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Abstract—As messaging applications are becoming increas-
ingly popular, it is of utmost importance to analyze their security
and mitigate existing weaknesses. This paper focuses on one of
the most acclaimed messaging applications: Signal.

Signal is a protocol that provides end-to-end channel security,
forward secrecy, and post-compromise security. These features
are achieved thanks to a key-ratcheting mechanism that updates
the key material at every message. Due to its high security impact,
Signal’s key-ratcheting has recently been formalized, along with
an analysis of its security.

In this paper, we revisit Signal, describing some attacks against
the original design and proposing SAID: Signal Authenticated
and IDentity-based. As the name indicates, our protocol relies
on an identity-based setup, which allows us to dispense with
Signal’s centralized server. We use the identity-based long-term
secrets to obtain persistent and explicit authentication, such that
SAID achieves higher security guarantees than Signal.

We prove the security of SAID not only in the Authenticated
Key Exchange (AKE) model (as done by previous work), but
also in the Authenticated and Confidential Channel Establishment
(ACCE) model, which we adapted and redefined for SAID and
asynchronous messaging protocols in general into a model we call
identity-based Multistage Asynchronous Messaging (iMAM). We
believe our model to be more faithful in particular to the true
security of Signal, whose use of the message keys prevents them
from achieving the composable guarantee claimed by previous
analysis.

I. INTRODUCTION

Secure asynchronous messaging protocols aim to enable
secure-channel establishment between two peers who may
not be simultaneously online. Arguably, the most popular
and frequently-used such protocol today is Signal, deployed
in environments such as the Signal application, WhatsApp,
and the secret conversation feature of Facebook Messenger.
An attractive feature of this protocol, which is introduced as
privacy that fits in your pocket, is that is has been crypto-
graphically analyzed, and its properties have been formalized
and proved [1]. Thus, Signal was shown to provide end-to-
end message encryption, implicit entity authentication, forward
secrecy, and a form of post-compromise security [2]. The latter
is a rare property in secure channel-establishment, and captures

the “healing”, in time, of the security of a compromised
channel. Signal achieves these properties by means of an
ingenious mechanism called key-ratcheting.

Signal is a public-key protocol, in which the users’ public
keys are stored and forwarded by a centralized server; the latter
is a means of providing trust without certification. Whenever
a registered initiator Alice wants to talk to a registered
responder, Bob (who is potentially offline), the server must
forward Bob’s credentials to Alice. In return, Bob will also
rely on the server to forward him Alice’s correct information.
This approach requires the server to be always available. In
addition to the authenticated channel required at setup for the
transfer of the public-key information, users must also each
establish a unilaterally authenticated communication channel

to the server, for each new conversation.
Once the user receives its partner’s key information from

the server, it can proceed to calculating an initial master
secret, from which the first keys can be derived. Afterwards,
the user regularly ratchets newly-established secrets in order
to generate fresh message keys. The message keys are then
used to encrypt messages, authenticate them along with some
additional data, which are sent in plaintext.

As observed by Cohn-Gordon et al. [1], Signal’s ratcheting
is not strongly authenticated. The existing authentication is
implicit and relies on the input used for the ratcheting. This
opens easy ways of hijacking sessions or running Denial-
of-Service attacks, making the formalization of the security
notions unnecessarily difficult and inelegant. Finally, in order
to decrypt delayed messages, the receiver must keep the related
key-material even after ratcheting them. This is a caveat of the
forward-security properties of the keys in Signal, which only
applies to receiving parties.

In this paper, we aim to improve Signal’s authentication and
post-compromise security. We rely on a different trust assump-
tion, replacing Signal’s centralized server with an Identity-
Based infrastructure. Our main idea is to ensure that at each
ratchet the user authenticates in a strong way. The outcome is
SAID (for Signal, Authenticated and IDentity-based), a secure
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asynchronous messaging protocol that is comparably efficient
to Signal and provides better security.

A. Our contributions

We claim two fundamental contributions: a formalization
of a security model for asynchronous messaging that is more
realistic than the previous ones, and a proposition for a
new, efficient asynchronous messaging protocol we call SAID,
which is provably secure in our security model. We detail each
of these contributions below.

A new security model. Cohn-Gordon et al. [1] have provided
a first quantification of the security that Signal achieves. Their
model was tailored to the complex computation of the message
keys, but without capturing the message transmission. With
this separation, one can prove that the message keys are indis-
tinguishable from random by a Man-in-the-Middle adversary.
This is a strong, composable security guarantee: it implies
that those keys can be securely used for any symmetric-key
primitive requiring a key of that size.

In Signal, however, the message keys are used for authenti-
cated encryption with additional data (AEAD); the users send
plaintext information like ratcheting keys as part of the AD.
This allows the adversary to trivially distinguish between real
and random message keys. Although the message keys can still
be used to construct a secure channel, one cannot generalize
this property to other symmetric-key properties, so we lose
composability. This is similar to the authenticated and con-
fidential channel establishment (ACCE) property, originally
defined in the context of TLS 1.2 [3].

We argue that this is not necessarily bad, since Signal’s
purpose is to construct a secure channel, and define a new,
fine-grained security model which formalizes:
Confidentiality: an ACCE-like property for the security of

exchanged messages, including forward secrecy;
Authentication: persistent authentication of the two commu-

nication partners, which is explicit at each ratchet;
Healing: a degree of post-compromise security which is

stronger than for Signal; indeed, compromising the key-
chain at a given moment will affect usually fewer or at
worst as many key-stages as for Signal.
Our security model, entitled iMAM (for identity-based mul-

tistage asynchronous messaging) is tailored to identity-based
(IB) protocols and provides fine-grained (adaptive) corruption
capabilities. We provide the adversary with three distinct
corruption oracles: one that leaks a user’s long-term keys, a
second one that reveals stage-specific ephemeral information
(including the message key if it has been computed by that
user), and a third that enables black-box access to computa-
tions with the long-term user keys. Our adversaries are unre-
stricted in their oracle queries; however, some combinations
of queries impact the freshness of specific stage keys.

We define security in terms of the security of the channel
established in various stages (including post-compromise and
forward security), and persistent authentication. All these
properties are defined per stage, capturing a single ratchet

of the keys. The adversary is a Man-in-the-Middle that can
query any sequence of oracles, and a freshness notion indicates
which stages the adversary can then attack.

A new trust model. Our security definitions are specifically
meant to capture protocols in the IB setting. Consequently,
we need not take into account Signal’s centralized server,
but rather consider a Key-Distribution Center (KDC), which
generates key-material for all the users. We note that the
KDC only needs to be available when a new user requests
credentials, not for each conversation.

Cohn-Gordon et al. [1] prove security only in the presence
of a semi-trusted centralized server. A malicious server could
set up Man-in-the-Middle attacks in each ongoing conversation
without being noticed. In our security model, we do not
explicitly consider a malicious KDC; however, we do take
that scenario into account by giving the adversary the ability
to corrupt long-term keys. Thus, our security statements do
cover malicious KDCs.

The SAID protocol. As a second main contribution, we
propose a new protocol called SAID (for Signal, Authenticated
and IDentity-based). Each user is associated in our setting with
a unique identity and a long-term key generated by a Key-
Distribution Center. The user’s identity acts as a public key,
allowing an initiator Alice to contact any responder Bob whose
identity she knows.

Our protocol splits the communication between the two
peers into doubly-indexed stages, like Signal. Symmetric
ratchets are used when the same sender chooses to send a
new message, while asymmetric ratchets indicate a change of
sender. The message keys in SAID are derived from base keys,
as in the case of Signal. However, we also bring several non-
trivial modifications to that protocol.

Our most fundamental modification is adding persistent
authentication (via the user’s long-term key) at each ratchet
and key-computation. The initial master secret computed dur-
ing session setup relies on the responder’s long-term keys
and on randomness generated by the initiator. To explicitly
authenticate the latter, the message containing that randomness
is signed by the initiator using an IB signature. The master
secret will subsequently enter in the computation of every
ratchet and KDF-call, authenticating the parties that communi-
cate. Moreover, we add a pseudorandom value into symmetric
ratchets, to further improve our post-compromise security.

Authenticating each ratchet and key-computation signifi-
cantly improves the security guarantees of our protocol over
those of Signal. In the latter, compromising a single base-
key would result in compromising the entire chain of stages
corresponding to subsequent symmetric ratchets. In our case,
one requires leakage of both ephemeral and long-term secrets
to achieve the same goals. Knowledge of only ephemeral

information yields compromises only a single stage. Knowing
only the long-term key will compromise the stages until the
initiator’s first honest ratchet. Even compromising both long-
term and ephemeral secrets will only yield information until
the first asymmetric ratchet of the user who was sending at
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the time of the compromise.
Our protocol requires a single pairing computation for the

master secret, a single IB signature, and the two KDFs required
by Signal. We formalize and prove the security properties of
SAID in the Random Oracle Model (ROM) – as for Signal.

KDC versus Server. An important difference between Signal
and SAID lies in the latter’s IB setup. Yet, for both protocols,
the most dangerous kind of adversary is a corrupted trusted
party: for Signal, its centralized server, in our case, the KDC.
In that worst case, we lose the same security as Signal in terms
of compromised stages; however, for SAID, the KDC learns
user secret keys, whereas for Signal, the attacker learns nothing
but public keys. Consequently for our protocol it is essential
that the key used for asynchronous messaging is not used in
any other application. Moreover, contrary to a corrupted server,
a corrupted KDC does not need to be active to corrupt the
master secret key, which makes it undetectable from the users’
point of view.

Separate leakage queries. The best security for our protocol
is obtained when the adversary learns either ephemeral,
stage-specific information, or long-term information, but not
both. However, in order for that security to be achieved
in practice, long-term and ephemeral information must be
separated in terms of storage and handling. This could be
done by using a trusted execution environment, a secure
module, or other such mechanisms. In other words, the
security of our protocol – which is much stronger than that
of Signal – can be achieved, as long as the implementation
does not easily allow the adversary access to both ephemeral
and long-term data, even if the adversary has access to
black-boxes that simulates the functions implemented in the
trusted environment.

We stress that our two contributions (the identity-based
master-secret generation and its use in the KDFs) are indepen-
dent. Thus, SAID could use a master-secret generated using
public keys as in Signal, resulting into a protocol that achieves
the same security.

B. Related Work

Cohn-Gordon et al. were the first to formalize the security
properties of Signal in 2017 [1]. They proved the properties
attained by the underlying key-establishment and ratcheting
designs. This analysis – though innovative – does not faithfully
capture the way the key-establishment protocol is used in
Signal, as we explained in more detail in Section I-A. In this
paper, we show that the most that can be proved for those
keys is a weaker, non-composable ACCE-like guarantee [3].

Jaeger and Stepanovs [4] very recently studied the security
of bidirectional channels against state compromise, intro-
ducing both a new security notion and a new construction,
which they show is stronger than Signal in their model. In
their construction, they define and use key-updatable schemes
for encryption and signature. One major difference between
Signal and their construction is that their key-updates take

the transcript as input, when Signal’s ratchets only take the
previous key. In particular, this means that they consider the
reordering (or dropping) of messages to be an attack, as a
message cannot be decrypted unless the previous one was
received, whereas Signal views their handling of so-called out-
of-order messages as a feature. Even though both sides have
valid arguments, we choose to stay close to Signal and allow
messages of the same “batch” to arrive in any order.

Authenticated Key-Exchange and Asynchronous Messag-
ing. Cohn-Gordon et al.’s [1] groundbreaking paper was
followed by an extension of secure asynchronous messaging
in group chats [5] and more generic treatments of ratcheted
encryption and key-exchange [6], [7]. The focus of the latter
works is much larger than that of the original analysis of [1]:
instead of simply analyzing a real-world protocol, [6] and [7]
formalize (stronger) security requirements, which they argue
should be achieved by any ratcheted key-exchange scheme.
Subsequently, they instantiate their primitive and prove the
security of their constructions. However, both these approaches
once more focus on the key-establishment protocol, rather than
considering its encapsulation into the messaging mechanism.
By contrast, in this paper, we stay close to the full details of the
protocols we present. Although subject to different limitations,
asynchronous-messaging protocols share many elements of
construction and modelling with authenticated key-exchange
(AKE) protocols [8]. In this paper, we will combine elements
specific to the ACCE security introduced in the context of
TLS by Jager et al. [3] with aspects of multi-stage AKE
security [9]. However, both notions we propose in this paper
are adapted from the AKE setting to that of asynchronous
messaging, specifically capturing ratcheting mechanisms, out-
of-order messaging, and the way the established keys are used.

Identity-based cryptography. This concept was introduced
by Adi Shamir [10] with the goal of alleviating the excessive
reliance on a public key infrastructure. Assuming the existence
of an authority, users are now determined by an identity that is
short and easy to remember, e.g., an email address or a phone
number. The first (publicly available) instantiations of identity-
based encryption [11] were followed by works focusing on
identity-based signatures [12] and authenticated key exchange
protocols in the AKE model [13]. In this paper, an identity-
based signature scheme supersedes Signal’s key storage server,
bringing the additional advantage of public verification with
respect to a known identity (in lieu of a given verification key).

II. PRELIMINARIES

Notations. Identities, e.g., A, P, are binary strings of arbitrary
length. The security parameter of cryptographic schemes is
denoted by 1λ. Empty strings of opportune length are denoted
with the symbol ε.

Identity-based Signatures. An Identity-Based Signature
(IBS) [12] scheme is made up of four possibly ran-
domized algorithms IBS = (IBS.Setup,IBS.Extr,
IBS.Sign,IBS.Vrfy)with the following properties:
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IBS.Setup(1λ) outputs a master-secret-key IBS.msk a
master publi -key IBS.mpk, and some public parameters
IBS.paramthat are implicit input to all of the following
algorithms.
IBS.Extr(IBS.msk, I): on input the public parameters,

the master secret key and an identity I ∈ {0, 1}∗, the key-
extraction algorithm outputs a private signing key IBS.skI .
IBS.Sign(IBS.mpk,IBS.skI,M): on input the public pa-

rameters, a user’s signing key and a message, the sign algo-
rithm returns a signature sgn.
IBS.Vrfy(IBS.mpk, I,M, sgn): on input the public pa-

rameters, an identity, a message and a signature, the verifi-
cation algorithm returns 1 (to accept) or 0 (to reject) user P’s
signature.

In this work, we consider the notion of existential unforge-
ability against chosen message attacks (EUF-CMA). We con-
sider an adversary 𝒜 that receives a master-public-key from
some challenger, and that has access to an extraction oracle
that simulates the extraction algorithm for chosen identities,
and a signature oracle that simulates the signature algorithms
for chosen identities and messages. An IBS is said to be EUF-
CMA-secure if for any polynomial time 𝒜, the probability
that 𝒜 outputs a fresh signature for an identity that was never
queried to the extraction oracle is negligible.

We define the experiment of existential unforgeability
against chosen message attacks in Experiment 1, and define
the advantage of a probabilistic polynomial time algorithm 𝒜
as:

AdvEUFCMA
𝒜,P (1λ) = P

[
1← ExpEUFCMA

𝒜,P (1λ)
]
.

An IBS scheme is said to be EUFCMA-secure if the following
advantage is negligible:

AdvEUFCMA
P (1λ) = max

𝒜

{
AdvEUFCMA

𝒜,P (1λ)
}
.

Experiment 1 : ExpEUFCMA
𝒜,P (1λ)

1: s = (IBS.msk,IBS.mpk,IBS.param) ←
IBS.Setup(1λ)

2: 𝒪 = {IBS.Extr(IBS.msk, ·),IBS.Sign(IBS.sk·,IBS.mpk, ·) }
3: (sgn, I,M) ← 𝒜𝒪 (s)
4: if (I,M) was not sent to the oracle Sign and I was not

sent to the oracle Extr and IBS.Vrfy(IBS.param, I,
M , sgn)=1 then

5: return 1 // the adversary wins
6: else
7: return 0 // the adversary loses
8: end if

Authenticated Encryption with Associated Data. An
Authenticated-Encryption scheme with Associated Data
(AEAD) [14] is made up of three algorithms AEAD =

(AEAD.Gen,AEAD.Enc,AEAD.Dec) with the following prop-
erties:
AEAD.Gen(1λ) outputs the sets of keys KeySet ⊆ {0, 1}k ,

nonces NonceSet = {0, 1}n, messages MsgSet ⊆ {0, 1}∗, and

associated data (header) HeadSet ⊆ {0, 1}∗; where the last
two sets have a linear-time membership test.
AEAD.Enc(K, N,M,AD) the encryption algorithm is de-

terministic and takes as input a key K ∈ KeySet, a nonce
N ∈ NonceSet, a message M ∈ MsgSet and associated data
AD ∈ HeadSet. It returns the ciphertext ctx ∈ {0, 1}∗. For
brevity, we often represent this algorithm as AEADK [M,AD].
AEAD.Dec(K, N, ctx,AD) is a deterministic algorithm that

given a key K ∈ KeySet, a nonce N ∈ NonceSet, a ciphertext
ctx ∈ {0, 1}∗, and associated data AD returns either a string in
MsgSet or a distinguished symbol ⊥ (invalid).

In this work, we consider the notion of length-hiding
security LH-AEAD introduced by Paterson et al. [15]. We
consider an adversary 𝒜 that interacts with a challenger that
picks a bit b at random, and generates a secret key K . The
adversary has access to an encryption oracle that takes as input
a couple of messages (M0,M1) and an additional data AD,
and that returns AEAD.Enc(K, N,Mb,AD), and has access to
a decryption oracle that takes as input a ciphertext C and an
additional data AD, and that returns AEAD.Dec(K, N,C,AD)
if b = 1 and C was not generated by the encryption oracle,
⊥ otherwise. An AEAD is said to be LH-AEAD-secure if for
any polynomial time 𝒜, the probability that 𝒜 outputs b is
negligently close to 1/2.

We define the LH-AEAD experiment in Experiment 2.
We define the advantage of a probabilistic polynomial time
algorithm 𝒜 as:

AdvLH−AEAD
𝒜,P (1λ) =���P [0← ExpLH-AEAD

𝒜,P,0 (1λ)
]
− P

[
1← ExpLH-AEAD

𝒜,P,1 (1λ)
] ���

An AEAD is said to be LH-AEAD-secure if the following
advantage is negligible:

AdvLH-AEAD
P (1λ) = max

𝒜

{
AdvLH-AEAD

𝒜,P (1λ)
}

Experiment 2 : ExpLH-AEAD
𝒜,P,b (1λ)

1: set = (KeySet,NonceSet,MsgSet,HeadSet) ←
AEAD.Gen(1λ)

2: K
$←− KeySet

3: 𝒪 = {oLoR.AEAD.Encb (K,N, ·, ·),oLoR.AEAD.Decb (K,N, ·, ·) }
4: b∗ ← 𝒜𝒪 (set)
5: if b = b∗ then
6: return 1 // the adversary wins
7: else
8: return 0 // the adversary loses
9: end if

Problems and Hardness Assumptions. Our proofs of security
rely on standard cryptographic hardness assumptions related
to the DH key exchange and bilinear pairings. Let G = 〈g〉
be a cyclic group of prime order p generated by g. Let
G = (G, p, g), we define the following function: εCDH(1λ) =

max𝒟
{
P[𝒟(G, ga, gb ) = gab : a, b

$←− Zp]
}

.
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The oLoR.AEAD.Encb (K, N, (M0,M1),AD) oracle
1: At the first call, set 𝒞 := ∅
2: C0 ← AEAD.Enc(K, N,M0,AD)
3: C1 ← AEAD.Enc(K, N,M1,AD)
4: if C0 =⊥ ∨ C1 =⊥ then
5: return ⊥
6: end if
7: 𝒞 := 𝒞 ∪ {Cb }
8: return Cb

The oRoR.AEAD.Decb (K, N,C,AD) oracle
1: M ← AEAD.Decb (K, N,C,AD)
2: if b = 1 ∧ C � 𝒞 then
3: return M

4: end if
5: return ⊥

Let G1 = 〈g1〉, G2 = 〈g2〉 and GT = 〈gT 〉 be
3 cyclic groups of the same prime order p. Let
e be a bilinear pairing e : G1 × G2 → GT . Let
GB = (G1,G2,GT , p, e, g1, g2), we define: εBCDH(1λ) =

max𝒟
{
P[𝒟(GB, g

a
1 , g

b
2 , g

c
2 ) = e(g1, g2)abc : a, b, c

$←− Zp]
}

. We

use the following cryptographic hardness assumptions.
The Computational Diffie-Hellman [16] (CDH) states that
εCDH(1λ) is negligible. The Bilinear Computational Diffie-

Hellman [11] (BCDH) states that εBCDH(1λ) is negligible.

III. OVERVIEW OF THE SIGNAL PROTOCOL

In this section, we present a high-level description of the
Signal protocol using a somewhat simpler notation than [1].
A summary of the protocol flow is provided in Figure 1.

Signal is a communication protocol for end-to-end encryp-
tion in asynchronous communications. It begins with a user,
e.g., Bob, who registers to a server by providing a unique
identifier B (e.g., a phone number) together with: a user public
key idpkB (for which only Bob knows the corresponding secret
key), a mid-term pre-key prepkB, a signature on prepkB (that
can be verified using idpkB), and a series of ephemeral public
keys ephpkiB for i = 1, 2, . . . , n.
At any point in time, another registered user, Alice (with
identifier A), can setup a session with Bob as follows. Alice
queries the server for Bob’s public key idpkB, the current1 mid-
term pre-key prepkB, and one ephemeral key ephpkB. Alice
generates a master secret msAB using her secret key idskA,
together with idpkB, prepkB, ephpkB, and some randomness.
The msAB is then fed to a Key Derivation Function (KDF), to
obtain what is called a root key rk(0) and a base key2 bk(0,0) .
The base key is fed to another KDF to produce the next base
key bk(0,1) and the message key k(0,0) , which Alice will use
to encrypt (and authenticate) her first message. The KDFs are

1Bob will update this key semi-regularly, hence its appellation “mid-term”.
2This key is called sending/receiving chain key in [1].

detailed in the next section. The relation between the keys is
reported in Formula (1):

msAB
KDF1−−−−→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
rk(0)

bk(0,0) KDF2−−−−→
{

bk(0,1)

k(0,0)
(1)

In addition, Alice generates a random ratcheting secret key
rchsk(0)

A and the corresponding public key rchpk(0)
A . Alice’s

message to Bob then includes: the (encrypted) first message
of the application layer and, in the associated data (AD), the
ratcheting public key rchpk(0)

A together with the information
needed for Bob to reconstruct the shared keys. Using the AD,
Bob will retrieve Alice’s public information from the server,
and make sure they match what she sent.

In Signal, each pair of users may only have at most one
session together in their entire lifetimes. Therefore, after a
session has been initialized, the parties take turns in refreshing
the shared secrets by sending new ratchet keys which are used
to update the root keys (and the base keys of index (·, 0)), via
the ratcheting key exchange mechanism explained below.

A. Key-Ratcheting in the Signal Protocol

Ratcheting is a procedure that securely updates a shared
secret in a unidirectional fashion, i.e., given a key, it is possible
to derive the next key, but not the previous one. The key-
schedule of Signal requires that each message is encrypted
with a different key. Moreover, Alice’s encryption keys should
be different from and unlinkable to the keys used by Bob to
encrypt to Alice. The evolution of the keys is triggered by two
factors: changing the message sender (asymmetric ratchet); or
the same user sending or receiving a new message (symmetric
ratchet).

To keep track of the current stage of the key material, we use
the two superscript indexes (x, y) where: x denotes the number
of asymmetric ratchets that have happened before the key was
generated3, and y denotes the current number of symmetric
ratchets (for level x).

Symmetric Ratchet. This technique is performed by a user
alone, say Alice, and consists in applying a KDF to obtain one
new key k(x,y) per message to be (authenticated) encrypted if
Alice is sending messages and Bob is silent, or decrypted, if
she is receiving more messages.

The starting point of a symmetric ratcheting is a base
key bk(x,y) obtained via asymmetric ratcheting if y = 0,
or symmetric ratcheting, if y > 0. A one-step symmetric
ratcheting, has the following flow, i.e., this is KDF2:

⎧⎪⎪⎨⎪⎪⎩
(
bk(x,y), 0

) HMAC−−−−→ bk(x,y+1)(
bk(x,y), 1

) HMAC−−−−→ t
HKDF−−−−→ k(x,y)

(2)

Symmetric key ratcheting can be composed sequentially to
derive a chain of keys k(x,0), k(x,1), k(x,2), . . ., that authenticate-
encrypt or -decrypt an uninterrupted stream of messages by the
same user.

3Note that all even values of x mean that Alice is the sender, while odd
values means she is the receiver.
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Asymmetric Ratchet. This technique is performed by a user,
say Bob, when changing his role from receiver to sender
and vice versa. This mechanism updates the shared secrets
common to both Alice and Bob using fresh randomness input
by both parties. Cohn-Gordon et al. [1] split asymmetric
ratchets in two phases, the first from Bob’s point of view and
the second from Alice’s.

Phase I. To perform the x-th asymmetric ratchet, a user, say
Bob, generates a random ratcheting secret key rchsk(x)

B and
computes a new shared ratchet key Δ(x) that combines rchsk(x)

B
and the previously received rchpk(x−1)

A , sent by Alice (e.g., in a
DH-like fashion). The new root key rk(x) and base key bk(x,0)

are derived as follows, i.e., this is KDF1:

(
rk(x−1),Δ(x)

) HKDF−−−−→
{

rk(x)

bk(x,0) (3)

With bk(x,0) , Bob can perform a symmetric key ratcheting to
generate k(x,0) and authenticate-encrypt his messages to Alice.
Bob shall also include rchpk(x)

B in the AD of every level x

message to Alice. Several symmetric ratchets may happen,
until Alice comes online and wishes to reply, for which she
needs to contribute with her own randomness and start the
next asymmetric ratchet.

Phase II. Upon receiving rchpk(x)
B , Alice can compute the

shared ratchet key which she will use, along with the root
key rk(x−1) , to derive rk(x) and bk(x,0) via (3). Then, after
decrypting the messages, in order to reply to Bob, Alice
generates a new random ratcheting secret key rchsk(x+1)

A , thus
performing the x + 1-th asymmetric ratchet, and computes a
new shared ratchet key Δ(x+1) that combines rchsk(x+1)

A and
rchpk(x)

B . She then derives the new root key rk(x+1) and her
base key bk(x+1,0) as:

(
rk(x),Δ(x+1)

) HKDF−−−−→
{

rk(x+1)

bk(x+1,0) (4)

She can then perform symmetric ratchets. Alice will include
rchpk(x+1)

A in the AD of every level x + 1 message to Bob.
Remark. In [1], stages are counted differently: level x starts

when Bob sends his new ratchet key, and ends once he sends
the next; with Alice sending her randomness in between. This
means that there can be two separate stages of index (x, y):
one where Bob sends his y-th message for level x, and one
where Alice does. Note that in our model, rchpk(x)

B exists
only for odd values of x, while rchpk(x)

A exists only for even
x. The two models are equivalent, and our choice is motivated
by the need to lighten the sub- and superscripts, to simplify
the notations.

B. On the Security of the Signal Protocol

Cohn-Gordon et al. [1] performed the first formal analysis
of Signal as an authenticated key-exchange protocol. They
showed that under standard cryptographic assumptions, Signal
provides implicit AEAD key-authentication, forward secrecy
and, if used correctly, a form of post-compromise security. The
authentication of the keys is implicit, since it is derived from

the fact that only the intended party could compute the key;
however, Signal gives no explicit guarantee that the intended
party actually did compute the key. Forward secrecy assures
that, if at a certain point in time t∗ an adversary corrupts
a party, it is still impossible for the adversary to decrypt a
message sent at any time t < t∗. In particular, all ratchet keys
used before the moment of corruption remain secure. Post-
compromise security is a healing property: after a party has
been corrupted at time t∗ the key material at time t∗ is no
longer secure, but if the party performs an honest asymmetric
ratcheting, all the subsequent keys (produced at any time
t > t∗ + δ) are again secure.

IV. SOME PROBLEMS IN SIGNAL

Despite its innovative features and good security guaran-
tees [1], Signal does have some weaknesses. In this section, we
present some problems in the design of the Signal protocol; we
defer our mitigations to Section V. We remark that the threats
described below fall outside the security model considered
in [1] and come from looking at Signal from a new perspective:
Cohn-Gordon et al. aimed to show which security properties
Signal does guarantee, we focus on possible flaws and new,
stronger proposals.

Symmetric Ratcheting. In Signal, as long as Alice continues
to send messages to Bob without receiving a reply, the
sending-key chain grows via symmetric ratcheting. In this
setting, an attacker that manages to expose one base key will
be able to learn any future base- and message-keys in that
chain. In particular, all future messages sent from the moment
of the exposure, and until the next asymmetric ratcheting, can
be decrypted by the attacker.

Session Hijacking. When performing asymmetric ratcheting,
the two parties contribute with fresh Diffie-Hellman elements
that are authenticated only by the current message keys. Thus,
an attacker that can expose Alice’s current ephemeral state
can hijack her session from the next asymmetric ratchet. Con-
cretely, the attacker chooses what fresh ratcheting information
to send to Bob, and will be able to derail Bob on a new track of
key-chains that diverges from the honest one, and impersonate
Alice in the long run, even without knowing her secret key.

An Online Credential Server. Signal’s session initialization
heavily relies on a server that stores and forwards users’
public data. Consequently, this server must be online at all
times and users must trust the long-term credentials of their
partners provided by the server. While users’ credentials are
not confidential information, the fact that it is sent without
authentication from the server’s side gives room for Man-in-
the-Middle attacks that are undetectable by the users.

Out-of-order Messages. In asynchronous messaging, the or-
der in which Alice sends messages might be different from
the order in which Bob receives them. When this happens,
Bob advances his chain of keys to keep up with the received
messages’ states and stores the keys related to the pending
(not yet delivered) messages. In such a scenario, an attacker
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Alice Bob
Session initialization between Alice and Bob

0: KeyBundle
query Server for Bob←−−−−−−−−−−−−−−− idpkB, prepkB, ephpkiB,

Bob’s signature on prepkB
1: eskA

$←− Zp , epkA = geskA

2: rchsk(0)
A

$←− Zp , rchpk(0)
A = grchsk(x )

A

3: msAB =

(
(prepkB)idskA | |(idpkB)eskA

| |(prepkB)eskA | |(ephpkiB)eskA
)

4: msAB
KDF1−−−−→

{
rk(0)

bk(0,0)

5: symmetric ratchet for A �→ B keys.

AD=��
rchpk(0)

A , idpkA, idpkB, y
epkA, Bob’s prekeys identifiers


�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ctx(0,y)
1: confirm possession of preskB and ephskiB

2: msAB =

(
(idpkA)preskB | |(epkA)idskB

| |(epkA)preskB | |(epkA)ephskiB
)

3: msAB
KDF1−−−−→

{
rk(0)

bk(0,0)

4: symmetric ratchet for A �→ B keys.

5: rchsk(1)
B

$←− Zp , rchpk(1)
B = grchsk(1)

B

Symmetric ratchet for B �→ A keys of stage (x, y) ≥ (0, 0), with x odd

1:
(
bk(x,y)

) KDF2−−−−→
{

k(x,y)

bk(x,y+1)

1:
(
bk(x,y)

) KDF2−−−−→
{

k(x,y)

bk(x,y+1)
AD=(rchpk(x )

B ,idpkB,idpkA,y)←−−−−−−−−−−−−−−−−−−−−−−
ctx(x,y)

2: ctx(x,y) = AEAD.Enck(x,y) [M,AD]

2: AEAD.Deck(x,y) [ctx(x,y),AD]

Asymmetric ratchet at level x ≥ 1, B �→ A.

1: Δ(x) = (rchpk(x−1)
A )rchsk(x )

B

2:
(
rk(x−1),Δ(x)

) KDF1−−−−→
{

rk(x)

bk(x,0)

1: Δ(x) = (rchpk(x)
B )rchsk(x−1)

A
AD=(rchpk(x )

B ,idpkB,idpkA,y)←−−−−−−−−−−−−−−−−−−−−−−
ctx(x,y)

3: symmetric ratchet for B �→ A keys.

2:
(
rk(x−1),Δ(x)

) KDF1−−−−→
{

rk(x)

bk(x,0)

3: symmetric ratchet for B �→ A keys.

Fig. 1: Protocol flow of the core parts of Signal [1] using the notation adopted in this paper, where g is the generator of a
group of prime order p.

that retains all of Alice’s messages apart from the last one,
and then exposes Bob’s current state, is able to decrypt all the
withheld ciphertexts using Bob’s stored key-chain.

V. SAID

We present now the first of our main contributions, the SAID
protocol. Our aim is to stay as close as possible to the original
Signal protocol while mitigating some of the threats discussed
in Section IV. Concretely, we make three major changes.

1) We replace the semi-trusted credential server with a
Key-Distribution Center (KDC) that provides identity-
based secret keys for all the users. In this way, the
KDC has to be online at each user-registration and no
longer at any session-setup. In addition, the identity-based
infrastructure rules out the chance of Man-in-the-Middle
attacks.

2) We upgrade the key ratcheting mechanism to include long
term identity-based secrets that guarantee stronger and
explicit partner authentication.

3) Finally, we introduce the use of a trusted execution envi-
ronment to securely implement the execution of functions
on sensitive data.

The SAID protocol has four main phases (more details in the
following sections):

Parameter Generation run once, by a trusted party, to set
up the public parameters of the protocol.

User Registration performed by users at installation time
(and subsequently periodically) to create their identity-based
cryptographic data in the KDC.

Session Initialization performed by a user A to begin a
chat with a registered user B. In this phase, A generates a
long-term master secret that will be shared with B only (see
top of Figure 2 for details).

Messaging takes place when two users communicate in a
session. This phase is characterized by sequences of symmetric
and asymmetric ratchets (see bottom of Figure 2 for details).

A. Parameter Generation

The KDC sets up its master secret keys and the public
parameters used by SAID as follows.
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Alice Bob
Session initialization between Alice (initiator) and Bob (responder).

1: rchsk(0)
A , r

$←− Zp; rchpk(0)
A = g

rchsk(0)
A

1 ; h = gr2
2: sgn← IBS.Sign(IBS.param,IBS.skA, (A,B, rchpk(0)

A , h))
3: msAB = e(H(B), ID.mpk)r

4: tag(0,0) $←− Zp; (msAB, g1, tag(0,0) )
KDF1−−−−→

{
rk(0)

bk(0,0)

5: (msAB, bk(0,0), ε)
KDF2−−−−→

{
k(0,0)

bk(0,1)
AEADk(0,0) [M,AD]−−−−−−−−−−−−−−−−−−−−−−−−−−→

AD=(A,B,rchpk(0)
A ,0,h,sgn,tag(0,0) )

1: b← IBS.Vrfy(IBS.param,A, (A,B, rchpk(0)
A , h), sgn)

2: if b � 1→ abort, else msAB = e(idskB, h)
. . .

Asymmetric ratchet and two symmetric ratchets at stages (x, 0) ≥ (1, 0) and (x, 1), with x odd.

1: rchsk(x)
B

$←− Zp; rchpk(x)
B = g

rchsk(x )
B

1
2: Δ(x) = (rchpk(x−1)

A )rchsk(x )
B

3: (msAB,Δ
(x), rk(x−1) )

KDF1−−−−→
{

rk(x)

bk(x,0)

1: Δ(x) = (rchpk(x)
B )rchsk(x−1)

A
AEADk(x,0) [M,AD]←−−−−−−−−−−−−−−−−−−−−−−−−−−−

AD=(A,B,rchpk(x)
B ,0,Nx−2,tag(x,0) )

4 : tag(x,0) $←− Zp; (msAB, bk(x,0), tag(x,0) )
KDF2−−−−→

{
k(x,0)

bk(x,1)

2: (msAB,Δ
(x), rk(x−1) )

KDF1−−−−→
{

rk(x)

bk(x,0)

3: (msAB, bk(x,0), tag(x,0) )
KDF2−−−−→

{
k(x,0)

bk(x,1)

4: (msAB, bk(x,1), tag(x,1) )
KDF2−−−−→

{
k(x,1)

bk(x,2)
AEADk(x,1) [M,AD]←−−−−−−−−−−−−−−−−−−−−−−−−−−−

AD=(A,B,rchpk(x )
B ,1,Nx−2,tag(x,1) )

5 : tag(x,1) $←− Zp; (msAB, bk(x,1), tag(x,1) )
KDF2−−−−→

{
k(x,1)

bk(x,2)

Fig. 2: Session initialization (above) and ratchets (below) in SAID, where Nx−2 denotes the number of messages that the sender
sent at level x − 2, and M denotes the plaintext of the current stage.

• AEAD.param = (KeySet,NonceSet,MsgSet,HeadSet),
obtained from AEAD.Gen(1λ),

• (IBS.param,IBS.mpk,IBS.msk) ← IBS.Setup(1λ),
• a description of a DH bilinear mapping 𝒢 = (G1,G2,GT ,

p, g1, g2, e),
• a random secret master key for handling identities,

ID.msk
$←− Zp , and a corresponding master public key

ID.mpk = gID.msk
2 ∈ G2,

• a description of a hash function H : {0, 1}∗ → G∗1.
• a description of two Key Derivation Functions KDF1

and KDF2. The first KDF is used to generate the next
root- and base-key KDF1 : GT × G1 × {0, 1}size(bk) →
{0, 1}size(rk) × {0, 1}size(bk) and is defined as in Signal.
The other one is used to generate the next key for AEAD
and base-key: Let HMAC : {0, 1}∗ → {0, 1}size(bk) and
HKDF : {0, 1}size(bk) → {0, 1}size(k) be two hash functions,
KDF2 : GT × {0, 1}size(bk) × {0, 1}size(p) → {0, 1}size(k) ×
{0, 1}size(bk) is defined as follows: KDF2(x, y, z) →
(HKDF(HMAC(x | |y | |z)),HMAC(x | |y)).

SAID public parameters set pparam includes all the public
parameters AEAD.param, IBS.param, IBS.mpk, 𝒢, ID.mpk,
and all the descriptions of H, KDF1, and KDF2. The master
secrets, kept by the KDC only, are IBS.msk and ID.msk.

B. User Registration

A user A registers to the system by sending her identity,
A, to the KDC. The KDC returns the user’s secret signing
key IBS.skA ← IBS.Extr(IBS.param,IBS.msk,A) and

her secret identification key idskA ∈ G1 generated as4 idskA =
H(A)ID.msk. The KDC also adds A into a list of registered
users, and replies to any future attempt to register A with the
error message ’username taken’.

C. Session Initialization

In SAID any registered user A can initiate a session with
another registered user B (without the KDC being online),
following the procedure depicted on the top of Figure 2.

In detail, A chooses a random ratchet secret key, rchsk(0)
A ,

and computes its corresponding DH public key rchpk(0)
A . As

it is in Signal, these ratchet keys are not used yet, but the
target responder B will need them to make his first asymmetric
ratchet and respond to A’s messages. In addition, A picks a
random r and computes h = gr2 . At this point A signs sgn←
IBS.Sign(IBS.mpk,IBS.skA, d = (A,B, rchpk(0)

A , h)) where
the identities are included in the signed message to avoid
replay attacks. The values h and sgn will be part of the
AD of any level-0 message sent to B. The master secret
shared between A and B is msAB = e(H(B), ID.mpk)r . To
generate the initial root key rk(0) and base-key bk(0,0) the
values (msAB, g1, ε) are input to KDF1. With bk(0,0) , A can
perform the first symmetric ratchet, i.e., she generates a
random tag(0,0) and computes KDF2(msAB, bk(0,0), tag(0,0) )
to obtain the first AEAD key k(0,0) together with the next
base-key bk(0,1) . Finally, A authenticate-encrypts the message
M with AD = (A,B, rchpk(0)

A , 0, h, sgn, tag(0,0) ), and sends
AEADk(0,0) [M,AD] to B.

4The user’s secret identification key is essentially a Boneh-Franklin key for
identity-based encryption [11].
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For the session initialization to be successful, the responder
(paired user B) needs to reply to A’s message consistently. This
happens only if both of the following conditions hold true:

1) 1 = IBS.Vrfy(IBS.param,A, d, sgn), i.e., A’s signature
verifies for identity A; and

2) msAB = e(idskB, h), i.e., if A and B generate the
same master secret (and consequently the same encryp-
tion/decryption key k(0,0)).

D. Messaging

Following the way Signal works, in SAID the key material
also evolves through symmetric and asymmetric ratcheting.

Symmetric Ratcheting. A user performs a symmetric ratchet
when she wishes to obtain a base- and a message-key, to either
encrypt one more message, without having received a reply; or
to decrypt one more message before responding. In particular,
recall that a symmetric ratchet increases the y counter of the
chat state, so if the starting stage is (x, y), after the symmetric
ratchet we land at stage (x, y + 1).

The process of a symmetric ratchet is depicted in the lower
part of Figure 2, lines 3 and 4 for Alice, or 5 and 7 for Bob.
In a nutshell, A inputs the shared master secret, the current
base key (of stage (x, y)), and a fresh random tag to KDF2
and obtains the authentication-encryption key of stage (x, y)
and the next base-key for stage (x, y + 1). Note that, as it is
in Signal, KDF2 is split in two parts, as shown in Formula 5:
one that generates the next base-key, and one that generates
the encryption key – only the latter uses the random tag as
input, in order to handle out-of-order messages, i.e., the base-
keys could be computed simply from the previous ones, but
not the encryption keys.

⎧⎪⎪⎨⎪⎪⎩
(
msAB, bk(x,y)

) HMAC−−−−→ bk(x,y+1)(
msAB, bk(x,y), tag(x,y)

) HMAC−−−−→ t
HKDF−−−−→ k(x,y)

(5)

The random tag will be included in the additional data to
enable the responder to generate the same key k(x,y) .

Asymmetric Ratcheting. Whenever a message is sent by the
party who is not the sender of the last message in the chat, an
asymmetric ratchet happens. Asymmetric ratcheting increases
the x counter and resets the y counter of the chat state, so
if the starting stage is (x, y), after the asymmetric ratchet we
land at stage (x + 1, 0).

The process of asymmetric ratcheting is depicted in the
lower part of Figure 2, lines 1 and 2 for Alice, or 1 to 3 for
Bob. Assume that A has sent the last message (which includes
her level x−1 ratchet key rchpk(x−1)

A in AD), then, to send his
response, B selects a random ratchet secret key rchsk(x)

B and
computes the DH shared secret Δ(x) = (rchpk(x−1)

A )rchsk(x )
B .

He then inputs the shared master secret, the newly computed
DH secret, and the current root key (of level x − 1) to KDF1
and obtains the level x root key together with the new base-
key for stage (x, 0). Finally, B performs a symmetric ratchet

to generate the authentication-encryption key of stage (x, 0)
(and the next base-key for stage (x, 1)).

Note that, furthermore, as depicted in Figure 2, the addi-
tional data sent along with the message at stage (x, y) contains
Alice and Bob’s identity, the level x ratchet public key of
the current sender, the index counter y, the number Nx−2 of
messages that the sender sent at level x − 2 (set to 0 for N−1
and N−2), and, finally, the tag tag(x,y) .

E. Long-term secret key in SAID.

Signal requires private keys with different security needs,
i.e., ephemeral, mid-term and long-term keys. However, in
the AKE security model of [1], authors do not distinguish
these different levels of security, in the sense that each key can
be corrupted in the same way by the adversary using the so-
called “reveal” oracles. In SAID, we assume that for any pair
of user A, keys skA and msAB (for each user B that interacts
with A) are long-term keys, and we define a security model
that provides a fine-grained analysis of the long-term keys
compromise, following the definition of Cohn-Gordon in [2].
More precisely, we distinguish three level of compromise:
Total compromise: the adversary learns the key skA or

msAB. In this case, SAID has the same security as Signal,
because the adversary can run the key derivation functions
on her own, as in Signal.

Weak compromise: the attacker does not have knowledge
of the key, however she can compute operations that use
the long-term keys skA and msAB. More precisely, she
has access to a compromise oracle that simulates all rou-
tines that require these keys over a given period of time.
Intuitively, the oracle can be used for signing a given
message using the user’s secret key, and for computing
key derivation functions on the master secret msAB and
some input values. The routines simulated by the oracle
are detailed in Algorithms 3, 4 and 5. In this case, the
adversary cannot deduce the keys of the next symmetrical
ratchets because she cannot predict what random tags will
be chosen the future, so she cannot pre-compute the future
message keys using the oracle.

No compromise: the conversation is fully secure, as every
message key depends on the long-term secret keys.
In practice, the weak compromise requires some hardware

hypothesis, as the long-term keys and the corresponding
routines must be implemented in a trusted module called a
Hardware Security Module (HSM), e.g., a Trusted Execution

Environment (TEE) [17]. On a smartphone, the sim card can
also play the role of the HSM [18]. Another solution is to use
a trusted proxy that implements the routines. For instance, the
user sends messages using SAID on his smartphone, and he
interacts with the proxy to run the sensitive routines. Moreover,
the HSM can be simulated by Trusted Platform Modules

(TPM)5, which are software modules with equivalent security
guarantees.

5The International Standard for the TPM is given in https://www.iso.org/
standard/66510.html
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Algorithm 3 Routine R.IBS.Sign(IBS.param,IBS.skA, ·):
1: on input m;
2: return σ ← IBS.Sign(IBS.param,IBS.skA,m)

We assume that the trusted environment securely stores
the master secret keys of every instance of a user. However,
SAID can also be securely implemented using an environment
without this feature. In this case, the idea is to have r be the
hash of the concatenation of the user’s secret key and the
identity of the user’s partner, instead of picking it randomly.

More formally, that means replacing the r
$←− Zp instruction by

r ← H′(idskA,B), where H′ is a hash function in Algorithm 4.
Hence, the initiator of a chat can re-compute r on-demand
without the need to adaptively store data (msAB) in the
trusted environment. However, the responder must compute
the pairing e(idskB, h) in the HSM to retrieve msAB at each
stage, which obviously impacts the protocol’s efficiency. An
other more efficient solution is to store the encryption of each
msAB, then to send it to the HSM at each query.

F. Performances

In this section, we show that Signal and SAID have equiv-
alent computational cost. First, we remark that SAID has the
same complexity as Signal, except at the initialization phase,
which is run only once per instance. To compare the initial-
ization cost of Signal and SAID, we give the number of expo-
nentiations, paring computations, and signature computations
for both protocols, which are the dominant operations. The
sender’s initialization algorithm requires 3 exponentiations on
a pairing friendly, prime-order group, 1 pairing computation,
and 1 identity-based signature generation; and the receiver’s
initialization algorithm requires 1 exponentiation, 1 pairing
computation and 1 identity-based signature verification. By
using the certificate based IBS given in [12] instantiated with
the Shnorr signature [19], the signature algorithm requires
1 exponentiation, and the verification algorithm requires 4
exponentiations. By instantiating our pairing as in [20], a Tate
pairing computation costs approximately 4 times the cost of
an exponentiation6 in G1. To sum up, initialization cost of
SAID is equivalent to 8 exponentiations for the sender, and
9 for the receiver. On the other hand, the Signal initialization
algorithm requires 6 exponentiations for the sender, and 5 for
the receiver.

VI. IDENTITY-BASED MULTI-STAGE ASYNCHRONOUS
MESSAGING PROTOCOLS

Before defining and modeling Multi-Stage Asynchronous
Messaging Protocols in Definition 1, we set the context by
formalizing the notions of stages, roles, and party instance.

6For instance, for a security of 256 bits, a Tate pairing costs 8726 ·M and
the exponentiation costs 2863 · M , where M is the multiplication cost in a
field and is approximately 13, 000 clock cycles [20].

Algorithm 4 (initiator) Routine R.KDF∗(msAB, ·):
1: on input (x1, x2);
2: if this is the first call to this routine then
3: r

$←− Zp; h = gr2 ; msAB = e(H(B), ID.mpk)r

4: end if
5: y ← KDF∗(msAB, x1, x2)
6: return (h, y)

Algorithm 5 (responder) Routine R.KDF∗(msAB, ·, [h]):
1: on input (x1, x2);
2: if this is the first call to this routine then
3: msAB = e(idskB, h)
4: end if
5: return y ← KDF∗(msAB, x1, x2)

A. Groundwork

Parties and roles. We consider a system made of multiple
parties. Each party P is associated with a unique party identi-
fier: its identity. By abuse of notation, we use P to denote both
the party and its identity. In the spirit of Signal, we simplify
the model by allowing each party P to only have one single

protocol session with each other party throughout their entire
lifetimes. We denote the protocol session (or instance) between
P and Q as πQ

P , if seen from P’s point of view, and πP
Q, from

Q’s side. The party that begins the session is called initiator
while its partner is called responder.

Stages and Execution Time-Line. In multi-stage protocols,
the key material evolves according to the stage the conversa-
tion is at. To keep track of this process, stages are defined
using an ordered pair of non-negative integers s := (x, y).
The first index, x, tells who is currently speaking: even values
indicate the initiator of the conversation; odd values indicate the
responder. The second index, y, counts how many messages
the party that is the current sender has already sent since it
started speaking (again).

Each stage has one sender and one receiver, i.e., there is
one and only one role per user, and both users cannot have
the same role. Stages can evolve in two different ways:

• the current sender sends an additional message, in which
case, stage (x, y) turns into stage (x, y + 1);

• there is a switching of sender, and stage (x, y) turns into
stage (x + 1, 0).

We denote by next(s) the subsequent stages to a stage s =

(x, y), thus next(s) = {(x, y + 1), (x + 1, 0)}. For example,
for s = (0, 0) we have next(0, 0) = {(0, 1), (1, 0)}, and as
the initiator keeps sending messages without getting a reply
the y index increases: (0, 1), (0, 2), etc. The responder’s first
reply triggers the transition from stages (0, ·) to stage (1, 0).
Stages are ordered lexicographically. For practical purposes
we assume the protocol implicitly defines a maximal value
ymax > 0 of messages that a party can send in a row.
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B. Syntax

Our definition of Identity-Based Multi-Stage Asynchronous
Messaging protocols (iMAM for short) is meant to be general
and does not tailor specifically to our SAID proposal.

Let πQ
P be the (unique) protocol instance between P and

Q. For iMAM protocols, we define instances as handles of
attributes that can be either static (i.e., once set, the value
does not change for the whole duration of the session), or
non-static (i.e., the value is updated during the protocol run,
usually at every stage).

A partner identifier πQ
P .pid, consisting of the identity Q of

the intended party partnered in the protocol session. This
attribute is static.

A session identifier πQ
P .sid, consisting of the concatena-

tion of the identity of the initiator and the responder, as
well as some protocol-specific auxiliary information aux,
(P,Q, aux).

A stage list πQ
P .stages, consisting of a list of “booleans” such

that πQ
P .stages[s] ∈ {1,⊥}. We have πQ

P .stages[s] = 1 if
and only if a message was sent or received (correctly) at
stage s, otherwise πQ

P .stages[s] doesn’t “exist”, i.e., is ⊥.
By abuse of notation, we say s ∈ πQ

P if πQ
P .stages[s] = 1.

This attribute is non-static.
A transcript πQ

P .Tr , consisting of a list of ordered data
πQ

P .Tr[s] = D. For clarity, πQ
P .Tr contains all data sent and

received by party P during its chat with Q. This attribute
is non-static.

A reception indicator list πQ
P .rec, consisting of a list of

integers such that πQ
P .rec[s] ∈ [[0, ymax]] ∪ {⊥}, if P is the

receiver for the stage s = (x, y), then πQ
P .rec[s] = ys is

such that the message of index (x, ys) is the first message
of level x that P received7, and if P did not yet receive a
message at level x, or is the sender, then πQ

P .rec[s] is ⊥.
Several lists of ephemeral elements πQ

P .var, such
that var ∈ 𝒱 where 𝒱 is the set of (kinds of)
ephemeral elements. For example, in SAID, we define
𝒱 = {k,Δ, bk, rk, rchpk, rchsk, tag}. Each πQ

P .var is an
ordered list (indexed by stage) of the var elements that
are specific to each stage s ∈ πQ

P .stages8. This attribute
is non-static and can be updated in an append-only
fashion. In practice, however, ephemeral elements that are
no longer needed are removed from the list. Note that
πQ

P .rchpk[(x, y)] is Q’s latest ratchet public key, either
sent at level x − 1 (if P is the current sender) or level
x (if Q is the sender). Similarly, πQ

P .rchsk[(x, y)] is the
latest ratchet private key of P, either created at level x − 1
(if P is the current receiver) or level x (if Q is the receiver).

7This list exists because we can handle out-of-order messages, and therefore
it is likely that ys � 0. In particular, the ratchet public key contained in the
AD of the message of stage (x, ys ) is the one used for the x-th asymmetric
ratchet, independently of the value contained in the additional data of the
other level x messages.

8For example, in SAID, πQ
P .rk[(x, y)], i.e., var = rk, is rk(x ) .

Definition 1 (Identity-Based Multi-Stage Asynchronous Mes-

saging Protocols): An Identity-Based Multi-Stage Asyn-

chronous Messaging Protocol (iMAM for short) is a
tuple of five algorithms iMAM = (aSetup,aUReg,
aStart,aRKGen,aSend,aReceive), such that:

aSetup(1λ) → (msk,mpk) : on input a security parameter
(in unary) 1λ, the system setup algorithm outputs a master
secret key msk and a master public key9 mpk.

aUReg(P,msk) → ltkeysP : on input a user identity P, and
the master secret key msk, the user registration algorithm
outputs the user-specific (long-term) secret keys ltkeysP and
a user identifier P.

aStart(ltkeysP,role,Q) → (πQ
P ) : on input a user P’s long

term keys ltkeysP, a role ∈ {initiator, responder} for the
party P, and the intended partner’s identity Q � P, the start-
a-conversation algorithm initializes and outputs the protocol
instance πQ

P .
aRKGen(1λ) → (rchsk, rchpk) : on input a security param-

eter (in unary) 1λ, the ratchet key generation algorithm
outputs a public/private pair of ratchet keys (rchsk, rchpk).

aSend(ltkeysP, s, π
Q
P ,M, [rch,msPQ]) → (πQ

P ,C, [msPQ]) :
on input a user’s long-term secret keys ltkeysP, an instance
πQ

P , a stage s = (x, y), a message M, if s � (0, 0), a master
secret msPQ, and, if x = 0, a public/private ratchet key
pair rch = (rchsk, rchpk), the send algorithm outputs
an updated instance πQ

P , a new message C (usually a
ciphertext with AD), and, if s = (0, 0), a master secret key
msPQ. The behavior of this algorithm highly depends on
the input stage s and the party instance πQ

P .
aReceive(ltkeysP, s, π

Q
P ,C) → (πQ

P ,M, [msPQ]) : on input

a party’s secret keys ltkeysP, an instance πQ
P , a stage

s = (x, y), and a message C (usually a ciphertext), the
receive algorithm outputs an updated instance πQ

P , and a
message M (usually the decryption of C).

SAID as iMAM. In the case of SAID, the protocol setup
aSetup outputs the parameters explained in section V-A. In
particular, mpk includes the public parameters of an identity-
based signature scheme, the description of the prime order
groups, a hash function, two key derivation functions, and
algorithms of an AEAD scheme. User P’s long-term secret
keys, as returned by algorithm aUReg, are one identity secret
key idskP and one identity signing key IBS.skP. The aStart
algorithm initializes an empty instance πQ

P . Note that the
party instance πQ

P is storing all the keys necessary to run the
algorithms correctly as explained in Section VI-B. The aSend
algorithm is defined according to the input stage s: if s = (0, 0)
it runs the asymmetric ratchet procedure depicted in Figure 2;
if s = (x, y) for some y > 0, it runs the symmetric ratchet
procedure depicted in Figure 2; if s = (x, 0) for some x > 0,
it runs the asymmetric ratchet procedure depicted in the Figure

9This key is input to all the subsequent algorithms and contains a value
ymax > 0 that bounds the maximal horizontal growth of stages.
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2. In all cases, aSend computes C ← AEAD.Enck(s) [M,AD]
where the additional data contains the value Nx−2 correspond-
ing to the number of messages sent by the party last time it was

acting as sender (N−2 and N−1 are set to 0 by default). The
aReceive algorithm is defined exactly as aSend except that
instead of encrypting messages, it decrypts ciphertexts, i.e.,
M ← AEAD.Deck(s) [C,AD]. Finally, the aRKGen algorithm
returns a ratchet key pair made up of a random element

rchsk
$←− Zp along with rchpk = grchsk

1 ∈ G1.

Correctness. In what follows, we define the notion of cor-
rectness for iMAM protocols. Loosely speaking, a protocol is
correct if, for any pair of users P and Q that run the protocol
honestly, any message sent at any stage by P will be correctly
decrypted and authenticated by the user Q. Note that our
definition considers out-of-order message delivery, i.e., the
messages are correctly decrypted even if they are received
out-of-order by the user Q.

Definition 2 (correctness): An Identity-Based Multi-Stage
Asynchronous Messaging Protocol is correct if for any pair
of distinct honest users (P, Q), given the party instances πQ

P
and πP

Q, let R[s] ∈ {P,Q} (resp. S[s]) denote the receiver (resp.
sender) at a given stage s, for any stage s = (x, y) such that:
• if x � 0, there exists s′ = (x − 1, y′) ∈ πQ

P ∩ πP
Q, i.e., at

least one message was sent and received at level x − 1,
meaning both parties know the previous ratchet key,

• if y � 0 then (x, y − 1) ∈ πR[s]
S[s] , i.e., a message was sent

at the previous stage,
then, for:
• any message M, and
• any rch(x) = (rchsk(x)

S[s], rchpk(x)
S[s]) generated by

aRKGen(1λ), and
• any 3-uple (πR[s]

S[s] ,C, [msPQ]) generated by the algorithm
aSend(ltkeysS[s], s, π

R[s]
S[s] ,M, [rch(x),msPQ]),

it holds that for any (πR[s]
S[s] ,M

′, [msPQ]) generated by
aReceive(ltkeysR[s], s, π

R[s]
S[s] ,C), we have M′ = M.

The conditions in Definition 2 allow us to model out-of-
order message delivery, and state that if the receiver of stage
s gets the message sent by its interlocutor, it will decrypt
correctly (implying that both parties were using the same key
for encryption). In particular, our notion of correctness implies
that the transcripts are matching on every stage in which the
current receiver actually got the message delivered.

VII. SECURITY MODEL FOR iMAM PROTOCOLS

Our security model for iMAM protocols is inspired to the
authenticated and confidential channel establishment notion of
Jager et al. [3]. However, to ease notation and understanding,
we follow the one single chat approach [1] adopted for
messaging protocols, and allow only one protocol instance
between any two parties. This simplification does not affect
security and it is still possible to derive the generic model
from ours. Compared to the security model for Signal [1], that
resembles the notion of authenticated key exchange protocol
(AKE) ignoring messages and additional data sent during

chats, we prove SAID secure in a more realistic model that
captures the notions of persistent authentication and confiden-
tial channel establishment. To this end, for the unique protocol
instance denoted by πQ

P , we consider the following attribute
(in addition to the ones described in the Section VI-B).

Challenge bit πQ
P .b[s], consisting of a binary value chosen

identically and independently at random whenever a new
stage s ∈ πQ

P of an instance is created. The value of a
challenge bit is static and will be used by the encryption
and decryption algorithms (and by the oSend, oReceive,
oLoR.AEnc, and oLoR.ADec oracles) in our channel-
security game.

Recall that with abuse of notation we write s ∈ πQ
P for

πQ
P .stages[s] = 1, to refer to a stage s that has either happened

before in the chat, or is the current stage (of πQ
P ).

A. Adversarial model

We model the adversary as a PPT algorithm 𝒜 that can
(adaptively) call a series of oracles: oUReg to register users
to the system; oCorrupt to corrupt users and learn their
long term keys; oStart to initialize a session between two
users; oReveal to reveal user’s ephemeral keys at a chosen
stage; oAccessHSM oracle to simulate momentary-access
to a user’s device; oSend to simulate the send algorithm;
oReceive to simulate the reception algorithm. In the AKE
model, the adversary has access to the oTest oracle which
returns the message key of a given stage or a random key
depending on a challenge bit. In the ACCE model, the
adversary has access to the oLoR.AEnc and oRoR.ADec
oracles to encrypt and decrypt messages for a given stage.
Our oAccessHSM oracle can be seen as a sophisticated twist
to the corruption oracle, and follows the notion of trusted
environment oracle access given in [21]: we assume that
users’ long-term secrets are stored within a HSM to which
the adversary can only have black-box access.

B. Security Games

Let Π be an iMAM and let 𝒜 be a polynomial time algorithm.
In this section we define the AKE (resp. ACCE) experiment
of 𝒜 against Π. We let the adversary 𝒜 interact in an adaptive
way with all the oracles described in the next paragraph. We
consider an additional entity, the challenger 𝒞, that runs the
aSetup algorithm at the beginning of the experiment, sends
mpk to 𝒜, and msk to the oracles it administrates. At the end
of the experiment 𝒜 outputs a tuple (πQ

P .sid, s∗, b∗).
We consider both the AKE and the ACCE security ex-

periments in this section. We first describe the oracles that
are used identically in both experiments, then we define the
oracles that are, respectively, only used in the AKE and in
the ACCE experiment. As in [1], our AKE model considers a
truncated version of the iMAM protocol. More precisely, the
users only send the key-exchange material without encrypting
or authenticating any message, i.e., they only send the AD
when they run the send algorithm. Without this restriction,
the adversary may encrypt or decrypt any message of the
protocol, and then she may trivially deduce whether a given
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key is the real message key or not. On the contrary, our ACCE
experiment captures the actual messaging.
oUReg(P) on input a party P, the user registration oracle

runs aUReg(P,msk) → (ltkeysP, P).
oCorrupt(P) on input a user identity P the corruption oracle

checks if P is a registered user, in which case it returns
ltkeysP. Otherwise, it returns ⊥.

oStart(P,role,Q) → πQ
P on input a user identity P, a role

role ∈ {initiator, responder} and the identity of its intended
partner Q, the start-conversation oracle checks if P,Q are
registered users, and if not it returns ⊥. For existing users,
it runs aStart(ltkeysP,role,Q) → πQ

P and from then on
considers πQ

P to be an existing chat.

oReveal(πQ
P .sid, var, s) on input a session identifier πQ

P .sid, a
variable var ∈ 𝒱 and a stage s = (x, y) the reveal-state
oracle checks if πQ

P exists, and if s ∈ πQ
P . If both conditions

hold, then it returns πQ
P .var[s].

oAccessHSM(πQ
P .sid, fct, q.input) on input a session identifier

πQ
P .sid, some function fct implemented on the trusted mod-

ule, and a query input q.input, the access-trusted-module
oracle returns the result of the black-box on the given inputs
fct(q.input).

Oracles for the AKE model
oTest(πQ

P .sid, s) on input a session identifier πQ
P .sid and a

stage s, if:
• πQ

P does not exist, or
• s � πQ

P , or
• πQ

P .k[s] =⊥, or
• this oracle has already been called on (πQ

P .sid, s) or
(πP

Q.sid, s)

then the test oracle returns ⊥. Otherwise, if πQ
P .b[s] = 0,

it returns a randomly generated key k
$←−𝒦, else it returns

the actual message key πQ
P .k[s] (which corresponds to what

is generally called the session key in the AKE model).
oSend(πQ

P .sid, s,AD) on input a session identifier πQ
P .sid, a

stage s = (x, y), and a (possibly empty) string of additional
data AD, this sending oracle checks that:

1) πQ
P exists,

2) s � πQ
P ,

3) P is the sender for stage s,
4) there exists s′ ∈ πQ

P such that s ∈ next(s′),
then if one of these conditions does not hold, the or-
acle returns ⊥. Otherwise, if AD is not empty, it sim-
ulates the sending algorithm (i.e., it updates πQ

P as
aSend would) using AD as additional data, which it
then returns; alternatively, it generates aRKGen(1λ) →
(rchsk(x)

P , rchpk(x)
P ), then runs aSend(ltkeysP, s, π

Q
P ,⊥

, (rchsk(x)
P , rchpk(x)

P ),msPQ) and returns the additional
data. Without loss of generality, we suppose that the AD
given by the attacker can always be parsed into something
correct, even if that means truncating or padding it. Note

that only the sender’s transcript is updated when this oracle
is called, under the condition it had not been called at that
stage before, i.e., its usage is restricted to once per stage.
If AD is empty, this oracle sets SHU(πQ

P , s) = 1 to denote
that it has been sent like an honest user on stage s, else it
sets SHU(πQ

P , s) = 0.

oReceive(πQ
P .sid, s,AD) on input a session identifier πQ

P .sid,
a stage s = (x, y), and a string of additional data AD,
this receiving oracle checks condition 1 from oSend along
with:

5) P is the receiver for stage s,
6) if x � 0, there exists s′ = (x ′, y′) ∈ πQ

P .stages such that
x ′ = x − 1,

then if one of these conditions does not hold, the oracle
returns ⊥. This oracle then runs aReceive with AD. As
it was for oSend, the AD is “automatically” assumed to be
correct. Note that only the receiver’s transcript is updated
by this oracle, allowing out-of-order messages or derailing,
in case the AD is different from the one used in the sending
oracle for that level. If πQ

P .Tr[s] = AD and SHU(πP
Q, s) = 1,

then this oracle sets RHU(πP
Q, s) = 1 to denote that it

has been received like an honest user on stage s, else
RHU(πP

Q, s) = 0

Oracles for the ACCE model

oSend(πQ
P .sid, s,M0,M1,AD,C) is very similar to oSend for

AKE, with the additional input of two messages M0,M1,
and a ciphertext C (empty if AD is), checking conditions 1-
4 to know if it should return ⊥. If the conditions hold, if AD
and C are not empty, it simulates the sending algorithm us-
ing AD as additional data and M

π
Q
P .b[s] as the message (i.e.,

it updates πQ
P as aSend would) and returns C; alternatively,

it generates aRKGen(1λ) → rch(x) = (rchsk(x), rchpk(x) ),
then runs aSend(ltkeysP, s, π

Q
P ,Mπ

Q
P .b[s], rch(x),msPQ) to

obtain a ciphertext C′, and return it. As it is in AKE, if AD
and C are empty, this oracle sets SHU(πQ

P , s) = 1, else it
sets SHU(πQ

P , s) = 0. Finally, this oracle adds C or C′ to a
list ℒP,Q,s .

oLoR.AEnc(πQ
P .sid, s,M0,M1,AD) on input a session identifier

πQ
P .sid, a stage s = (x, y), two messages M0,M1, and a (pos-

sibly empty) string of additional data AD, the encryption
oracle checks condition 1, and that s ∈ πQ

P , then encrypts
both messages using either AD or some additional data
generated by aRKGen, then if either encryption is ⊥, it
returns ⊥, otherwise it returns the result C of the encryption
of M

π
Q
P .b[s]. Note that this oracle is meant to be for the

adversary to play with, no message is ever sent or received.
Finally, this oracle adds C to a list ℒP,Q,s .

oReceive(πQ
P .sid, s,C,AD) this receiving oracle is almost

identical to the one for AKE, with the additional input
of a ciphertext C. It checks conditions 1-2 and 5-6, and
returns ⊥ if they do not hold. If they hold, then this oracle
runs aReceive for C, which returns the message M . If

306



rk(x) bk(x,0)

rk(x+1) bk(x+1,0)

rk(x+2) bk(x+2,0)

rk(x+3) bk(x+3,0)

rchsk(x)
A

rchsk(x+1)
B

rchsk(x+2)
A

rchsk(x+3)
B

bk(x,1)

bk(x+1,1)

bk(x+2,1)

bk(x+3,1)

KDF

KDF

KDF

. . .

DH

KDF

DH

KDF

DH

KDF

KDF

Fig. 3: An illustration of which keys are computable (in grey)
if the adversary reveals stage (x, 0) (dotted) and injects the
ratchet key of level x + 1 (dashed).

C ∈ ℒP,Q,s∪ℒQ,P,s or πQ
P .b[s] = 0, then this oracle returns

⊥, else it returns M . If πQ
P .Tr[s] = AD and SHU(πP

Q, s) = 1,
then this oracle sets RHU(πP

Q, s) = 1, else RHU(πP
Q, s) = 0.

oRoR.ADec(πQ
P .sid, s,C,AD) on input a session identifier

πQ
P .sid, a stage s = (x, y), a ciphertext C, and a string of

additional data AD, the decryption oracle checks condition
1, and that s ∈ πQ

P , then if C ∈ ℒP,Q,s ∪ ℒQ,P,s or
πQ

P .b[s] = 0, this oracle returns ⊥ 10, else it decrypts the
ciphertext and returns the result to the adversary.

Winning conditions of SAID. We recall that at the end of
the experiment, the adversary outputs (πQ

P .sid, s∗, b∗).
We will now list the conditions under which an adversary

trivially knows or computes a message key πQ
P .k

(s) for a stage
s depending on which oracles were called. Unless specified
otherwise, the calls are made on P’s side. We choose to
separate the oracle calls into two categories: those that induce
the compromise of the long-term shared key msPQ, weak or
full (in this case the security of SAID becomes equivalent to
the security of Signal for previous stages), and the others (the
adversary cannot compute past keys by herself).

Since we allow the adversary to “derail” the users by giving
them a different ratchet key at the same level, i.e., giving
a different AD to oSend and oReceive, it is possible that
πQ

P .k
(s) � πP

Q.k
(s) . This is verifiable formally by checking the

transcripts on both sides. However, since the challenge is based
on a key for a specific user, this means that it has to be taken
into account in the winning conditions.

Similarly, the adversary could derail the users right from
the beginning of the conversation, if she intercepts all of the
initiator’s messages, and calls oAccessHSM on the routine
IBS.Sign(IBS.mpk,IBS.skP, ·) in order to obtain a valid
signature from the initiator on a value of her choice, which is
then sent to the responder, she will derail the conversation and
know the (fake) master secret, but she has to take the initiator’s
place and thus trivially knows every key on the receiver’s side.

10The decryption returns ⊥ if the bit is 0, as in decription oracle of the
LH-AEAD security model.

The initiator’s side, however, is still secure – note that since
the responder never replied, there is only one level.

The adversary could make SAID fall back in Signal’s
security if the master secret is compromised, i.e., is known
and/or used, which happens if:

1) she impersonates the initiator via the attack described
above, or

2) she called oCorrupt on the session’s responder R –
and thus knows idskR, which gives the master secret
e(idskR, h) –, or

3) she simply called oAccessHSM on the routine
KDF∗(msPQ, ·) at stage sA = (xA, yA), thus potentially
leaking any previous stage.

Note that cases 1 and 2 are full compromises, when case
3 is a weak compromise. If we are in this situation, then the
adversary trivially knows the message key πQ

P .k
(s) of stage

s = (x, y) anterior to sA, if she found herself in either of the
following conditions:
• x = 0, i.e., she is on the first level11,
• she called oReveal with var = bk on a stage (x, y′ < y),

or with var = k on s, for P, or for Q if πQ
P .rchpk[s] =

πP
Q.rchpk[s],

• she called oReveal with var = rchsk and with var = rk
on a stage (x−1, y′) for the sender of that stage, under the
condition, if that sender is Q, that πQ

P .rchpk[(x−1, y′)] =
πP

Q.rchpk[(x − 1, y′)],
• she injected the ratchet key of level x − 1, i.e.,

– if P is the current sender (resp. receiver), she called
oSend (resp. oReceive) with her own AD for a
stage (x − 1, 0) (resp. (x − 1, πQ

P .rec[s])), so either
SHU(πQ

P , (x − 1, 0)) or RHU(πQ
P , (x − 1, πQ

P .rec[s])) is
0,

and knew the root key of that level, meaning she either
– called oReveal with var = rk on a stage (x−2, y′′), for

P – or for Q, under the condition that πQ
P .rchpk[(x −

2, y′′)] = πP
Q.rchpk[(x − 2, y′′)] – or

– actually also injected the ratchet key of level x − 2,
while knowing the root key of that level, etc.,

as illustrated in Figure 3.
Moreover, if the adversary continuously injects ratchet keys,

starting at level xI ≤ xA, then until two honest ratchet keys in
a row are generated, say, at levels xH and xH +1, all message
keys from level xI up to, and including, level xH are known
to the adversary12. This is a straightforward extension to the
attack presented in Figure 3.

Now if neither oCorrupt nor oAccessHSM were called, or
if the adversary called oAccessHSM on stage sA, such that
sA < s, and

RHU(πQ
P , (xH, π

Q
P .rec[s])) = 1 or SHU(πQ

P , s) = 1,

then the only way for the adversary to trivially know the
message key πQ

P .k
(s) for a stage s = (x, y) (posterior to sH , if

11All keys of stages (0, y) can be derived from the master secret.
12In the weak compromise case, she still has to call oAccessHSM.
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relevant) is if she called oReveal with var = k on the stage s

for P, or Q if πQ
P .rchpk[s] = πP

Q.rchpk[s].
Note that because the adversary no longer uses

oAccessHSM, and did not call oCorrupt, an oReveal
query can only compromise a single stage, even with
var = bk, because the master secret is not known to her, yet
it is always needed for the key derivations.

Finally, in both the AKE and the ACCE experiment, if:
• πQ

P exists, and
• s∗ ∈ πQ

P , and
• none of the conditions mentioned in this paragraph hold,

then if b∗ = πQ
P .b[s], the challenger returns 1, else it returns

0. Otherwise, the challenger picks a random bit b′
$←− {0, 1}

and returns it.
Definition 3 (AKE/ACCE-security): Let Π be an iMAM. Π

is said to be AKE/ACCE secure if for any polynomial time
adversary 𝒜, the probability that 𝒜 wins the AKE/ACCE
experiment is negligibly close to 1/2.

C. Security Proofs

In this section, we show that SAID is secure in both the
AKE and the ACCE model.

Theorem 1: If IBS is EUFCMA-secure, then SAID is AKE-
secure under the BCDH and the CDH assumptions in the
random oracle model.

Theorem 2: If SAID is AKE-secure and AEAD is LH-
AEAD-secure then SAID is ACCE secure.
We give the proof sketches of these two theorems. Our proofs
use the sequences of games approach introduced by Shoup
in [22]. The complete proofs are given in the full version13.

Proof (sketch) of Theorem 1:

We partition the analysis for two individual cases:
• Case 1: (i) The adversary calls the oAccessHSM oracle

for the conversation πQP after the stage s∗ is generated or
(ii) the adversary calls the oCorrupt oracle on the user
P or Q (in this case, the idea is that the key msPQ is
corrupted, hence the security of SAID is equivalent to
the one of Signal).

• Case 2: (i) The adversary does not call the oAccessHSM
oracle for the conversation πQP after the stage s∗ is gen-
erated and (ii) the adversary does not call the oCorrupt
oracle on users P and Q (in this case, the idea is that
the key msPQ is not corrupted, hence the adversary must
guess msPQ to win).

Case 1: We observe that if the stage s∗ = (x∗, y∗) satisfies the
winning conditions, then there exists x∗∗ ≤ x∗ such that:
• RHU(πQ

P , (x∗∗, πQ
P .rec[s∗])) or SHU(πQ

P , (x∗∗, 0)) is 1,
• RHU(πQ

P , (x∗∗ − 1, πQ
P .rec[s∗])) or SHU(πQ

P , (x∗∗ − 1, 0))
is 1,

• the adversary never queries (πQ
P .sid, var, (x, y)) to the

oReveal oracle such that var ∈ {bk, rk} (resp. {k, rchsk}),
13ia.cr/2019/367

and x∗∗ ≤ x ≤ x∗ and 0 ≤ y ≤ y∗ (resp. (x, y) = (x∗, y∗))
during the experiment.

We first show that the probability that the adversary sends
a query (ms∗PQ,Δ

∗, rk∗) to the random oracle that simulates
KDF1 such that Δ∗ = Δx∗∗ is negligible. We prove this claim
by reduction. Assume that there exists a polynomial time
algorithm 𝒜 for whom this probability is non negligible. We
show how to build an algorithm ℬ that breaks the CDH
experiment. The idea is that if the adversary has a non-
negligible advantage to win the AKE experiment, then she
sends Δx∗∗ to the random oracle that simulates Let qH be the
number of queries sent to the random oracles, which is the
result of a CDH instance.

We then show that the probability that the adversary sends
a query (ms∗PQ,Δ

∗, rk∗) or (ms∗PQ, bk∗, tag∗) to the random
oracles that simulates KDF1 and the function HKDF used in
KDF2, such that rk∗ ∈ {rkx∗∗, rkx∗∗+1, . . . , rkx∗ }, or such that
bk∗ ∈ {bk(x∗,0), bk(x∗,1), . . . , bk(x∗,y∗) } is negligible. The idea is
that if the adversary does not know Δx∗∗ , then she is not able
to guess all values that are generated from the hash of Δx∗∗ .

Finally, if 𝒜 never sends bk(x∗,y∗) to the random oracle
that simulates the KDF function, then the key ks∗ is
indistinguishable from random. In this case, the probability
that 𝒜 wins the game is exactly 1/2.

Case 2: We observe that if the stage s∗ = (x∗, y∗) satisfies
the winning condition, then there exists s∗∗ < s∗ such that
the oracle oAccessHSM is not called after the stage s∗∗ is
generated and SHU(πQ

P , s) = 1 or RHU(πQ
P , s) = 1. We want

to remove the cases where the adversary guesses the random
tag tags∗ before it is generated, and sends it to the oracle
oAccessHSM. In this case the adversary should guess the key
ks∗ without breaking the winning conditions. More formally,
we show that the probability that the adversary has sent the
query q = (bks∗, tags∗ ) to the oracle oAccessHSM such that
tag∗ = tags∗ before the stage s∗ is generated (hence before
tagx∗ is generated) is at most the probability that it guesses
tagx∗ at random in qHSM tries, where qHSM is the numer of
queries sent to oAccessHSM, which is negligible. The idea
is that the adversary must guess the value at random since it
does not exists when she calls the oAccessHSM oracle.

Next, we show that the probability that the
adversary chooses the additional data AD =

(P,Q, rchpk(0)
P , π

Q
P .rec[(0, 0)]), h, sgn) by herself when she

calls the oSend oracle on the stage (0, πQ
P .rec[s])) and πPQ

such that IBS.Vrfy(IBS.param, I, (I, R, rchpk(0)
I , h), sgn) =

1 is negligible. We prove this claim by reduction. Assume
that there exists a polynomial time algorithm 𝒜 such this
probability is non-negligible. We show how to build a
polynomial time algorithm ℬ that breaks the unforgeability
of the identity based signature.

Finally, we show that the probability that the adversary
sends a query that contains msPQ to the random oracles is
negligible. We prove this claim by reduction. Assume that
there exists a polynomial time algorithm 𝒜 such that this
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probability is non negligible. We show how to build an
algorithm ℬ that breaks the BCDH assumption. The idea is
that to guess msPQ, the adversary must compute the bilinear
computational Diffie-Hellman from H(Q), ID.mpk, and h. We
recall that since the adversary does not generate the signature
of h, this value was honestly chosen by the challenger.

On the other hand, if 𝒜 never sends msPQ to the
random oracle that simulates the KDF functions and 𝒜
never sends bk(x∗,y∗) to the oAccessHSM oracle on routine
R.KDF∗(msPQ, ·), then the key ks∗ is indistinguishable from
a random value. In this case, the probability that 𝒜 wins the
game is exactly 1/2.

Finally, in any case, the probability that the adversary wins
the game is negligibly close to 1/2. �
proof (sketch) Theorem 2:

We prove this theorem by reduction. Assume that AEAD is
LH-AEAD-secure, and assume that there exists an algorithm
𝒜 that breaks the ACCE security of SAID. We show how to
build an algorithm ℬ that breaks the AKE security of SAID.
The algorithm ℬ simulates the ACCE experiment to 𝒜 using
the keys produced by the test oracle. If πQ

P .b[s] = 0, then the
message key is randomly chosen. In this case, encryptions
and decryptions are independent from the keys exchanged in
SAID, hence, winning the ACCE experiment is equivalent to
breaking the security of the AEAD scheme, so the advantage
of 𝒜 is negligible. On the other hand, if πQ

P .b[s] = 1 then
ℬ encrypts and decrypts using the real message key. In this
case, 𝒜 wins with a non-negligible advantage by hypothesis.
Finally, depending on the response of 𝒜, the adversary
guesses the bit b with non-negligible probability. �

ACCE Security of Signal. We note that the security of Signal
in our model can be proven in a similar way as for SAID. We
recall that our model is stronger than the one proposed in [1]
since it allows the adversary to inject her own ratchet keys in
the additional data, and considers the un-truncated version of
the Signal protocol.

VIII. CONCLUSION

In this paper, we studied the Signal messaging protocol
from a new angle and proposed a variant, SAID, that we
proved secure in the authenticated and confidential channel
establishment (ACCE) model.

We focused on fixing several weaknesses in Signal to build
SAID, which inherently led us to a more secure protocol. Our
construction stays very close to Signal, with some additional
or differently computed keys here and there.

Cohn-Gordon et al. [1] proved the security of Signal in
the authenticated key exchange (AKE) model, which required
them to consider the protocol with several modifications. We
give in this paper a proof of SAID in the ACCE model, in
order to be able to fully consider the protocol.

We generalized SAID by defining Identity-Based Multi-
Stage Asynchronous Messaging Protocols, for which we gave
the security model that we used in our proof.

In the future, we would like to implement our solution
to prove its practical efficiency. Moreover, several works
recently focused on group messaging, and the Messaging

Layer Security IETF Working Group was created in early 2018.
Following this, we would like to see how to extend SAID to
a multi-user setting.
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