
A Practical Attestation Protocol
for Autonomous Embedded Systems

Florian Kohnhäuser, Niklas Büscher, Stefan Katzenbeisser
Security Engineering, TU Darmstadt, {kohnhaeuser,buescher,katzenbeisser}@seceng.informatik.tu-darmstadt.de

Abstract—With the recent advent of the Internet of Things
(IoT), embedded devices increasingly operate collaboratively in
autonomous networks. A key technique to guard the secure
and safe operation of connected embedded devices is remote
attestation. It allows a third party, the verifier, to ensure the
integrity of a remote device, the prover. Unfortunately, existing
attestation protocols are impractical when applied in autonomous
networks of embedded systems due to their limited scalability,
performance, robustness, and security guarantees.

In this work, we propose PASTA, a novel attestation protocol
that is particularly suited for autonomous embedded systems.
PASTA is the first that (i) enables many low-end prover devices
to attest their integrity towards many potentially untrustworthy
low-end verifier devices, (ii) is fully decentralized, thus, able to
withstand network disruptions and arbitrary device outages, and
(iii) is in addition to software attacks capable of detecting physical
attacks in a much more robust way than any existing protocol.
We implemented our protocol, conducted measurements, and
simulated large networks. The results show that PASTA is
practical on low-end embedded devices, scales to large networks
with millions of devices, and improves robustness by multiple
orders of magnitude compared with the best existing protocols.

Index Terms—remote attestation, collective attestation, embed-
ded systems, mesh networks, autonomous systems

I. INTRODUCTION

In recent years, networked embedded devices have become

an integral part of our daily lives. In the course of this

evolution, which is commonly referred to as the Internet of

Things (IoT), devices are increasingly deployed in distributed

and autonomous networks. In these networks, devices oper-

ate collaboratively with minimal or no supervision. Specific

application scenarios include industrial control [10], smart

cities [25], building automation [38], logistics [24], or environ-

mental monitoring [18]. In many of these scenarios, security

is a vital objective, as devices process privacy-sensitive data

or perform safety-critical operations. Unfortunately, recent

attacks and independent security evaluations have shown that

embedded devices frequently lack security and can often

be compromised and misused with little effort [13], [31].

Therefore, much research effort has been put into the detection

of compromised devices. This goal is achieved through so-

called remote attestation protocols, which enable a third party,

the verifier, to ensure the integrity of a remote device, the

prover. However, existing attestation protocols are unable to

fulfill the requirements on scalability, performance, robustness,

and security of autonomous embedded systems, as described

in the following and summarized in Table I.
Scalability & Performance: Autonomous embedded systems

may comprise thousands of collaborating low-end embedded

devices. For instance, a network may contain many actu-

ator devices that control a safety-critical process based on

measurements received from many sensor devices. In this

case, all actuators need to verify that all sensors from which

they receive data are uncompromised. Hence, sensors must

be provers and actuators must be verifiers (and potentially

provers as well). Applying traditional single-device attestation

protocols in this case results in a huge overhead, because

they only enable a single verifier to ensure the integrity of

a single prover. Collective attestation protocols address this

issue to some extent, as they distribute the computational and

communication burden across all provers in the network [2],

[4], [8], [21], [22], [28], [29]. This allows a scalable and

efficient attestation of the entire network. Yet, collective

attestation protocols are typically centralized, meaning that

only a single entity, which is usually the network operator,

is capable of verifying the attestation result. In fact, only one

collective attestation protocol considers multiple verifiers [2].

However, it poses a high computational burden on provers and

even more on verifiers, which makes it unsuitable in cases

where provers and especially verifiers perform time-critical

operations or have limited computational power, e.g., as they

are low-end embedded devices1.

Robustness: Autonomous systems typically need to operate

undisturbed without manual intervention for long times, during

which the system may have to overcome network and device

disruptions. Therefore, an attestation protocol for autonomous

systems must be robust and sustain its security service in case

of failures. However, the dependence of existing protocols on a

centralized [4], [8], [21], [22], [28], [29] or external verifier [2]

that initiates, controls, and verifies the attestation, constitutes

a single point of failure for the attestation protocol, which

impairs robustness.

Security: Devices in autonomous systems are often physi-

cally accessible, deployed in large areas, and left unsupervised

for long times. These circumstances allow an adversary to

physically approach and manipulate devices much easier than

typical computer systems. Most attestation protocols only

protect against software attacks. Hence, their security can be

undermined by an adversary who is able to physically tamper

with devices. Recently, two protocols [21], [28] propose to

combine collective attestation with absence detection [12]

1For example, the authors report that a 48 MHz embedded prover device
requires more than 2.2 seconds to generate its attestation report and a server
(Amazon EC2 t2.micro instance) requires more than 1 second to verify an
attestation report containing 1000 prover devices [2].

263

2019 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2019, Florian Kohnhäuser. Under license to IEEE.
DOI 10.1109/EuroSP.2019.00028

to detect software and physical attacks. Absence detection

builds on the assumption that devices provide physical tamper-

resistance that requires an adversary to take a targeted device

offline for a noticeable amount of time, e.g., to decapsulate

the device [5], [42]. Therefore, all prover devices that are

offline for a time longer than a certain threshold are regarded

as physically compromised. Unfortunately, existing protocols

are prone to network and device outages, whereupon healthy,

but temporarily unreachable, provers are mistakenly regarded

as physically compromised. Thus, the additionally limited

robustness of protocols that detect physical attacks make them

unsuitable for autonomous systems.

Contribution. In this work, we propose PASTA, a practical

attestation protocol for autonomous networks of embedded

systems. In PASTA, prover devices periodically collaborate

to generate so-called tokens. Each token attests the integrity

of all provers that participated in its generation. During token

generation, provers mutually ensure their integrity and then

make use of a Schnorr-based multisignature scheme to com-

pute an aggregated signature, which is stored in the token and

attests the provers’ integrity. The aggregated signature is of

constant size and can be efficiently generated, which ensures

scalability and performance. Furthermore, it is publicly and

efficiently verifiable, which enables even untrustworthy low-

end embedded devices to rapidly verify the integrity of all

provers. For instance, in our implementation, one million low-

end embedded prover devices can attest their integrity by

generating a token within 0.5 s. The generated token is as small

as 68 bytes and can be verified by an untrustworthy low-end

embedded device in less than 21 ms.

To increase the availability of the attestation result in case

of network and device outages, tokens are distributed to all

devices in the network, instead of being stored centralized.

Since tokens are protected by their contained signature, any

device can store and forward tokens, which facilitates their

quick distribution. Moreover, PASTA is fully decentralized,

because all provers equally ensure the freshness of tokens by

periodically initiating a new token generation. Thus, in case

of arbitrary network or device outages, all remaining operative

and connected provers still sustain the token generation and

attest their integrity towards all network devices.

In addition to software attacks, PASTA is also able to

detect physical attacks. For this purpose, PASTA relies on the

common assumption that physical attacks require an adversary

to take a targeted device offline for at least the time period δa
(e.g., 10 min) [11], [12], [21], [28]. Hence, any prover whose

last participation in a token generation is more than or equal

to δa time ago is considered to be physically compromised.

In contrast to the most robust existing solution [28], PASTA

calculates the absence time of each prover individually. This

doubles the timespan in which provers are required to par-

ticipate in the protocol. Thus, compared with [28], PASTA

can increase robustness against disruptions while providing

the same security level or halve δa to provide stronger security

guarantees with the same level of robustness.

Scalability Performance Robustness Security

Scalable
Prover
Attesta-

tion

Publicly
Verifi-
able

Report

Efficient
Report

Genera-
tion

Efficient
Report
Verifi-
cation

Decen-
tralized
Attesta-

tion

Robust
to Net.
Disrup-

tions

Detec-
tion of

Physical
Attacks

SEDA [4] � � � � � �� �
SANA [2] � � �� � � �� �
DARPA [21] � � � � � � �
SeED [22] � � � � � �� �
SCAPI [28] � � � � � � �
LISA [8] � � � � � �� �
SALAD [29] �� � � � � � �
This work � � � � � � �

TABLE I: Overview of collective attestation protocols and features
important for the attestation of autonomous embedded systems.

In general, physical attacks require not only much time,

but also expensive equipment and laborious handwork of

highly skilled personnel. Therefore, we argue that a physical

adversary is only able to successfully tamper with a limited

number of devices simultaneously. Based on this assumption

and the property of tokens to be publicly verifiable, PASTA

is able to reunite groups of prover devices that have been

separated for longer than δa time, meaning that any prover

of one group has not generated a token with any prover of

the other group within δa time and thus violated the original

absence assumption. To reunite groups, provers of different

groups exchange their generated tokens that (i) testify the

permanent presence of all provers of the particular group

during the separation, and (ii) could not have been forged by

an adversary under the aforementioned assumption due the

large size of the group. This way, PASTA is the first protocol

that can detect physical attacks and recover from long-lasting

network splits that segmented a network in separated groups.

In short, we propose PASTA, the first attestation protocol

that has the following properties:

• It provides a scalable and efficient attestation with many

provers and many verifiers. In fact, thousands of low-end

embedded prover devices are able to attest their integrity in

a small token that can be verified by any network device,

including low-end embedded and untrustworthy devices.

• It provides a high level of robustness against device and net-

work disruptions. This is because (i) it is fully decentralized,

thus, able to overcome arbitrary device outages, and (ii) it

distributes the attestation result to all devices, whereby any

device can be a data mule and increase availability.

• It can detect physical attacks while providing better security

guarantees and higher robustness against disruptions than

any existing protocol. This is because (i) it is able to

recover from long-lasting network disruptions where the

network was segmented in multiple separated parts, and

(ii) it doubles the timespan in which provers are required

to participate in the protocol.

Finally, we discuss the security of our protocol and show

its scalability in large networks and robustness in dynamic as

well as disruptive network topologies.

264

II. RELATED WORK

Single-Device Attestation. Remote attestation is a technique

with which a trusted party, the verifier, is able to check the

integrity of a remote device, the prover. During attestation,

the verifier typically challenges the prover and receives an

attestation result, which indicates whether the prover is in a

trustworthy system state (or not). To ensure a secure attes-

tation, provers rely on a root of trust that is either software-
based [32], hardware-based [30], or hybrid [27], i.e., based on

a software/hardware co-design. Since software-based schemes

provide questionable security guarantees [9] and hardware-

based schemes are often too complex or expensive, hybrid

schemes are regarded most suitable for embedded devices [16].

Collective Attestation. For the purpose of verifying inter-

connected groups of embedded devices, collective attestation
protocols have been proposed. These protocols are able to

efficiently verify the entire network by distributing the attes-

tation burden across all devices in the network. In SEDA [4],

a spanning tree overlay is initially arranged in the network,

with the verifier being the root of the tree. During protocol

execution, devices attest their neighboring devices, i.e., de-

vices within direct communication range, and propagate the

attestation result hop-by-hop along the spanning tree to the

verifier. In each hop, the attestation result is aggregated, which

significantly increases efficiency and scalability. Subsequently

proposed collective protocols build on the initial approach of

SEDA. LISAα and LISAs [8] provide a quality metric for

collective attestation protocols and a practical performance

evaluation. SeED [22] introduces a non-interactive attestation

approach that mitigates Denial of Service (DoS) attacks and in-

creases efficiency. SANA [2] presents a cryptographic scheme

that enables aggregating devices to be untrustworthy and the

attestation result to be publicly verifiable by multiple verifiers.

However, the cryptographic scheme relies on pairing-based

cryptography, which is computationally expensive, such that

SANA imposes much higher computational costs compared

to other protocols. SALAD [29] achieves robustness against

network dynamics and disruptions by distributing the attesta-

tion result to all devices, instead of routing it along a fragile

tree topology. Thus, SALAD can be applied when devices

are mobile and lack continuous connectivity. Nevertheless,

SALAD lacks an efficient attestation result aggregation and

therefore provides only limited scalability.

DARPA [21] and SCAPI [28] are, in addition to software

attacks, further able to detect physical attacks. To detect hard-

ware attacks, DARPA and SCAPI build on the assumption that

a physical adversary needs to take a device offline for a con-

tinuous amount of time δa to successfully tamper with it [11],

[12]. In DARPA, each device emits an authenticated heartbeat

every δa time that is logged by all other devices in the network.

During attestation, the verifier receives the heartbeat log of all

devices and considers devices that missed sending a heartbeat

in at least one period as physically compromised. In SCAPI,

devices share a session key that is periodically regenerated.

Obtaining the newest session key requires devices to authenti-

cate with the previous key. Physically attacked devices miss at

least one session key, whereupon they are excluded from the

network. SCAPI enhances DARPA’s scalability and robustness

by reducing the number of exchanged messages from O(n2)
to O(n), and relying on a unidirectional 1-to-n link instead of

a bidirectional n-to-n link. Nevertheless, SCAPI is still error-

prone, as (i) each device must participate in the session key

regeneration every δa/2 time, (ii) devices that are unequipped

with secure hardware cannot participate in the protocol and

accelerate its execution, and (iii) the protocol is unable to

recover from network splits, such that groups of devices that

are separated from one another for longer than one session

period consider each other as physically compromised.

Table I summarizes important properties for the attestation

of autonomous embedded systems and indicates which collec-

tive attestation protocols provide these properties.

Secure Aggregation. In order to reduce the communication

and storage overhead in sensor networks, so-called secure in-

network aggregation schemes have been proposed. They com-

bine data reported by multiple devices into a small aggregate

in a way that the authenticity of the reported data is preserved.

Unfortunately, in-network aggregation schemes can only detect

manipulations retrospectively after additional communication

rounds [44], [47], with a bounded probability [37], [47], or

when less than a few devices are corrupt [20].

In contrast, cryptographic aggregation schemes provide

rigorous security guarantees. They enable Message Authen-

tication Codes (MACs) or digital signatures from multiple

parties to be combined in a compact aggregate. Using the

aggregate, a verifier can ensure that the data is authentic and

originates from all parties. MAC aggregation schemes [26]

require a verifier to hold the (secret) MAC key of all parties.

This makes them inapplicable when the aggregate should be

verifiable by multiple potentially untrustworthy verifiers. By

contrast, using aggregate signature schemes [7], [33], a verifier

must only hold the public keys of all parties. Multisignature

schemes [15], [23], [35] are a special case of aggregated

signatures, where all parties must sign the same data. Both

aggregate and multisignature schemes are commonly based

on RSA [23], discrete logarithms [6], [34], [35], pairings [7],

[33], and lattices [15]. In this work, we apply Schnorr mul-

tisignatures [6], [34], which are one of the simplest, most-

well understood, and efficient multisignature schemes [43].

On the downside, Schnorr multisignatures are generated in

an interactive protocol, can only be aggregated at the time of

signing, and are larger than some pairing-based signatures.

III. BACKGROUND

In this section, we describe our system model (§ III-A),

security assumptions (§ III-B), adversary model (§ III-C), and

depict the signature scheme required by our protocol (§ III-D).

A. System Model

We consider a network with heterogeneous interconnected

embedded devices. The network topology is a mesh, which

can be static or dynamic. In dynamic networks, connections

265

between devices can frequently change in unpredictable ways.

Yet, our protocol is designed for networks where all functional

and uncompromised devices are reachable from time to time.

Each device Di participating in our attestation protocol is

considered to be a verifier Vi, and can additionally be a prover

Pi. This implies that any prover at the same time also acts as

a verifier. Prover devices typically perform privacy-, security-,

or safety-critical tasks, which is why their system state must

be verifiable for all network devices. Provers implement the

necessary security requirements (§ III-B) and perpetually run

the attestation protocol. The protocol allows any device in the

network to check whether the software of each prover is in

a trustworthy state and its hardware is untampered. Provers

that passes both checks are called healthy, else compromised.

As opposed to provers, devices that are only verifiers do not

need to implement secure hardware and are not required to

periodically execute the protocol. Thus, any device, including

entities that are potentially untrustworthy or only occasionally

connect to the network, e.g., an external network operator, can

act as a verifier. For simplicity, we assume that all devices are

deployed and maintained by a trusted network operator O.

B. Security Assumptions

Common for collective attestation protocols that consider

physical attacks [21], [28], we assume that each prover device

Pi provides minimal secure hardware features for remote at-

testation [17] and a write-protected real-time clock (RTC). The

secure hardware features can be implemented by Read-Only

Memory (ROM) that stores the protocol code and a simple

Memory Protection Unit (MPU) that allows only protocol

code to access secrets like cryptographic keys. Both, secure

hardware features and a write-protectable RTC are already

available in many commodity embedded devices [41], [45].

We further assume that the clocks of all healthy devices are

loosely synchronized. The execution space, where the stated

security assumptions are fulfilled, is henceforth referred to as

Trusted Execution Environment (TEE).

Additionally, we rely on the common assumption that any

successful attack to bypass the TEE requires disabling the

target device for a non-negligible amount of time [11], [12],

[21], [28]. We acknowledge that non-invasive physical attacks,

e.g., cache or power side-channels, may enable an adversary

to bypass secure hardware during the operation of a device.

However, this work focuses on the detection of invasive and

semi-invasive attacks, which is why we expect that provers

implement the various proposed mechanisms to prevent non-

invasive attacks [39]. By contrast, invasive and semi-invasive

attacks cannot be fully prevented by technical measures on the

device itself. Performing these attacks an adversary directly

accesses the internal components of the target device, which

requires at least the decapsulation of the device and potentially

also the bypass of hardware tamper resistance [39]. Therefore,

invasive and semi-invasive attacks require an adversary to take

a device offline and analyze it with specialized laboratory

equipment for hours up to weeks [5], [42]. Depending on

the hardware of provers and the capabilities of an adversary,

we further expect the number of physical attacks that the

adversary can accomplish simultaneously to be bound, e.g.,

due to limited resources in terms of equipment or personnel.

Finally, we expect all cryptographic schemes and the im-

plementation of our proposed protocol to be secure.

C. Adversary Model

We assume an adversary Advsw, who can eavesdrop, mod-

ify, delete, or insert any message between all entities in

the network (Dolev-Yao model). Advsw is able to perform

software attacks on all devices, whereupon Advsw has full

control over their execution state, besides for code that is

executed in the TEE. Additionally Advsw can read from or

write to any memory outside of the TEE.

Furthermore, we consider a stronger adversary Advhw,

who has the same capabilities as Advsw but can additionally

physically attack devices in the network. After successfully

tampering with a device, Advhw has full control over its clock

as well as code and data in its TEE. However, as explained

in the security assumptions (§ III-B), we assume that Advhw
is limited in the following ways:

(1) Advhw must take a prover Pi offline for at least the

uninterrupted attack time δa to physically compromise Pi.

(2) Advhw is unable to physically tamper with more than the

concurrency factor β provers simultaneously.

The parameters δa and β can be adjusted to the hardware

protection of all provers and the required security level. If it is

assumed that Advhw can compromise all provers concurrently,

i.e., β is equal to the number of all provers, physical attacks

are still detected by our protocol, albeit less robustly (§V-C).

We refer to an attestation protocol as secure, if Advsw and

Advhw are unable to fake a healthy system state for a prover

that is at the time of its attestation in a compromised software

and/or hardware state.

D. Schnorr Multisignatures

Our proposed protocol makes use of Schnorr multisigna-

tures to reduce the signature size and the computational costs

to verify multiple signatures. Schnorr signatures [40] rely on

a cyclic group G of prime order q, a generator g of G, and

a hash function H. A signature key pair (x,X) is generated

by choosing a random secret key x ∈ Zq and computing the

corresponding public key X = gx. In the Schnorr multisig-

nature setting [6], there are n signers, who each possess an

individual secret key x1, . . . , xn and a corresponding public

key X1 = gx1 , . . . , Xn = gxn . In order to collectively sign a

common message m, signers perform the following steps:

1) Ri ← GenCommit(): ri ← Zq; Ri = gri .

Description: Each signer i picks a random secret ri ∈ Zq

and computes a commitment Ri = gri .

2) R← AggCommit(R1, R2, ..., Rn): R =
∏n

i=1 Ri.

Description: The Ri of each signer i is aggregated into a

final commitment R by computing R =
∏n

i=1 Ri.

3) si ← GenSig(R,m): c = H(R|m); si = ri + cxi.

266

Description: Each signer i computes the common chal-

lenge c = H(R|m), which is based on the aggregated com-

mitment R and the message m to be signed. Afterwards

each signer i generates its partial signature si = ri + cxi.

4) s← AggSig(s1, s2, ..., sn): s =
∑n

i=1 si.

Description: The signature si of each signer i is aggregated

in a final signature s by computing s =
∑n

i=1 si. The final

aggregated signature consists of the tuple (R, s).

To verify the aggregated signature (R, s) with the public keys

of all signers, a verifier performs the following steps:

1) X ← AggKey(X1, X2, ..., Xn): X =
∏n

i=1 Xi.

Description: The verifier aggregates the public keys of all

participating signers by computing X =
∏n

i=1 Xi.

2) valid/invalid← Verify(R, s): gs
?
= RXc.

Description: The verifier regards the aggregated signature

as valid if gs = RXc, and in the other case as invalid.

Note that a corrupt signer could set its public key to X1 =
gx1(

∏n
i=2 Xi)

−1 and then forge valid signatures on behalf of

all n signers. However, this so-called rogue-key attack [6],

[34] is irrelevant in our attestation protocol, as all keys are

predeployed (§ IV-A) and only uncompromised devices are

able to participate in the signing process (§ IV-B).

IV. ATTESTATION PROTOCOL

In this section, we describe our attestation protocol PASTA,

which consists of three different phases. In the deployment
phase, each device is set up once by the network operator.

Afterwards, prover devices in the network continually execute

the token generation phase, in which provers repeatedly gen-

erate tokens. Each token attests the software and hardware

integrity of all provers that participated in its generation, at

the generation time. Simultaneous to the token generation

phase, all devices, i.e., provers and verifiers, perform the

token exchange phase. In this phase, devices distribute, verify,

and validate the generated tokens from the provers. Devices

eventually use their verified and validated tokens to determine

the integrity of all provers in the network. In the following, we

describe the deployment (§ IV-A), token generation (§ IV-B),

and token exchange phase (§ IV-C). Finally, we explain the

token validation (§ IV-D), which is part of the token exchange.

In Appendix A and B, we demonstrate the security of PASTA.

A. Deployment Phase

Initially, devices in the network are deployed and set up

by the network operator O. Each device Di is equipped with

a unique identifier i and the public signature key XO of O.

Devices that are provers additionally store a token signature

key pair (xi,Xi). A prover Pi uses its private token key xi
to generate tokens that prove its integrity. To verify tokens

from Pi, a device Dj requires the public token key Xi of Pi.

Therefore, all devices in the network store the public keys

of all prover devices. In addition, any two devices Di and

Dj hold a unique symmetric channel key ckij , which they

use to authenticate any communication between them. To save

storage, O may equip devices with a further key pair and a

certificate over the public key. This enables devices to establish

a channel key on demand and exchange public token keys ad-

hoc. Provers store and execute all protocol data and code inside

their TEE. Thus, an adversary must perform physical attacks

to obtain secrets or tamper with the protocol execution.

Moreover, all devices maintain a token set TS, which

initially contains the initialization token T0. Each token T
consists of a timestamp T.ts, a list of device identifiers T.ids,

an aggregated signature T.sig, and a Boolean flag T.valid.

T.ts records the time when the token was generated, T.ids
stores the identifiers of all provers that participated in the

token generation, T.sig contains the aggregated signature

from all participating provers computed over T.ts and T.ids,

and T.valid indicates whether the device that stores T has

successfully validated T (T.valid = true) or not. A device Di

considers T as valid, if Di has ensured that all provers listed in

T.ids were at time T.ts never offline for longer than the attack

time δa, hence, were physically healthy at T.ts. The validity

flag is not protected by the signature T.sig, because T.valid
is volatile and set by each device itself. Since all provers are

assumed to be healthy at protocol start, the initialization token

T0 stores the start time of the protocol in T0.ts, the identifier

of all provers in T0.ids, the aggregated signature over T0.ts
and T0.ids from all provers in T0.sig, and true in T0.valid.

For convenience, we assume the initial deployment of all

devices in the network. Nonetheless,O can enroll a new device

Di at any later stage. To this end, Di is initialized as described,

but additionally equipped with a certificate that allows other

devices to establish required keys with Di on demand. If Di

is a prover device, it also holds a special token that contains

its deployment time and the identifier and signature of O and

Di. Table II summarizes relevant definitions.

B. Token Generation Phase

Overview. After deployment, prover devices periodically gen-

erate tokens that attest their integrity at the token generation

time. To this end, provers recurrently execute the token gener-

ation protocol, which consists of two communication rounds.

In the first round, a virtual spanning tree is arranged

in the network, whose root is a particular initiator prover

device that starts the protocol. The tree allows data from

the initiator to be efficiently broadcasted to all provers and

data from all provers to be efficiently propagated back to

the initiator. At first, all provers receive a token generation

request from the initiator and then respond with their Schnorr

commitments and their device identifiers. Both the identifiers

and commitments are collected and aggregated in each hop,

and then forwarded to the next hop along the tree towards

the initiator. Eventually, the initiator receives the identity of

all participating provers and their commitments. In the second

round, the initiator broadcasts the aggregated commitments,

current time, and prover identifiers, which forms the attestation

challenge. Subsequently, provers generate a partial signature

over the time and prover identifiers, which is also aggregated

and propagated along the tree to the initiator. After collecting

267

Acronym Usage
Di/Vi/Pi device / verifier / prover with identifier i

O trusted network operator

XO public signature verification key of O
xi / Xi private / public token key of prover Pi

ckij channel key between Di and Dj

T token; T contains: T.ts, T.ids, T.sig, T.valid

δa time Advhw must take Di offline during attack

β number of devs Advhw can compromise in δa
δgen time between periodic token generations

Time() returns current time

VerifySW() returns if local software state is trustworthy

IsHealthy(Pi) returns if Pi is healthy (�= compromised)

ReqNewToken(δ) returns if token needs to be regenerated

TABLE II: Notation.

all signatures, the initiator assembles the final token T . T
contains the time in T.ts, the prover identifiers in T.ids, and

the aggregated signature over T.ts and T.ids in T.sig.

During token generation, provers communicate authenti-

cated using their channel key ck, which prevents a network

adversary from manipulating the protocol execution. To also

protect against compromise of the software and hardware,

provers only participate in the token generation if they have

ensured their own software integrity and the physical integrity

of their neighboring provers in the tree. To verify their own

software integrity, provers implement a function VerifySW(),

which measures the local state and returns true if the software

is in a trustworthy state2. We abstract from implementation

details of VerifySW() to support a wide range of attestation

mechanisms [1], [14], [36], [48]. Recall that any protocol code

is executed inside the TEE, such that Advsw is unable to

bypass VerifySW(). Furthermore, provers implement a func-

tion IsHealthy(Pj), which determines the integrity of provers

using tokens that were generated in previous runs of the token

generation protocol and were then propagated, verified, and

validated in the token exchange phase. IsHealthy(Pj) returns

true if Pj has proven to be healthy within the last δa time

and false otherwise. Since Advhw requires at least δa time to

perform physical attacks, provers that pass IsHealthy(Pj) are

physically healthy at the present time. Details of IsHealthy(Pj)
are given in the next subsection (§ IV-C).

In the following, we explain both rounds of the token

generation protocol in detail.

Round 1: Initialization. To ensure that prover devices peri-

odically engage in the token generation, each prover monitors

the freshness of its own tokens. A prover device initiates a

token generation, whenever it notices that the newest token

T in whose generation it participated is older than a spe-

cific generation interval δgen, as indicated by the function

ReqNewToken(δgen), shown in Algorithm 1.

2Depending on the implementation, the software state may actually be
measured prior to the invocation of VerifySW(). For instance, a Trusted
Platform Module (TPM) computes hash values over software binaries before
they are loaded [36], so that VerifySW() only compares already performed
measurements from the TPM with known good reference values.

Algorithm 1 : Pi determines if token generation is required.

1: procedure ReqNewToken(δ)
2: for T ∈ TS do
3: if i ∈ T.ids and T.ts > Time()− δ then
4: return false
5: return true

The generation interval δgen must be a fraction of δa (δgen <
δa) to ensure that each prover participates at least once in

a token generation within δa time. A prover that fulfills this

requirement has never been offline for longer than δa time

and is therefore considered to be physically healthy by all

network devices. A small δgen enhances resilience to network

disruptions, as tokens are generated more frequently, but on the

downside increases communication and computational effort.

As illustrated in Figure 1, the token generation protocol

starts with a prover Pi that checks whether it requires a

new token and is in a trustworthy software state, using

ReqNewToken(δgen) and VerifySW(). If both checks pass, Pi

will initiate a token generation in the network. To this end,

Pi stores its identifier i in idsi and the current time in ts,

which then both form the token initiation message msginit.
Furthermore, Pi generates its Schnorr commitment Ri over

a random secret (§ III-D). Next, any neighboring prover Pj

that is in a physically healthy state, determined by Pi using

IsHealthy(Pj), is sent msginit. All messages are authenticated

by the sender and verified by the receiver using the respective

channel key. Invalid messages are dropped and not processed.

For clarity, we omitted message authentication in Figure 1.

A prover device Pj that receives a message msginit initially

ensures that the token generation was initiated within the last

δa time, as Time() < ts + δa. This time check is executed

whenever provers receive a message in the token genera-

tion protocol to prevent a network adversary from replaying

recorded messages from previous runs of the protocol. Next,

Pj checks whether it would soon require a token generation,

indicated by a call to the function ReqNewToken() with a

specific join interval δjoin that is smaller than the generation

interval δgen (δjoin < δgen). Using a smaller interval to join

a token generation than to initiate one saves overhead, as it

prevents the costly initiation of multiple token generations in

close succession. Afterwards, Pj checks whether the prover

from which it received msginit is physically healthy and itself

is in a trustworthy software state. If both checks also pass, Pj

joins the token generation session. To this end, Pj stores its

own identifier j and the received identifiers idsi in its own idsj
and generates its Schnorr commitment Rj . Additionally, Pj

invites further healthy neighboring provers to join the current

token generation session by propagating msginit. Note that

provers only ensure the integrity of their neighboring provers,

but not of all provers that participate in the token generation.

This is because provers can rely on the trustworthiness of

healthy neighbors and be confident that they in turn ensure

the physical integrity of their neighbors. Thus, a chain of trust

is established that prevents any physically compromised prover

from participating in the token generation.

268

Pi (initiator device) Pj (branch device) Pk (leaf device)

if ReqNewToken(δgen)

and VerifySW() :

ts←Time()

idsi ← [i]

msginit ← ts‖idsi
for j ∈ Neighbors():

if IsHealthy(Pj) :

Send(Pj ,msginit)

Ri ← GenCommit()

msginit ProcessInit(msginit)

if Time() < ts+ δa
and ReqNewToken(δjoin)

and VerifySW()

and IsHealthy(Pi) :

for k ∈ Neighbors() \ i :

if IsHealthy(Pk) :

Send(Pk,msginit)

idsj ← idsi ∪ j

Rj ← GenCommit()

ProcessReply(msgrep)

if Time() < ts+ δa :

idsj ← idsj ∪ idsk
Rj ← AggCommit(Rj , Rk)

msginit

msgrep

ProcessInit(msginit)
SendReply()

msgrep ← ts‖idsk‖Rk

Send(Pj ,msgrep)

ProcessReply(msgrep)

msgchal ← ts‖idsi‖Ri

for j ∈ Neighbors() ∩ idsi :

Send(Pj ,msgchal)

si ← GenSig(Ri, ts‖idsi)
T.ts← ts

T.ids← idsi
T.valid ← true

msgrep

msgchal

SendReply()

ProcessChallenge(msgchal)

if Time() < ts+ δa :

for k ∈ Neighbors() ∩ idsi \ i :
Send(Pk,msgchal)

sj ← GenSig(Ri, ts‖idsi)

ProcessResponse(msgresp)

if Time() < ts+ δa :

sj ← AggSig(sj , sk)

msgchal

msgresp

ProcessChallenge(msgchal)
SendResponse()

msgresp ← ts‖sk
Send(Pj ,msgresp)

ProcessResponse(msgresp)

T.sig ← (Ri, si)

if VerSig(
∏

i∈T.ids
Xi, T.sig) :

TS ← TS ∪ T

msgresp SendResponse()

Fig. 1: Illustration of the token generation protocol. Prover Pi initiates the token generation, whereupon a spanning tree is constructed. Pj

represents a branch device, which is connected to Pi and Pk. Pk is a leaf device, as it is only connected to Pj . When receiving messages,
provers unpack their content, e.g., ts and idsi from msginit. For clarity, we omitted the authentication of messages. In practice, all exchanged
messages between any two provers Pi and Pj are authenticated by the sender and verified by the receiver using the channel key ckij .

Prover devices that receive a msginit from Pj likewise

perform the same steps as Pj . This way, beginning with

the initiator device Pi, a spanning tree is arranged in the

network, where parent provers invite their children to join

the token generation. Eventually, msginit is received by leaf

devices that have no children, because all their neighbors

are already participating in the token generation, are compro-

mised, or recently generated a token. Receiving msginit, each

leaf device Pk answers its parent with a msgrep message,

which contains the token generation timestamp ts, the prover

identifier idsk, and the Schnorr commitment Rk. A prover

Pj that receives a msgrep from a child prover Pk merges

the received device identifiers idsk with its stored identifiers

in idsj and aggregates the received Schnorr commitment Rk

with its stored commitment in Rj (§ III-D). After processing

the msgrep from all child provers, provers create their own

msgrep and send it to their own parent devices, which in turn

perform the same steps. Finally, the initiator prover Pi receives

and aggregates the identifiers and Schnorr commitments of all

provers that are participating in the token generation session.

Round 2: Finalization. After the first round, the only data that

the initiator prover Pi is missing to generate the final token

T , is the aggregated signature s of all participating provers,

computed over T.ts and T.ids. To collect s, Pi prepares

a message msgchal, which stores ts, idsi, and Ri. Next,

msgchal is propagated in the network from device to device,

using the tree topology from the first round. With the content

of msgchal, each participating prover Pj then computes its

partial signature sj (§ III-D). Afterwards, partial signatures

are forwarded along the tree topology back to the initiator

Pi and are aggregated in each hop, like commitments in the

first round. Pi eventually receives and aggregates the partial

signatures of all participating provers in si. Finally, Pi builds

the token T , which stores ts in T.ts, idsi in T.ids, true in

269

T.valid, and the tuple (Ri, si) in T.sig. In case T.sig is valid,

Pi adds T to its token set TS. Thus, T attests that all provers

listed in T.ids have been healthy at T.ts. Finally, Pi uses the

token exchange phase (§ IV-C) to distribute T in the network.

Remarks. For clarity, we described the token generation in

a simplified version. In practice, timers and error messages

must prevent the protocol from hanging if messages are lost

or replayed, verification checks fail, or provers are invited to

join the same token generation multiple times. Furthermore, to

support network dynamics during token generation, an ad-hoc

routing protocol must enable each device to reach its (initial)

neighboring devices in the virtual tree topology. Additionally,

we recommend that provers store different values for δgen. For

instance, a dedicated leader prover may use a lower δgen than

other provers. This prevents multiple provers from initiating a

token generation simultaneously, which would result in the un-

necessary generation of multiple tokens. Instead, the dedicated

leader prover would always initiate the token generation and

other provers would only take over, if the leader is unavailable.

C. Token Exchange Phase

Token Exchange. After executing the token generation proto-

col, the initiator device holds a new token that testifies the in-

tegrity of one or multiple provers at the token generation time.

To make this information available to all network devices,

generated tokens are propagated and stored by all devices. For

this purpose, devices within direct communication range con-

tinuously synchronize their token set TS. A synchronization

is initiated when devices connect to each other or a connected

neighboring device just generated or received a new token.

For efficiency, devices only exchange tokens that the receiver

is missing. To determine the missing tokens, devices initially

compare the number and checksums of their stored tokens.

Any device, including untrustworthy devices, can participate

in the exchange of tokens and act as a data mule. This is

feasible and secure, as the integrity and authenticity of each

token T is protected by its contained aggregated signature

T.sig. Devices verify the signatures of all received tokens.

Corrupt tokens, which fail the verification, are discarded and

are not added to the token set TS. Note that the signature

verification only protects against Advsw, but not Advhw, who

is able to forge token signatures of provers after physically

tampering with them. Attacks from Advhw are prevented by

the token validity flags, which are not transferred during token

exchange. Instead, each device sets T.valid to false for any

token T that is received and added to TS. This indicates that

the device storing T has not (yet) ensured that the provers

listed in T.ids have never been offline for longer than δa
time. Because provers listed in invalid tokens may potentially

be in a compromised state, invalid tokens are disregarded

when determining the integrity of provers with IsHealthy().

To determine and set the validity of stored tokens, each device

performs a so-called token validation after it has synchronized

all tokens with its neighboring devices, which is described in

detail in the next subsection (§ IV-D). The token validation

checks whether Advhw has been unable to physically tamper

with all provers listed in T.ids based on the limitations of

Advhw (§ III-C), the timestamp in T.ts, the current time, and

the chain of trust derived from already validated stored tokens.

Any token T that passes these checks is marked as valid, with

T.valid set to true. Tokens that could not be validated are still

kept, i.e., not discarded from TS, since tokens received in the

future may prove their validity.

In case a receiver Di of tokens determines with

IsHealthy(Pj) that the sender Pj is a healthy prover, Di can

take advantage of Pj’s trustworthiness. To this end, transmitted

tokens are protected by a MAC using the channel key ckij
of involved devices Di and Pj . Thus, Di can rely on the

authenticity of the channel as well as the correct behavior of

Pj . This enables Di to omit verifying the signature of received

tokens as well as transferring the token validity flags from Pj ,

which both saves computational resources.

Devices routinely discard tokens whose timestamp is so old

that they neither play a role in determining the healthiness of

provers (T.ts ≤ Time() − δa) nor in establishing validity in

other tokens (T.ts ≤ Time() − p/β · δa), with β being the

concurrency factor and p the total number of provers.

Determining the Integrity of Provers. Devices that have

synchronized and validated their token set TS can afterwards

determine the integrity of provers. To this end, devices execute

the function IsHealthy(Pi), which is shown in Algorithm 2.

Algorithm 2 : A device determines the integrity of a prover.

1: procedure IsHealthy(Pi)
2: for T ∈ TS do
3: if i ∈ T.ids and Time() < T.ts+ δa and T.valid then
4: return true
5: return false

Devices that execute IsHealthy(Pi) check whether Pi par-

ticipated in the generation of a token T whose validity has

been ensured and which was generated within the last δa time.

A prover Pi that passes these checks has proven to be in a

trustworthy software state between the time T.ts and now. In

addition, Pi is physically healthy at the present time, as T
testifies the physical integrity of Pi at T.ts and successful

physical attacks require at least the attack time δa.

According to the adversary model (§ III-C), our attestation

protocol is secure, if Advsw and Advhw are unable to fake

a healthy system state for a prover Pa that is at the time of

its own attestation in a compromised state. To fake a healthy

state for Pa, Advhw, hence, also the weaker Advsw, would

need trick a device Di into storing a token T that passes

IsHealthy(Pa). To this end, Advhw must forge T in a way that

it contains a valid signature for Pa, since Di will only accept T
during token exchange, if T passes the signature verification.

To forge a valid token signature for Pa, Advhw must possess

the private token key xa of Pa. By performing network attacks

or compromising the software on Pa, Advhw is unable to get

access to xa. This is because all secrets and protocol code are

stored and execute inside the TEE of provers and never leave

270

the TEE. In addition, the TEE is immutable by compromised

software (§ III-B) and the token generation protocol code

enforces that provers with a compromised software quit the

protocol execution. Hence, a software-compromised prover

Pa is unable to access its private token key xa. However,

Advhw may also physically compromise Pa to gain access

to xa, which enables Advhw to forge valid token signatures

on behalf of Pa. Yet, because Advhw must take Pa offline

for δa time during the physical attack, Pa will not generate a

token for more than δa time. Thus, after the physical attack is

completed, all devices will only store outdated tokens from Pa

and regard Pa as compromised when executing IsHealthy(Pa).
As a result, Pa is from then on neither able to participate in

the token generation with other healthy provers, nor able to

issue a token that will pass the token validation on healthy

devices, as described in the following subsection (§ IV-D).
Note that devices cannot distinguish between an unreachable

and a compromised prover. This is because Advhw is assumed

to have full control over the network and, thus, can prevent

the generation and exchange of tokens in the network.

D. Token Validation

Overview. The token validation is the essential part of PASTA

to detect physical attacks. Recall that a stored validated token

T testifies that all provers listed in T.ids were physically

healthy at T.ts. By contrast, the authenticity of stored invalid

tokens has not been ensured (yet), meaning that each invalid

token could have been forged by Advhw and list physically

compromised provers in T.ids and a bogus timestamp in T.ts.

During token validation, a device Di updates the validity flags

of all stored invalid tokens, whereby any invalid token for

which Di can rule out that it is forged by Advhw is marked as

valid. More specifically, Di uses its already validated tokens to

build a chain of trust between all physically healthy provers,

which are provers that were never offline for longer than

the attack time δa. Starting with the initialization token pre-

deployed as valid, Di iteratively uses the information from

already validated tokens to validate further invalid tokens. In

this process, Di makes use of the time and simultaneously

limitations of Advhw, which are stated in (1) and (2) in § III-C.

In case Di attempts to validate a forged token Ta, Di will be

unable to establish a chain of trust for provers listed in Ta,

since they have been offline for at least δa time during the

physical attack. Consequently, Di will not mark Ta as valid.
The token validation consists of two steps. In each step,

tokens are validated taking assumption (1), respectively (2), on

Advhw into account. Below, we describe both steps in detail.

(1) Validation of Time Assumption. In the first step, already

validated tokens are used to determine the set of healthy

provers. With the set of healthy provers, invalid tokens are

then validated. The process is illustrated in Algorithm 3 and

explained in the following.

2-5: Initially, a device Di determines and stores the identifiers

of all provers that Di considers to be healthy in hdevs.

For this purpose, Di uses the function IsHealthy(), which

we described in the previous subsection (IV-C).

6-9: Next, Di makes use of hdevs to validate tokens from its

token set TS. In detail, the validity flag T.valid of any

token T that lists a healthy prover, which is the case if

T.ids∩hdevs �= ∅, is set to true. This is because healthy

provers only engage in the token generation with other

healthy provers. Since hdevs testifies that at least one

prover in T.ids is healthy, all provers in T.ids must be

healthy. Thus, T cannot have been forged by Advhw and

is set valid. Next, Di starts the procedure all over again.

This is necessary, as T may now testify the integrity

of additional provers that are currently not contained

in hdevs. With the extended hdevs, already processed

tokens that were not validated in the current iteration of

the procedure may be validated in the next iteration.

Algorithm 3 : Di validates its stored tokens in step one.

1: procedure ValidateTime()
2: hdevs← ∅ � provers considered healthy
3: for i = 1, 2, ..., n do
4: if IsHealthy(Pi) then
5: hdevs← hdevs ∪ i
6: for T ∈ TS do
7: if (T.valid = false) and (T.ids ∩ hdevs �= ∅) then
8: T.valid ← true
9: go to 3

For clarity, Figure 2a shows an example for the validation

of the time assumption.

(2) Validation of Simultaneity Assumption. In the second

step, devices additionally make use of the assumption that

Advhw is unable to compromise more than β provers per δa
time concurrently. Based on this assumption, validated tokens

that are outdated, i.e., older than δa, can be used to validate

remaining invalid tokens from the first token validation step.

This is possible, as outdated validated tokens may testify the

healthiness of so many provers at a past time thatAdvhw would

be unable to have physically compromised all of them at the

present time. Therefore, newer (yet) invalid tokens generated

by one of those healthy provers must be valid.

More specifically, each validated token Tv testifies the

healthiness of all provers listed in Tv at time Tv.ts. At the

present time,Advhw can at the maximum have physically com-

promised maxcdevs = �(Time()−Tv.ts)/δa	·β provers of Tv .

If an invalid token Ti shares more than maxcdevs provers with

Tv , i.e., |Ti.ids∩Tv.ids| > maxcdevs, then Ti must be valid.

This is because to forge Ti, Advhw has to compromise all

provers listed in Ti, which is, however, a contradiction to the

fact that at least one prover in Ti.ids∩Tv.ids must be healthy.

A larger intersection |Ti.ids ∩ Tv.ids| enables Tv to be older

and still be used for validation, which increases robustness

against device and network disruptions. To maximize this

intersection, Ti and Tv can be extended by further tokens from

TS that share the same device identifiers with either Ti or Tv .

This way, two device identifier sets idevs and vdevs of invalid

(idevs) and valid (vdevs) tokens can be used, which results

in the extended intersection idevs ∩ vdevs. The process is

illustrated in Algorithm 4 and explained in the following.

271

2-5: A device Di iteratively selects an invalid token Ti from

TS and attempts to validate Ti in the following steps.

Initially, the index i of Ti is recorded in itoks and

provers listed in Ti are stored in idevs.

6-12: Next, itoks is iteratively extended by further tokens to

be validated, and idevs is enlarged by their listed prover

identifiers. In this process, itoks is constructed in a way

that a single valid token in itoks is capable of testifying

the validity of all tokens in itoks. To this end, TS is

examined for tokens that (i) are not contained in itoks
and are more recent than Ti.ts, and (ii) share more

provers with idevs than Advhw can compromise between

Ti.ts and now. A token Tk fulfills (i) if k /∈ itoks and

Tk.ts > Ti.ts. To fulfill (ii), |Tk.ids ∩ idevs| must be

larger than maxcdevs = �(Time() − Ti.ts)/δa	 · β. If

both checks pass, itoks is extended by k and idevs by

Tk.ids. Afterwards, this step (6-12) is repeated.

The checks (i) and (ii) ensure that if all tokens in itoks
are valid, Tk must be valid, and vice versa. This is

because between now and the time Ti.ts, being according

to (i) the oldest of all tokens itoks and Tk, Advhw can

only compromise maxcdevs provers. Since more than

maxcdevs provers are according to (ii) contained in

idevs ∩ Tk.ids, Advhw would have had too little time

to tamper with all provers idevs∩Tk.ids, which Advhw
requires to forge Tk or all itoks tokens. By ensuring that

each token Tk added to itoks fulfills (i) and (ii), itoks
obtains the property that a single valid token in itoks is

able to testify the validity of all tokens in itoks. This

property is important for the following step (13-22).

13-22: Next, Di determines which provers vdevs ⊆ idevs were

listed in already validated tokens, hence, were healthy

at a past time t. If the amount of vdevs is greater than

maxcdevs = �(Time() − t)/δa	 · β, at least one prover

in idevs must be healthy at the current time. Thus, at

least one token from itoks, namely the token listing the

healthy prover, must be valid. This implies that all tokens

in itoks must be valid due to the property of itoks.

In detail, validated tokens in TS are examined in de-

scending order with regards to their timestamp. For a

token Tv that attests the integrity of provers in idevs at

an earlier time Tv.ts, maxcdevs amounts to �(Time()−
Tv.ts)/δa	 · β. For the first found token Tv that attests

the integrity of provers in idevs, vdevs amounts to

the intersection between idevs and Tv.ids: vdevs =
idevs∩Tv.ids. However, because provers that are healthy

at Tv.ts are also healthy at Tv′ .ts < Tv.ts, vdevs
inherits all provers from previous iterations for any

subsequently found token Tv′ that attests the integrity

of provers in idevs: vdevs = vdevs∪ (Tv′ .ids∩ idevs).
If it is eventually ensured that idevs are healthy, as

|vdevs| > maxcdevs, all tokens from itoks are set

valid. Since the newly validated tokens may be able to

change the validity of stored invalid tokens, both steps

of the token validation are executed again.

Algorithm 4 : Di validates its stored tokens in step two.

1: procedure ValidateSimultaneity()
2: for Ti ∈ TS do
3: if Ti.valid = false then � attempt to validate Ti

4: itoks← {i}
5: idevs← Ti.ids
6: for Tk ∈ TS do
7: if (k /∈ itoks) and (Tk.ts > Ti.ts) then
8: maxcdevs← 	(Time()− Ti.ts)/δa
 · β
9: if |Tk.ids ∩ idevs| > maxcdevs then

10: itoks← itoks ∪ k
11: idevs← idevs ∪ Tk.ids
12: go to 6

13: vdevs← ∅
14: for Tv ∈ reverse(sort(TS)) do � highest T.ts first
15: if (Tv.valid) and (Tv.ids ∩ idevs �= ∅) then
16: maxcdevs← 	(Time()− Tv.ts)/δa
 · β
17: vdevs← vdevs ∪ (Tv.ids ∩ idevs)
18: if |vdevs| > maxcdevs then � itoks valid
19: for k ∈ itoks do
20: TS.Tk.valid = true
21: ValidateTime()
22: go to 2

For clarity, Figure 2b shows an example for the validation

of the simultaneity assumption.

Further Solutions to Validate Tokens. The described token

validation works well for devices that regularly exchange and

validate tokens. However, some devices may only occasionally

connect to the network to check the integrity of provers, such

as, for instance, a verifier device from the network operator.

Depending on their absence time and the parameters δa and

β, such devices may have issues establishing the chain of trust

in healthy provers and, therefore, may falsely regard healthy

provers as compromised. In fact, for a proper token validation,

each device needs to reconnect to the network at least every

δex < �p/β
·δa time, with p being the total number of healthy

provers in the network. For instance, in a network with 1000
provers, an attack time δa of 10 min, and an attack concurrency

factor β of 5, δex amounts to 33.3 hours. In case a device is

absent from the network for longer than δex time, we propose

two alternative solutions to validate tokens.

The first solution is to fall back to the approach of existing

attestation protocols that detect physical attacks [21], [28].

They assume that Advhw is unable to physically tamper with

a specific amount λ of provers in the network. Based on this

assumption, a secure attestation of p − λ + 1 provers can be

guaranteed. To this end, a device Di determines all provers

pdevs that are listed in tokens with a timestamp more recent

than δa: T.ts > Time()− δa. If |pdevs| is greater than p− λ,

all pdevs provers must be healthy. Subsequently, Di marks all

stored tokens that list a prover from pdevs as valid.

The second solution is applicable in case provers provide

some form of physical tamper evidence. In this case, the

integrity of hdevs provers is ensured by physically inspecting

the particular provers. Next, all tokens that list a prover

from hdevs are set valid. Finally, all other stored tokens are

validated by executing our proposed token validation.

272

(a) Prover P1 receives the tokens T2, T3, T4, and T5 from prover P3 at time 20. Before the token validation, P1 considers P3, P4, P5, P6, and P7 to
be compromised, since P1 does not store a validated and recent (i.e., less than Time()− δa time old) token that lists P3, P4, P5, P6, or P7. During token
validation, P1 iteratively establishes a chain of trust based on already validated tokens, as indicated by the arrows. Initially, token T1 testifies the integrity of
P1 and P2 at time T1.ts ≈ 11. Because Advhw would had too little time to tamper with P1 or P2 between T1.ts and now, both provers must be physically
healthy at the present moment. Since P2 must be healthy and is listed in T5, T5 cannot be forged by Advhw , hence, is set valid. Next, the newly validated T5

testifies the integrity of P4, which is why token T4 is set valid. Finally, T4 testifies that P6 is healthy, so that T2 is set valid. Token T3 cannot be validated,
since P1 does not store a validated and recent token that testifies the integrity of provers listed in T3, i.e, P5 and P7, at the present time. Thus, T3 may be
forged by Advhw , hence, remains invalid. After token validation, P1 regards P2, P3, P4, and P6 as healthy, due to the newly received and validated tokens.

(b) Prover P1 receives the tokens T5, T6, and T7 from prover P4 at time 40. The concurrency factor β is 2, which enables P1 to validate tokens based
on the simultaneity assumption. As indicated by the arrows, P1 uses the outdated (T.ts < Time() − δa = 30) but already validated tokens T1, T2, and
T3 to validate the newly received tokens T5 and T7. In detail, T1, T2, and T3 testify that vdevs = {P4,P5,P6,P7,P8} were physically healthy at (at
least) T1.ts ≈ 11, which is the oldest timestamp in T1, T2, and T3. Between T1.ts and now, Advhw could at maximum have physically compromised
maxcdevs = �(Time() − T1.ts)/δa� · β = 4 provers of vdevs. Because vdevs contains 5 provers, at least one prover of vdevs must be healthy at the
present time. This directly implies that T5 or T7 (or both) must be valid. For instance, assuming that P4 is healthy, T5 must be valid. However, since T5 and
T7 both list P5, the validity of T5 further implies the validity of T7 and vice versa. This is because assuming that either T5 or T7 is valid, Advhw would
have too little time to physically tamper with P5 after T5 ≈ 31 or T7 ≈ 39, which is among others necessary to forge T5 or T7. Thus, both T5 and T7 must
be genuine and are marked as valid. By contrast, P1 is unable to validate token T6, generated by P2 and P3. This is because between T4.ts ≈ 27, at which
P2 and P3 were healthy, and now, Advhw would have had enough time to physically compromise P2 and P3 and forge token T6.

Fig. 2: Illustration of the token validation from the perspective of a prover P1. Both scenarios (a) and (b) represent highly disrupted networks,
where provers only rarely had a connection to each other. Thus, provers were unable to periodically perform the token generation as a group.
In (a), the concurrency factor β is set to ∞, which means that Advhw can physically compromise all provers concurrently. In (b), β is 2.

V. EVALUATION

In this section, we first describe our implementation and

show measurements conducted on low-end embedded devices

(§V-A). Next, we evaluate the scalability of PASTA by pre-

senting simulations of static networks (§V-B). Finally, we

provide simulation results of PASTA in highly dynamic and

disruptive networks to assess its robustness (§V-C).

A. Implementation Setup & Measurements

Implementation. As a target platform for our implementation,

we employed four ESP32-PICO-KIT V4 development boards.

The core of the boards constitute a 7x7x0.94mm2 ESP32-

PICO-D4 system-in-package module, which features Wi-Fi

and Bluetooth functionalities, 4 MB flash memory, and a 240

MHz dual-core 32-bit microprocessor. Due to its ultra-small

size and low-energy consumption, the ESP32-PICO-D4 is

well suited for space-limited or battery-operated applications,

e.g., as wearable, medical, or sensor devices. Furthermore,

it provides the Secure Boot feature and thus the minimal

hardware properties required for remote attestation [16], [41].

We used SHA-256 as a cryptographic hash function and a

Keyed-Hash Message Authentication Code (HMAC) based on

SHA-256 for message authentication. To implement both, we

made use of the mbed TLS code [3]. Our implementation of

the Schnorr multisignature scheme is based on the Bitcoin

cryptographic code [19], which offers a library for elliptic

curve operations on curve secp256k1.

Runtime Measurements. We found out that the runtime of

PASTA is dominated by the cryptographic algorithms and net-

work performance. Table III depicts runtime measurements of

the employed cryptographic algorithms. To attest its integrity, a

prover device hashes its firmware and generates a token using

the Schnorr multisignature scheme, which consumes around

40.1ms of runtime in total with a firmware size of 50 kB. The

runtime required to verify the integrity of provers listed in

a received token depends on various factors. If the token is

obtained from an untrustworthy device and the receiver does

not store the aggregated public key of all k provers listed in the

token, hence, must compute the key ad-hoc, the computation

consumes circa 20.95+0.11k ms. If the receiver uses a stored

273

Algorithm Function Runtime

Schnorr MuSign GenCommit(r ∈ Zq, R = gr) 21.284 ms

AggCommit(R = R1 ·R2) 0.109 ms

GenChallenge(c = H(R‖m)) 3.819 ms

GenSig(s = r + c · x) 2.449 ms

AggSig(s = s1 + s2) 0.006 ms

Schnorr MuVerify AggKey(X = X1 ·X2) 0.109 ms

Verify(gs
?
= RXc) 20.896 ms

HMAC-SHA-256 HMAC(16 Bytes) 0.042 ms

HMAC(1024 Bytes) 0.301 ms

SHA-256 H(51200 Bytes) 13.171 ms

TABLE III: Cryptographic runtime measurements on the ESP32.

aggregated key, the runtime amounts to 20.95ms. If the token

is received from a healthy (i.e., trustworthy) prover, verifying

the integrity requires less than 0.06ms, as only the authenticity

of the received message, but not the token signature, needs

to be verified. For communication between devices, we used

the Wi-Fi communication capabilities of the ESP32-PICO-D4.

Unfortunately, our measurements were significantly below the

stated theoretical throughput of 150 MBit/s, as we measured

an average throughput of 12.51 MBit/s on the application layer

using TCP and an average round trip time of 4.63 ms.

Memory Consumption. Each device stores its id (4B), sig-

nature key (32B), public key of O (64B), channel key of each

prover (16kB), and public key of each prover (64kB). Each

stored token consumes between 69B and 69 + k/8B (worst-

case). Assuming a network with 10000 provers, our scheme

consumes at most 781.4 kB + |token|·1.28 kB. The memory

consumption can be reduced by establishing channel keys and

public keys on demand, and storing aggregated public keys.

Conclusion. We showed that PASTA imposes a low compu-

tational complexity and memory consumption on each device.

This makes PASTA practical, even on low-end embedded

devices. Compared with SANA [2], the only protocol that

allows a scalable attestation of many provers towards untrust-

worthy devices (but is centralized and only detects software

attacks), PASTA requires at least one order of magnitude less

computational overhead to generate the attestation result and

two orders of magnitude less to verify it.

B. Static Network Simulations

Simulation Setup. To evaluate PASTA in large networks,

we performed network simulations with the OMNeT++ [46]

event simulator. We implemented PASTA on the application

layer and used delays based on our runtime and network

measurements. On lower network layers, we applied a simpli-

fied communication model that enables devices within direct

communication range unimpaired half-duplex communication,

as long as no other device within range transmits data.

Token Generation. To examine the scalability of PASTA, we

conducted simulations in static networks. In these networks,

each device is connected to the overall network topology and

0 2000 4000 6000 8000 10000

Number of prover devices

0

50

100

150

200

R
u

n
ti

m
e

(s
)

chain

ring

4-star

0 200000 400000 600000 800000 1000000

Number of prover devices

0.0

0.5

1.0

1.5

2.0

2.5

R
u

n
ti

m
e

(s
)

8-ary tree

4-ary tree

2-ary tree

Fig. 3: Runtime of a token generation in various static topologies.
Dotted lines represent topology changes between token generations.

connections between devices remain (almost) fixed. Figure 3

shows our simulation results for the runtime of the token

generation phase with a varying number of network devices

and different network topologies. As shown, the runtime heav-

ily depends on the network topology. Tree topologies enable

more provers to perform computations and communication

simultaneously in the network. In fact, whereas more than

one million prover devices arranged in a tree topology can

be attested in less than 1.0 s, the attestation of 10000 provers

in a chain topology requires 192.1 s. Fortunately, devices are

in typical application scenarios much more likely connected

in some form of tree topology than in long chains.

Furthermore, we also investigated the performance in quasi

dynamic networks, in which the network topology changes in

random ways before the token generation protocol is executed.

In completely static networks, the initiator device can assume a

static set of participating provers, such that provers do not have

to transmit their identifiers during token generation. In quasi

dynamic networks, which are represented as dotted lines in

Figure 3, this is not possible, since provers may leave or join

the network between runs of the token generation protocol.

Due to the additional communication of device identifiers, the

token generation runtime is slightly higher in quasi dynamic

networks and increases with an increasing number of provers.

Token Exchange. Figure 4 illustrates the runtime required to

exchange a single token between all devices in the network.

The exchanged token was generated by all provers and attests

their integrity. We varied the total number of devices, network

topology, and ratio between prover and verifier devices. In

addition, devices either computed the aggregated public key of

provers ad-hoc, depicted in Figure 4a, or used a precomputed

274

8-ary tree 4-ary tree 50% provers 10% provers 95% provers

0 200000 400000 600000 800000 1000000

Number of devices

0

100

200

300

R
u

n
ti

m
e

(s
)

0 4000

0

1

(a) Devices compute the aggregated public key of provers ad-hoc.

0 200000 400000 600000 800000 1000000

Number of devices

0.0

0.2

0.4

0.6

R
u

n
ti

m
e

(s
)

(b) Devices use a stored aggregated public key of provers.

Fig. 4: Token exchange runtimes in various static topologies and with a varying ratio between prover and verifier devices.

and stored aggregated public key, depicted in Figure 4b.

During token exchange, the aggregated public key is required

to verify the token signature, which protects the token integrity.

The key must be computed whenever a token is received from

an untrustworthy device and the token lists a new set of prover

devices for which the receiver does not yet store the aggregated

public key. As shown, the difference between computing the

key ad-hoc and using a precomputed key is huge. Whereas in

the first case the runtime to exchange and verify a token in a

network with one million devices amounts to a few minutes, in

the latter case it is less than 0.7 s. However, we would like to

emphasize that in networks with up to 4000 devices, the token

exchange runtime is even in the worst-case, that is, with new

sets of provers in each token exchange, always below 1 s.

Another essential factor for the performance of the token

exchange is the ratio between provers and verifiers in the

network. In case the network contains many provers and only

few untrustworthy devices, devices need to verify the signature

of received tokens less often and the runtime decreases, as

shown by the solid lines in Figure 4a. This is because devices

can omit verifying the signature of tokens that are received

from healthy provers (IV-C). On the contrary, if there are only

few provers and many verifiers, devices need to verify tokens

frequently. Nonetheless, in this case, each token contains less

prover devices and the aggregated public key required to verify

the token can be computed much faster. In total, this also

results in a low runtime, as shown by the dashed lines. A

balanced number of healthy provers and verifiers results in

the highest runtime. Yet, when devices store the precomputed

public key required to verify a received token, the impact of the

ratio between provers and verifiers is less significant, because

verifying tokens is then much faster, as shown in Figure 4b.

Conclusion. We showed that PASTA is scalable to very large

networks due to its small communication and computational

overhead. In the best case, which is a static network with a

uniform tree topology and only prover devices, one million

provers can attest and verify each others’ integrity in less than

2.91 s (token generation and exchange). Yet, even in the worst

case, which is a network with circa 41 % verifier devices and

a topology that changes between runs of the protocol, 1000

devices (410 verifiers and 590 provers) are able to verify the

integrity of all 590 provers within 71.7 s. For comparison,

SANA [2] would in this case require a runtime of 1421.0 s,

when projecting the evaluation results of SANA to our setup.

C. Dynamic Network Simulations

Simulation Setup. We extended our simulation setup for static

networks (§V-B) to simulate dynamic and disruptive network

topologies. Instead of using static connections between de-

vices, we set the device communication range to 50 m and

deployed devices randomly in a 1000m x 1000m area. During

simulation, devices repeatedly select a random destination

within the area and then move towards this destination at a

specified speed, which is repeatedly set to a random value

between 5 and 15 m/s (random waypoint mobility model).

PASTA’s parameters δgen and δjoin to initiate and join a token

generation were set to 10 s and 5 s. In addition, we assumed

that Advhw requires at least 10 min to physically tamper with

a prover, i.e., δa = 10 min, as in the evaluation of SCAPI [28].

Robustness of Attestation. To assess the robustness of

PASTA, we investigated the runtime until prover devices are

mistakenly regarded as physically compromised. In dynamic

and disruptive networks, provers only occasionally have a

connection to each other. Hence, a healthy prover may be

unable to communicate with other provers for longer than

δa time, whereupon the prover is regarded as physically

compromised. Note that the considered scenarios deliberately

go beyond typical application scenarios for autonomous em-

bedded systems to determine the boundaries of PASTA.
Figure 5a shows the runtime until either one or two provers

are falsely regarded as physically compromised. The network

only consists of prover devices, whose number we varied.

Furthermore, we set the concurrency factor β, which defines

the number of provers Advhw can physically compromise

within δa time, to ∞. Thus, we assumed that Advhw is able

to physically attack all provers concurrently. In addition, we

compared PASTA with SCAPI [28], the most robust existing

attestation protocol that detects physical attacks. As shown, the

robustness of both protocols exponentially increases with the

number of provers in the network. With more provers, the net-

work becomes denser, which allows for more communication

275

0 10 20 30 40 50 60

Number of prover devices

0

500

1000

1500
O

p
er

at
in

g
ti

m
e

(d
ay

s)

better

This work, 2 fp

This work, 1 fp

SCAPI [28], 2fp

SCAPI [28], 1fp

(a) Varying number of false positives (fp).

20 21 22 23 24 25 26 27 28 29 30

Number of devices (20 are provers)

0

500

1000

1500

O
p

er
at

in
g

ti
m

e
(d

ay
s) This work, data mules

This work, verifiers

SCAPI [28]

(b) Single false positive (1 fp) and increasing number of non-prover devices.

Fig. 5: Error-free runtime of prover attestation, i.e., runtime until prover devices are mistakenly regarded as physically compromised.

between the devices. By contrast, in sparser networks, chances

are higher that a particular prover does not encounter any other

prover within δa time, so that all other provers will regard

the isolated prover as absent, hence, physically compromised.

With the random movement of devices, it is significantly more

likely that a single prover is isolated, as opposed to a group

of provers. This is why the runtime for a misclassification

of two provers is on average almost twice as high as for a

single prover. In comparison, SCAPI requires circa three times

more provers to achieve the same error-free runtime as PASTA,

or, with the same number of provers, operates two orders of

magnitude less robustly. This is because in SCAPI each prover

must have a connection to other provers at least every δa/2
time, as opposed to δa time in PASTA. Therefore, PASTA is

significantly more robust to network dynamics and disruptions.

In practice, autonomous embedded systems usually not only

contain provers, but also (potentially untrustworthy) devices

that are not attested. To evaluate SCAPI and PASTA in these

scenarios, we set the number of provers to 20 and then added

an increasing number of either data mules (dashed lines) or

verifiers (solid lines). Whereas verifiers continuously verify

the integrity of provers, data mules (e.g., access points) merely

store and forward tokens. As depicted in Figure 5b, PASTA

runs much more robustly with an increasing number of non-

prover devices. This is due to the fact that PASTA enables any

device to propagate tokens in the network. By contrast, non-

prover devices have no impact on the robustness of SCAPI.

In SCAPI, provers communicate encrypted with a secret key

that cannot be shared with (potentially untrustworthy) non-

prover devices, which are therefore unable to participate in

the attestation protocol. Figure 5b also shows that the error-

free runtime of PASTA is higher in networks with data mules

than with verifiers. The reason for this is that data mules do

not verify the integrity of provers, so that less devices in the

network can falsely classify a healthy prover as compromised.

In the next simulation, whose results are shown in Figure 6,

we arranged an impassable horizontal barrier in the middle

of a 800m x 800m area, and deployed half of all devices in

each of the two partitions. As a result, connections between

devices from the same partition are much more likely to occur

than connections between devices from different partitions. In

addition, we varied the number of provers and the concurrency

factor β. If β is set to ∞, Advhw can compromise all provers

0 10 20 30 40 50 60 70 80 90

Number of prover devices

0

20

40

60

80

O
p

er
at

in
g

ti
m

e
(d

ay
s)

better

β = 2

β = 4

β = 6

β = 8

β = 10

β =∞

Fig. 6: Error-free runtime of prover attestation with an impassable
barrier in the deployment area that separates the network in two parts.

concurrently, as in all previous simulations. With the barrier,

it is more likely that whole groups of provers are separated

from each other for longer than δa time, than single provers.

This allows PASTA to make use of its unique feature to reunite

separated groups of prover devices. A lower concurrency factor

β allows separated groups of provers to be smaller and be

separated from other groups for longer times. In fact, setting

a slightly lower β in our simulations leads to an increased

robustness of up to multiple orders of magnitude. In contrast,

SCAPI immediately produces false positives after δa/2 time,

i.e., 5 min, with up to 90 provers (not shown in Figure 6). This

is no surprise, since Figure 5a already showed that SCAPI

performs significantly worse than PASTA with β =∞.

Conclusion. We demonstrated that PASTA is significantly

more robust to network disruptions than SCAPI [28], the most

robust existing protocol that detects physical attacks. In the

same networks, PASTA has shown to achieve an average error-

free operating time that is up to 450 times higher than SCAPI.

This huge gap in the robustness even further increases when

(i) the network contains additional non-prover devices, e.g.,

verifier or network infrastructure devices, or (ii) it is assumed

that Advhw can only physically tamper with a limited number

of provers simultaneously. Whereas in the first case, PASTA

outperforms SCAPI by three orders of magnitude, the second

case enables PASTA to run reliable in network topologies in

which an attestation with SCAPI is impossible.

VI. CONCLUSION & FUTURE WORK

In this work, we presented PASTA, an attestation protocol

that is particularly suited for autonomous networks of embed-

276

ded devices. It is the first protocol that (i) allows many provers

to attest their integrity towards many verifiers in a scalable and

efficient way, (ii) is decentralized, hence, independent of any

entity that manages the attestation, and (iii) is able to detect

physical attacks in a much more robust way than any existing

protocol. In simulations based on real-world measurements,

we showed that one million low-end embedded prover devices

are able to attest their software and hardware integrity within

0.5 s in a token of only 68 bytes. The token can be verified by a

low-end embedded device within 0.06 ms or 21 ms, depending

whether the token is received from a prover or a potentially

untrustworthy network device. Furthermore, we demonstrated

that PASTA is much more robust than any existing protocol

that detects physical attacks. In disruptive networks, it achieves

an error-free operating time that is several orders of magnitude

higher than the best existing protocol.

In future work, we would like to conduct real-world experi-

ments in larger networks to provide a non-synthetic evaluation

of PASTA’s scalability and robustness. Another interesting

direction of research is to further investigate the resistance

of embedded systems against physical attacks, with the aim to

narrow down the capabilities of a physical adversary.

ACKNOWLEDGMENT

This work has been co-funded by the Federal Ministry

of Education and Research of Germany (BMBF) within the

UNICARagil project and the Hessen State Ministry for Higher

Education, Research and the Arts (HMWK) within CRISP.

REFERENCES

[1] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R.
Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for embedded
systems software,” in ACM CCS, 2016.

[2] M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A.-R. Sadeghi, and
M. Schunter, “SANA: secure and scalable aggregate network attesta-
tion,” in ACM CCS, 2016.

[3] ARM Holdings, “mbed TLS,” https://tls.mbed.org/.
[4] N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter,

G. Tsudik, and C. Wachsmann, “Seda: Scalable embedded device
attestation,” in ACM CCS, 2015.

[5] A. Becher, Z. Benenson, and M. Dornseif, “Tampering with motes: Real-
world physical attacks on wireless sensor networks,” in SPC, 2006.

[6] M. Bellare and G. Neven, “Multi-signatures in the plain public-key
model and a general forking lemma,” in ACM CCS, 2006.

[7] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in EUROCRYPT,
2003.

[8] X. Carpent, K. ElDefrawy, N. Rattanavipanon, and G. Tsudik,
“Lightweight swarm attestation: a tale of two lisa-s,” in ACM ASIACCS,
2017.

[9] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente, “On the
difficulty of software-based attestation of embedded devices,” in ACM
CCS, 2009.

[10] J. Chen, X. Cao, P. Cheng, Y. Xiao, and Y. Sun, “Distributed collabora-
tive control for industrial automation with wireless sensor and actuator
networks,” IEEE Transactions on Industrial Electronics, 2010.

[11] M. Conti, R. Di Pietro, A. Gabrielli, L. V. Mancini, and A. Mei, “The
smallville effect: social ties make mobile networks more secure against
node capture attack,” in ACM MSWiM, 2010.

[12] M. Conti, R. Di Pietro, L. V. Mancini, and A. Mei, “Emergent properties:
detection of the node-capture attack in mobile wireless sensor networks,”
in ACM WiSec, 2008.

[13] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis, “A
large-scale analysis of the security of embedded firmwares,” in USENIX
Security, 2014.

[14] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl,
N. Asokan, and A.-R. Sadeghi, “LO-FAT: Low-overhead control flow
attestation in hardware,” in DAC, 2017.

[15] R. El Bansarkhani and J. Sturm, “An efficient lattice-based multisigna-
ture scheme with applications to bitcoins,” in CANS. Springer, 2016.

[16] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “HYDRA: hybrid
design for remote attestation (using a formally verified microkernel),”
in ACM WiSec, 2017.

[17] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik, “A
minimalist approach to remote attestation,” in DATE, 2014.

[18] W. Fuertes, D. Carrera, C. Villacı́s, T. Toulkeridis, F. Galárraga, E. Tor-
res, and H. Aules, “Distributed system as internet of things for a new
low-cost, air pollution wireless monitoring on real time,” in IEEE/ACM
Symposium on Distributed Simulation and Real Time Applications, 2015.

[19] GitHub: bitcoin-core/secp256k1, “Optimized C library for EC operations
on curve secp256k1,” https://github.com/bitcoin-core/secp256k1.

[20] L. Hu and D. Evans, “Secure aggregation for wireless networks,” in
IEEE SAINT, 2003.

[21] A. Ibrahim, A.-R. Sadeghi, G. Tsudik, and S. Zeitouni, “Darpa: Device
attestation resilient to physical attacks,” in ACM WiSec, 2016.

[22] A. Ibrahim, A.-R. Sadeghi, and S. Zeitouni, “Seed: secure non-
interactive attestation for embedded devices,” in ACM WiSec, 2017.

[23] K. Itakura, “A public-key cryptosystem suitable for digital multisigna-
tures,” NEC J. Res. Dev., vol. 71, 1983.

[24] R. Jedermann, C. Behrens, D. Westphal, and W. Lang, “Applying
autonomous sensor systems in logistics - combining sensor networks,
rfids and software agents,” Sensors and Actuators A: Physical, 2006.

[25] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information
framework for creating a smart city through internet of things,” IEEE
Internet of Things Journal, 2014.

[26] J. Katz and A. Lindell, “Aggregate message authentication codes,” Topics
in Cryptology–CT-RSA 2008, 2008.

[27] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite:
A security architecture for tiny embedded devices,” in ACM EuroSys,
2014.

[28] F. Kohnhäuser, N. Büscher, S. Gabmeyer, and S. Katzenbeisser, “SCAPI:
A Scalable Attestation Protocol to Detect Software and Physical At-
tacks,” in ACM WiSec, 2017.

[29] F. Kohnhäuser, N. Büscher, and S. Katzenbeisser, “Salad: Secure and
lightweight attestation of highly dynamic and disruptive networks,” in
ACM ASIACCS, 2018.

[30] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and
J. Butterworth, “New results for timing-based attestation,” in IEEE S&P,
2012.

[31] KrebsOnSecurity, “Reaper: Calm Before the IoT Security Storm?”
2017, https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-
security-storm/.

[32] Y. Li, J. M. McCune, and A. Perrig, “Viper: verifying the integrity of
peripherals’ firmware,” in ACM CCS, 2011.

[33] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters, “Sequential
Aggregate Signatures and Multisignatures Without Random Oracles,” in
EUROCRYPT, 2006.

[34] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille, “Simple schnorr
multi-signatures with applications to bitcoin,” in ePrint Archive, 2018.

[35] S. Micali, K. Ohta, and L. Reyzin, “Accountable-subgroup multisigna-
tures,” in ACM CCS, 2001.

[36] T. Morris, “Trusted platform module,” in Encyclopedia of cryptography
and security. Springer, 2011, pp. 1332–1335.

[37] B. Przydatek, D. Song, and A. Perrig, “Sia: Secure information aggre-
gation in sensor networks,” in ACM Sensys, 2003.

[38] B. Qiao, K. Liu, and C. Guy, “A multi-agent system for building control,”
in IEEE/WIC/ACM Conference on Intelligent Agent Technology, 2006.

[39] S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper resistance mech-
anisms for secure embedded systems,” in IEEE VLSID, 2004.

[40] C.-P. Schnorr, “Efficient signature generation by smart cards,” Journal
of cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[41] S. Schulz, A. Schaller, F. Kohnhäuser, and S. Katzenbeisser, “Boot
Attestation: Secure Remote Reporting with Off-The-Shelf IoT Sensors,”
in ESORICS, 2017.

[42] S. Skorobogatov, “Physical attacks and tamper resistance,” in Introduc-
tion to Hardware Security and Trust. Springer, 2012.

[43] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping Authorities ”Honest or Bust”
with Decentralized Witness Cosigning,” in IEEE S&P, 2016.

277

[44] G. Taban and V. Gligor, “Efficient handling of adversary attacks in
aggregation applications,” in ESORICS, 2008.

[45] Texas Instruments, “MSP430x5xx and MSP430x6xx Family – User’s
Guide Chapter 24.2.4 RTC Protection.” 2016.

[46] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in SIMUTools, 2008.

[47] Y. Yang, X. Wang, S. Zhu, and G. Cao, “Sdap: A secure hop-by-hop
data aggregation protocol for sensor networks,” ACM TISSEC, 2008.

[48] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin,
and A.-R. Sadeghi, “Atrium: Runtime attestation resilient under memory
attacks,” in ICCAD, 2017.

APPENDIX

According to the adversary model (§ III-C), PASTA is

secure, if Advsw and Advhw are unable to fake a healthy

system state for a prover Pa that is at the time of its own

attestation in a compromised software and/or hardware state.

A. Security Analysis for Advsw
To break PASTA, Advsw must compromise the software

of a prover Pa and then generate a token T that makes

IsHealthy(Pa) return true on a healthy device Di. For this

purpose, Advsw must interfere with the token exchange and/or

the token generation.

Attacks on the Token Exchange. To make IsHealthy(Pa) re-

turn true on Di, Advsw may try to craft a malicious T and then

use the token exchange to transfer T to Di. Recall that each

token T stores a token signature T.sig, which is computed

over the token device identifiers T.ids and the token timestamp

T.ts. T.sig consists of the aggregated partial signature of each

prover that is listed in T.ids. The token signature is verified

during token exchange and tokens with a wrong signature are

discarded. Hence, to make Di accept a token T during token

exchange, T must contain a valid signature. Furthermore, in

order that IsHealthy(Pa) returns true on Di, T must list Pa in

T.ids and contain a timestamp T.ts that is more recent than

the attack time δa (Time() < T.ts+ δa). To craft such a token

T , Advsw needs to forge a valid signature for T , since T.sig
is dependent on T.ids and T.ts. However, because the private

token generation key of provers is stored inside their TEE,

Advsw lacks the signature key to compute a valid signature.

Consequently, Advsw is unable to forge or manipulate any

token that gets accepted by healthy provers.

Attacks on the Token Generation. Since all messages ex-

changed during token generation are authenticated and verified

using the channelkey ck of involved provers, Advsw requires

a valid ck to forge or manipulate messages that get accepted

by healthy devices. However, as any protocol data is stored

inside the TEE of provers and does not leave the TEE, Advsw
is unable to obtain a valid ck. Thus, the only way Advsw can

interfere with the token generation protocol is by dropping or

replaying messages. By dropping messages, Advsw can only

obstruct provers from participating in the token generation,

which does not lead to the generation of a token T that lists Pa

in T.ids. Replaying messages is likewise unpromising, due to

the following reasons: Healthy provers are unable to generate

a valid aggregate signature sa for Pa (in msgresp). Therefore,

it only makes sense to replay messages from Pa. Yet, sa is

dependent on the timestamp ts, which is unique for each token

generation session. Hence, replaying messages from the time

when Pa was in a healthy software state leads to a failed

signature check at the initiator, so that no token is generated.
Advsw may also attempt to participate in the token gen-

eration with a software-compromised prover Pa. However,

executing the token generation code, each prover checks its

own software integrity using VerifySW() and aborts the token

generation protocol in case it is in an untrustworthy software

state. Note that this check cannot be circumvented by Advsw,

since the protocol code is executed inside the protected TEE.

B. Security Analysis for Advhw
Unlike Advsw, Advhw can physically tamper with provers.

After physically attacking a prover Pa, Advhw has access

to secrets stored inside Pa’s TEE and can manipulate the

execution of code in Pa’s TEE. A successful physical com-

promise of Pa requires Advhw to shutdown Pa for at least the

attack time δa (§ III-B). Hence, during the physical attack, Pa

misses generating a token for at least δa time. Consequently,

after the physical attack is completed, all devices in the

network only store outdated tokens with T.ts > Time() − δa
from Pa and therefore regard Pa as physically compromised

when executing IsHealthy(Pa). To break PASTA, Advhw can

interfere with the token exchange and/or the token generation.

Attacks on the Token Exchange. Because Advhw can access

the private token signature key that is stored in the TEE of a

physically compromised prover Pa, Advhw is, in contrast to

Advsw, able to forge a token T that contains a valid token

signature T.sig for Pa, lists Pa in T.ids, and contains a fresh

timestamp T.ts. Devices that receive such a forged token T
during the token synchronization, will accept T due to its

valid signature and store T in their token set TS, just like

a genuine token. However, during the subsequently executed

token validation (§ IV-D), each device that stores T will

notice that Pa has been absent from the network for longer

than δa time and therefore will regard T as an invalid token.

Thus, T is ignored when determining the integrity of Pa with

IsHealthy(Pa). To successfully pass the token validation, T
needs to contain at least one prover that has not been absent

from the network for longer than δa time. However, Advhw
is only able to forge valid signatures for provers that Advhw
has physically compromised, which all have been absent for

longer than δa time. Furthermore, Advhw is unable to make

healthy provers perform the token generation with physically

compromised provers, as explained below. For these reasons,

Advhw is never able to generate a token that passes the token

validation, meaning that IsHealthy(Pa) will on healthy devices

return false for any physically compromised prover Pa.

Attacks on the Token Generation. During token generation

protocol, each prover checks the integrity of neighboring

provers using IsHealthy(). Physically compromised provers

fail this check, whereupon they are excluded from the token

generation with healthy provers. Thus, Advhw has the same

capabilities to interfere with the token generation as Advsw,

which does not allow Advhw to break the security of PASTA.

278

