We encode two lemmas to determine whether two sig-

natures are linkable. In Model A we define the lemma

user_controlled_independent_link_tokens (G12). The intu-

ition for this lemma is that the corresponding link tokens

of two ECC-DAA signatures are different since the J’s are

unique. The action CompareLinkTokens appears in a trace only

after two signatures have been constructed.

In Model B we expect to establish linkability. We define a

lemma user_controlled_linkability (G13) to capture linka-

bility. It is expressed as the contrapositive to the way linkability

is expressed in [12]. The lemma states that if two ECC-DAA

signatures are computed by the same PLATFORM with the fixed

J then the LINK operation would yield linkability and hence

the K’s would be equal. In G13 we only consider traces for a

single PLATFORM. If the traces included two PLATFORMs and

each created a signature with a fixed J we would not be able

to establish linkability since the K values within the signatures

would be different. Note that anonymity within this variant of

the model does not hold since linkability is present.

Our model allows us to create two signatures explicitly within

a trace and therefore, linkability can be expressed as a trace

property as discussed. This means we do not have to encode

user-controlled traceability via observational equivalence.

V. ANALYSIS AND RESULTS

In this section we review our analysis of our ECC-DAA model

and present both a weakness in the SIGN operation and an attack

on the JOIN operation.

Clarifying parts of the ECC-DAA operations which were not

stated in I-MECH4, e.g., discovering the source of the basename

used in the SIGN operation, was a significant task even before

the TAMARIN modelling analysis. Identifying the appropriate

modelling abstractions and restrictions for the analysis was

necessary because TAMARIN would not have been able to

support proving the model otherwise. For example, to encode

our calcR1 equation requires 34 operators that comprises 49

terms on the LHS of the equation with the abstraction of

the s term. Similarly for calcR2 with the abstraction the

equation requires 40 operators and 54 terms, whereas without

the abstraction it requires 67 operators and 94 terms.

Determining how to express the lemmas to capture the

security and privacy properties was also an iterative process in

order to ensure that they clearly mapped to those in [12].

We analysed our models on the following machine specifi-

cation: Intel i7-7600U (2 cores) @ 2.80GHz and 16GB RAM

using the TAMARIN PROVER version 1.5.0 [42]. The model

itself is reasonably efficient on memory and consumes 3GB

of RAM in the course of a proof, however a great deal of

the processor resources is required to perform the proof. For

the models presented in this paper, the proofs and disproofs

for Model A (which focuses on user-controlled untraceability)

takes 3 minutes, and Model B (which focuses on user-controlled

traceability) takes 10 minutes to verify. Figure 3 summarises

the results of all of the properties of our ECC-DAA models.

The results affirm that our formal model of the ECC-DAA

scheme meets all the functional correctness properties in [12]

(G1 to G3). It also demonstrates that standard authentication

properties are met when all the participants are honest and there

are no key reveals and that the highest level of authentication

that can be achieved is non-injective agreement (G4, G5
and G7 hold). When keys are revealed the highest level of

authentication that can be achieved is only aliveness (G4) of

a PSIGNER whenever the ISSUER completes the run of a JOIN

operation, apparently with a PSIGNER that has previously been

running the JOIN operation.

The privacy analysis also demonstrates that it is not possible

to link two ECC-DAA signatures when the J’s are fresh (G12).

Conversely, the analysis shows that it is possible to link two

ECC-DAA signatures when the J are fixed (G13). G12 vacuously

holds in Model B and G13 vacuously holds in Model A. G11
also holds in both Models.

Notably, Models A and B are auto-provable using

TAMARIN’s default heuristics, and this was invaluable when

changes to the model occurred as it allowed all the ECC-DAA

operations to be re-proved quickly.

The analysis of G14 established unlinkability but proving

this using Model C required a guided proof.

Our analysis of functional correctness of the SIGN operation

in the presence of an adversary indicates that I-MECH4 may

not be protected from honest sender starvation and more

interestingly resource exhaustion. Honest sender starvation

is expected in a DY setting where the adversary can block or

modify a message sent by a VERIFIER, therefore the VERIFIER

would never receive a response to its message. Resource

exhaustion is where the signer expends effort to continually

sign messages since an adversary can submit its own message

m′ and n′
V to a signer and it will produce a valid ECC-DAA

signature. The production of such a signature is a costly

operation.

Moreover, our model revealed that I-MECH4 is vulnerable

to a man-in-the-middle attack and an attack on secrecy,

when the security of any PSIGNER secret endorsement key
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is compromised. This is the first symbolic analysis to highlight

these attacks for an ECC-DAA scheme. Therefore the lemmas

weak_agreement, ni_agreement, and secrecy_cre do not hold

when one or more secret endorsement key is compromised and

revealed to the adversary.

Note also that injective agreement does not hold since the

encrypted message that communicates the generated credential

to a PLATFORM can be replayed by the adversary. This is

because there is no freshness in the message communication

from the ISSUER in the JOIN operation. Hence, this violates the

requirement of a unique running session in order to establish

injective agreement.

A. Man-in-the-middle and Secrecy Attack and Fix

Our TAMARIN analysis indicates that the JOIN operation

(Figure 1a) cannot guarantee that the ISSUER authenticates

any PLATFORM if a single PSIGNER is corrupted, but that the

corrupted PLATFORM is still regarded by the ISSUER as being

honest. Additionally, in the JOIN operation our analysis indicates

that secrecy of any PLATFORM’s cre cannot be guaranteed, if

a single PSIGNER is corrupted. These attacks were found by

a man-in-the-middle attack when performing authentication

analysis in the context of an adversary revealing a PSIGNER

secret endorsement key (G6 and G8), and when performing

secrecy analysis in the context of another PSIGNER’s secret

endorsement key reveal (G10). Therefore, the security of I-

MECH4 relies heavily on the integrity of all PSIGNERs.

Both attacks require an ISSUER and two PLATFORMs, of which

one PLATFORM is corrupted by the adversary. The attack on

authentication shows that the ISSUER believes it has authenti-

cated with PLATFORMA, whereas it actually authenticated with

PLATFORMB . The attack is detailed in Figure 5. Additionally,

the attack on secrecy shows that the ISSUER believes it has

established a shared secret, cre, with PLATFORMA, whereas

the secret is shared with PLATFORMB and it is known by the

adversary. Our work affirms that these attacks are possible

in the standardised ECC-DAA scheme even when considering

the recommended ways of establishing a secure and authentic

channel (I-MECH4).

The following details the steps of the attack, shown in Fig-

ure 5, on authentication for an ISSUER and two PLATFORMs one

of which is corrupt:

1) For some PSIGNER the secret endorsement key (skekpsA)

is compromised, modelled by the DY revealing this key.

We refer to this entity as PLATFORMA.

2) There has been a honest PLATFORM and ISSUER SETUP,

we refer to these as PLATFORMB and ISSUER respectively.

Note that the ISSUER is unaware that the unrelated skekpsA

has been leaked.

3) The ISSUER sends out a JOIN request, JOINA, containing

nIA and MAC key kmA encrypted under the public

endorsement key pkekpsA for PLATFORMA.

4) The DY intercepts the JOINA request and with knowledge

of skekpsA decrypts the message and gains knowledge of

the nonce nIA and MAC key kmA. The DY then encrypts

nIA and kmA under PLATFORMB’s public endorsement

key pkekpsB .

5) PLATFORMB receives JOINA and forwards JOINA to its

PSIGNER. The PSIGNER follows the command to produce

Q2B , vB , wB and γB , and returns it to PLATFORMB .

6) This is the key step to the attack: the ISSUER receives and

validates the response for JOINA that was performed by

PLATFORMB . The ISSUER then continues to create the cre

elements < AA, BA, CA > and encrypts it under pkekpsA

and sends the message, {| < AA, BA, CA > |}pkekpsA
,

out on the network.

7) The DY intercepts the cre message encrypted under

pkekpsA and decrypts it with knowledge of skekpsA to

retrieve < AA, BA, CA >. The DY then re-encrypts this

under pkekpsB and forwards the message to ASIGNERB .

8) PLATFORMB receives {| < AA, BA, CA > |}pkekpsB
and

forwards to its PSIGNER. The PSIGNER then creates its

part of the cre DB and returns < AA, BA, CA, DB > to

the ASIGNER. The ASIGNER then verifies this as a valid

credential.

9) The ISSUER believes it was running the JOIN operation

session with PLATFORMA under < AA, BA, CA >, when

actually PLATFORMB was committed to the JOIN operation

session with its self constructed DB .

The attack we identified is similar to one described by Backes

et al. in [16] on the pre-standardised RSA-DAA scheme. They

include the identity of a joining TPM in the zero-knowledge

proof as a fix to the attack. Chen et al. in [23] proposed an

alternative anonymous authentication to DAA which was also

susceptible to a comparable attack for a compromised TPM,

referred to as the Chosen Compromised TPM attack. For their

privacy-preserving Certificate Authority protocol they similarly

suggested that this type of attack could be removed by including

the public endorsement key of a TPM in the JOIN operation.

We also propose to include the PSIGNER’s identity using

its public endorsement key in the proof of knowledge v as

a fix to both attacks. This solution does not require any

change in the overall functionality of I-MECH4. Therefore

v ← H2(P1||Q2||U ||pkI ||nI) in PS JOIN One in Figure 1a is

amended to v ← H2(pkekps
||P1||Q2||U ||pkI ||nI) and v′ in

ISSUER JOIN Two is similarly amended.

We extended our model to capture this fix by modifying

the equation calcU to encapsulate the public endorsement key

within v. Additionally, we amended the two rules PS_JOIN_ONE

and ISSUER_JOIN_TWO to represent v and v′ respectively.

With this fix the vB in step 5 of the attack would additionally

contain pkekpsB for PLATFORMB . Therefore, step 6 of the attack

would not be possible since the ISSUER would produce a v′

based on its knowledge of pkekpsA. Consequently vB and v′A
computed by the ISSUER would not be equal and the JOIN

operation would abort. The TAMARIN theory for this fix can

be found in [24] and verifies the effectiveness of the change.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented the development of a fine-

grained symbolic model of the ISO/IEC 20008-2:2013 Mecha-
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PSignerB
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pkI

PSignerA

skekpsA, pkI

ASignerA

pkI

DY

pkI , pkekpsA, pkekpsB

Issuer

pkekps , skI

skekpsA skekpsA

Issuer Join One

Fresh

kmA, nIA.

{|kmA, nIA|}pkekpsA

{|kmA, nIA|}pkekpsB
{|kmA, nIA|}pkekpsB

PS Join One

tskB←PRF (DAASeed||KI ||cnt)

Decrypt message

to recover kmA and nIA

Fresh u, Compute:

Q2← [tskB ]P1; U ← [u]P1
v ← H2(P1||Q2||U ||pkI ||nIA)

w ← u+ [v]tskB
γ ←MAC(Q2, v, w)kmA

Q2, v, w, γ Q2, v, w, γ Q2, v, w, γ

Issuer Join Two

verifyMAC(m,γ, km) = accept

Compute

U ′ ← [w]P1− [v]Q2;
v′ ← H2(P1||Q2||U ′||pkI ||nI)

if v′ �= v then abort

Fresh r

Generate creI ←< AA, BA, CA >

AA ← [r]P1; BA ← [skI ]A
CA ← [skI ]A+ [rskI ]Q2

{|creI |}pkekpsA

{|creI |}pkekpsB
{|creI |}pkekpsB

PS Join Two

Decrypt message to recover creI

Compute DB ← [tskB ]B
cre←< AA, BA, CA, DB >

cre

AS Join Four

verifyCre(AA, BA, CA, DB , pkI) = accept

store cre

Fig. 5: Man-in-the-middle attack in the JOIN operation

nism 4 standard together with the proposed implementations

mechanisms for a secure and authentic channel [10] [33].

The paper also makes a contribution to how complex zero-

knowledge proofs can be captured for symbolic reasoning. This

involved defining an appropriate equational theory to represent

the mathematical properties of the underlying cryptographic

concepts in the protocol. Our approach could similarly be used

in other schemes. The model contains lemmas to capture all

the correctness, security and privacy properties required by

the ISO/IEC 20008-2:2013 Mechanism 4. Even though our

TAMARIN model employed the secure and authentic channel

as recommended by Chen et al., we identified an attack using

the TAMARIN PROVER. The attack reveals a fundamental issue

with the scheme, i.e., if a single PSIGNER is compromised then

no PSIGNER can be authenticated reliably. The attack is similar

to that reported by Backes et al. for the RSA-DAA scheme and

therefore highlights that the weakness is still present in ECC-

DAA. Backes et al. proposed a fix for the RSA-DAA scheme and

verified associated security properties. Our fix follows a similar

embedding of the public endorsement key of a TPM in the

proof-of-knowledge which provides the basis for establishing

all security and privacy properties.

Our model can be used for future ECC-DAA formal analysis.

Through the modelling process we gained valuable insights.

The main lesson learned is the approach we applied for repre-

senting the mathematical equations involved in protocol using

TAMARIN’s equational theory. While TAMARIN’s equational

theory does not perform the mathematical operations involved

in the protocol, it does provide a level of abstraction which

maps the mathematical formulae directly to the corresponding

TAMARIN syntax. This allows for our TAMARIN model to be

closer to the implementation detail than previously verified

models. We believe this is a useful modelling style that we and

others will be able to apply in future modelling of complex

protocols.

The TCG, which is an industrial standards body and the

developer of TPM specifications, is continuously working on

improvement of the TPM technology. Since ISO/IEC 20008-

2 was published in 2013, several modifications on the ECC-

DAA TPM API in the TPM 2.0 specification have been made

and adopted by ISO/IEC as another international standard,

ISO/IEC 11889:2015. These modifications are due to attacks
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found against early versions of the ECC-DAA TPM API on

TPM 2.0 [43], [44]. Acar et al. [43] demonstrated that the

API for the TPM allow an adversary to use a TPM as a static

Diffie-Hellman (DH) oracle. Brown and Gallant [45] found that

although solving a static DH problem is still computationally

infeasible but is simpler to solve than the computational DH

problem. The modifications to the ECC-DAA scheme are as

follows:

• Instead of receiving the elliptic curve point J ← H1(bsn),
the TPM receives two values s2, y2, where J = (x2, y2)
and x2 = H(s2) for a hash function H . The computation

of this hash function can avoid that the TPM is used as a

static DH oracle.

• The operation of receiving the elliptic curve point B and

computing the point D by the TPM is removed for the

same reason of avoiding to make the TPM as a static DH

oracle. The replacement is that the Issuer computes the

D value and provides a Schnorr signature, σ, to prove

that the computation is correct. As a result, the DAA

credential is (A,B,C,D, σ) instead of (A,B,C).

With these modifications, the ECC-DAA implementation in the

current version of the TPM 2.0 specification is not compatible

with ISO/IEC 20008-2:2013 Mechanism 4. Extending our

models to include these modifications will then provide a

formal analysis of the ISO/IEC 11889:2015 for ECC-DAA

implementations.
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APPENDIX A

The equational theory detailed in Section III-B demonstrates

how the reductions are modelled in TAMARIN. Here we

demonstrate how the equation for the calculation of U ′ is

encoded within TAMARIN:

1 // U’ = [w]P1 - [v]Q2
2 calcU( minus(
3 multp(
4 plus( u, multp(
5 H2( P1, multp( P1, PRF( DAASeed ,
6 Ki, cnt ) ),
7 U( u, P1 ), pk( isk ),
8 ni ),
9 PRF( DAASeed , Ki , cnt ) ) ),

10 P1 ),
11 multp(
12 H2( P1 , multp( P1 , PRF( DAASeed , Ki , cnt ) ),
13 U( u, P1 ), pk( isk ), ni ),
14 multp( P1 , PRF( DAASeed , Ki , cnt ) ) )
15 ) ) = U( u, P1 ) // U = [u]P1
16

Lines 3 to 10 represents the symbolic form [w]P1 and

embedded within that from lines 4 to 8 is the representation of

u+[v]tsk. The encoding for the equations calcR1 and calcR2

can be seen in our models [24] and follows a similar pattern

to the equation above.

APPENDIX B

The lemmas detailed in Section IV-B addressed functional

correctness and authentication. All the lemmas are available

in our TAMARIN scripts [24]. An example of a TAMARIN

functional correctness lemma is given as follows:

(G1) lemma functional_correctness_group_verification
: exists -trace

"Ex V V1 nv #i #j .
Send( V, nv ) @ i & Confirm( V1, nv ) @ j
& not( V = V1 )"

The weak_agreement lemma is an example of an authentication

lemma:

(G6) lemma weak_agreement:
"All a b n #i .
Commit( a, b, n ) @ i
==> ( Ex n2 #j . Running( b, a, n2 ) @ j )
| ( Ex C #r. IssuerKeyReveal( C ) @ r
& Honest( C ) @ i )
| ( Ex C #r . RevealEK( C ) @ r
& Honest( C ) @ i )
| ( Ex C #r . RevealTsk( C ) @ r
& Honest( C ) @ i )"

The lemma states that whenever a commit action Commit(a,b,n)

occurs at time i, then either this is a conclusion of a valid

protocol run or an agent claimed to be honest at time i has

been compromised at time r. This is the key lemma whose

failure indicates the attack identified in Section V-A.
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