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Abstract—In the last decade, we observed a constantly growing
number of Location-Based Services (LBSs) used in indoor envi-
ronments, such as for targeted advertising in shopping malls or
finding nearby friends. Although privacy-preserving LBSs were
addressed in the literature, there was a lack of attention to the
problem of enhancing privacy of indoor localization, i.e., the
process of obtaining the users’ locations indoors and, thus, a
prerequisite for any indoor LBS.

In this work we present PILOT, the first practically efficient
solution for Privacy-Preserving Indoor Localization (PPIL) that
was obtained by a synergy of the research areas indoor local-
ization and applied cryptography. We design, implement, and
evaluate protocols for Wi-Fi fingerprint-based PPIL that rely
on 4 different distance metrics. To save energy and network
bandwidth for the mobile end devices in PPIL, we securely
outsource the computations to two non-colluding semi-honest
parties. Our solution mixes different secure two-party compu-
tation protocols and we design size- and depth-optimized circuits
for PPIL. We construct efficient circuit building blocks that
are of independent interest: Single Instruction Multiple Data
(SIMD) capable oblivious access to an array with low circuit
depth and selection of the k-Nearest Neighbors with small circuit
size. Additionally, we reduce Received Signal Strength (RSS)
values from 8 bits to 4 bits without any significant accuracy
reduction. Our most efficient PPIL protocol is 553x faster than
that of Li et al. (INFOCOM’14) and 500x faster than that of
Ziegeldorf et al. (WiSec’14). Our implementation on commodity
hardware has practical run-times of less than 1 second even for
the most accurate distance metrics that we consider, and it can
process more than half a million PPIL queries per day.

I. INTRODUCTION

A Location-Based Service (LBS) is a service that relies on

a user’s physical location to provide the user with additional

value. Pin-pointing the user’s location on a map and offering

routes to a given destination, navigation, targeted advertising,

or finding nearby friends [1, 2, 3] are such add-on values that

have already become a reality outdoors, but as well indoors.

Privacy is a major concern in LBSs because the location

history allows very accurate user profiling and even predicting

users’ future movements [4]. A lot of literature exists on

privacy-preserving LBSs, e.g., [5, 6, 7, 8, 9]. Typically in

these works, the user’s location is assumed to be known

by the user and the privacy concerns are about how this

location information is shared and used in an LBS. In this

paper, we focus on privacy issues of localization, i.e., of

techniques for obtaining a user’s location. We emphasize

that privacy-preserving localization is the prerequisite for a

privacy-preserving LBS because if privacy is violated already

in the localization phase, then all further efforts for privacy

protection are in vain.

Global Navigation Satellite System (GNSS) such as GPS

or Galileo is the primary technology for localization in many

LBSs [10]. Here, privacy of localization is not an issue because

it is performed in a stand-alone GNSS receiver (e.g., in-

car navigator) which calculates the location locally without

any communication with other parties [11, 12]. Assisted or

cloud GNSS receivers using cellular networks or the cloud

for improving localization are exceptions where privacy of

localization becomes an issue. Even though GNSS privacy

is good, GNSS is unavailable or has poor services in indoor

environments on which we focus in this work.

Thus, other means for localization must be used in-

doors. Proposed Indoor Localization (IL) techniques include

Wi-Fi [13, 14, 15, 16], magnetic-field positioning, cellu-

lar, Bluetooth Low Energy (BLE) [17], and Ultra Wide

Band (UWB) (see, e.g., [18, 19] for good surveys on indoor

positioning technologies). Arguably, Wi-Fi fingerprinting is

the most prominent and widely-adopted solution for IL [20,

21, 22, 23], as Wi-Fi networks and Wi-Fi capable devices are

ubiquitous and therefore virtually free for the IL provider.

More recent Wi-Fi standards allow to measure additional

parameters of the Wi-Fi signals such that more accurate

propagation times [24] and angles of arrival [25, 26] can be

obtained, enabling lateration or angulation localization meth-

ods. In multipath-free scenarios, where a signal can reach the

user only once, these methods yield accuracies compareable

with fingerprinting approaches. However, they do not preserve

the users’ privacy, require knowledge about the position of

the Wi-Fi Access Points (APs), and the problems due to

multipath propagation are not solved yet. Solutions that do

not build upon Wi-Fi, such as cellular or UWB, either share

these drawbacks or require additional network infrastructure.

On the other hand, Wi-Fi fingerprinting is not limited to IL

and can be used outdoors as well [27, 28].
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Wi-Fi fingerprinting relies on the spatial distribution of

the Received Signal Strength (RSS) of Wi-Fi APs. A user

reads the RSSs of nearby APs and sends them to a server

that hosts a database of pre-measured sets of RSS signatures

and associated positions, so called Reference Points (RPs), en-

coding the measurement locations. The server then calculates

the distances between the user’s RSS measurements and the

RSSs in the database under some distance metric. After that,

the server finds the user’s location as the RP associated to

the RSSs that yielded the smallest distance. While Wi-Fi fin-

gerprinting provides good localization accuracy and practical

feasibility (e.g., cheap installation costs thanks to the use of the

existing Wi-Fi infrastructure), there is the prevailing problem

of privacy: the server, who calculates the user’s location, can

track the user’s movements inside the building covered by IL.

Also, the server has incentives not to publish its database

and, hence, calculating locations locally in the user’s device

is typically not an option either as described next.

A. Motivation

Privacy-Preserving Indoor Localization (PPIL) is a very top-

ical problem given the constantly increasing use of IL [29, 30,

31] in environments including shopping malls [21], exhibition

centers, airports, hospitals, university campuses [22, 32], and

museums. Examples of deployed IL services (mobile apps)

include AnyPlace1, HERE Indoor Positioning2, IndoorAtlas3,

and Point Inside4. At the same time, with the constantly

growing use of IL also the IL accuracy is constantly increasing,

with recent papers pointing out to cm-level accuracy [30, 33].

Al Altogether, this means that the threats to the users’ privacy

are significant and growing [4, 11, 12, 34].

In the following, we consider the use of IL for customers

of a shopping mall as a motivating example for PPIL. The

customers of the shopping mall would greatly benefit from

the availability of IL because it would help them to easily

find shops, restaurants and other places of interest in the

mall, and would also allow tailored flash discounts for nearby

customers benefiting both the customers and retailers. How-

ever, the customers’ movements in the mall and visits to

specific places may reveal personal details and preferences

that they are reluctant to share with anyone. Hence, privacy

issues may hinder the adaptation of IL among privacy-aware

customers. A trivial solution for PPIL would be to let the

customers download local copies of the database, but the

service provider has many incentives to keep the database

secret. The database is a result of laborious measurements. An

accurate database can be constructed only by making several

measurements with different devices in exact locations, which

typically requires special equipment, and/or time-consuming

crowdsourced collection of fingerprints. Hence, the database is

a central business secret of the LBS. Furthermore, the database

1https://anyplace.cs.ucy.ac.cy
2https://www.here.com/en/products-services/products/here-positioning/

here-indoor-positioning
3http://www.indooratlas.com
4https://www.pointinside.com

may reveal sensitive information about the infrastructure (at

least approximate locations of APs) and it is also not trivial to

update a distributed database. Consequently, a PPIL scheme

should prevent the leakage of both the customers’ location

and the LBS’s database. Additionally, a PPIL scheme should

permit extending the PPIL with arbitrary privacy-preserving

functionalities (e.g., with privacy-preserving location-based

marketing) in order to maintain the service provider’s financial

motivation to provide the service to its customers. Finally,

a PPIL scheme should be efficient enough for practical deploy-

ment for large-scale use. In this paper, we describe PILOT, a

PPIL scheme that fulfills the above requirements.

B. Our Contributions

We provide the following contributions in this paper:

The First Practical PPIL Scheme. Our main contribution

is the design and implementation of PILOT, the first

Privacy-Preserving Indoor Localization (PPIL) scheme that

(i) preserves the privacy of users’ locations, (ii) protects

the server’s database, (iii) can be extended with arbitrary

privacy-preserving functionalities such as location-based

advertising, and (iv) is efficient enough for large-scale use in

practice. PILOT is not just engineering, but a new synergy

between the research areas of indoor localization and ap-

plied cryptography that leads to the first practically efficient

and secure solution for PPIL. This main contribution is

based on the following specific contributions.

Outsourcing Scenario and Impracticality of the
Client/Server Scenario for PPIL. We use an efficient

outsourcing protocol for computing PPIL using two

Semi-Trusted Third Parties (STTPs). This protocol is very

efficient for mobile clients, because it (i) increases the

communication of the mobile client only by about factor

2× compared to the non-private protocol, and (ii) enables

cheap and energy-efficient computations for the mobile

clients. In contrast, we show that even optimized PPIL in

the setting with a single server using Secure Two-Party

Computation (STPC) currently requires several hundred

megabytes of communication and cryptographic operations

which makes it impractical for mobile clients.

Quantization of the Received Signal Strength Values. To

decrease the overhead of STPC evaluation, we quantize the

RSS values with reduced bit-length and show the impact on

the IL accuracy. As a result of a field experiment, we can

conclude that the reduction from 8 to 4 bits has very limited

impact on the accuracy of IL (0.1–5 %), and to 2 and 1 bit

still achieves meaningful accuracy.

Well-Suited Distance Metrics. We design, implement, and

evaluate a variety of privacy-preserving algorithms for

computing conventional and more advanced distance met-

rics. We consider the Manhattan, Euclidean, Sørensen, and

Kumar-Hassebrook distances, which differ in accuracy and

efficiency.

Improved Building Blocks. Some of our newly intro-

duced circuit building blocks are generic and thus

of independent interest. We develop a circuit for
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finding k-Nearest Neighbors (k-NN) out of N el-

ements with Nk(2�+ �log2 N�) AND gates, and a

Single Instruction Multiple Data (SIMD) capable oblivious

access to an N -element array with �log2�log2 N��+ 1
multiplicative depth.

Comprehensive Performance Analysis. We provide detailed

benchmarking results for our best-performing and most

precise algorithms for ranges of Reference Points (RPs) and

Wi-Fi Access Points (APs). In addition, we provide even

more detailed benchmarks for the same practical setting

as in [35] with M=505 RPs and N=241 APs. Our most

efficient algorithm has an online run-time of 0.15 s on two

commodity servers which is orders of magnitude faster than

prior work. Furthermore, the servers can process up to half

a million PPIL queries per day.

II. RELATED WORK

Many proposed solutions for Privacy-Preserving Indoor

Localization (PPIL) use Homomorphic Encryption (HE) such

as the Paillier cryptosystem [36]. Generic shortcomings of HE-

based PPIL schemes are that they rely on computationally

demanding Public-Key Encryption (PKE), and that a user

would require to generate a new keypair at least for each

visit of the building in order to prevent possible information

leakage. Ideally, he or she would need to generate a new

keypair for each query. Consequently, key generation and any

setup phase precomputation would cause not only a large

computational overhead, but also storage problems because of

the very limited storage capacity in mobile devices. In contrast,

our solutions perform efficient precomputation of the setup

phase by the Semi-Trusted Third Parties (STTPs), i.e., only

the online phase must be evaluated in real-time, and relies

on symmetric-key cryptography. Moreover, the PPIL server

shares its database only once in the STTP initialization phase.

The client transfers as little as about twice the amount of

communication of the currently used non-private protocol, it

is not involved in the precomputation, and it performs only

plaintext operations.

Li et al. [37] design algorithms for Privacy-Preserving

Indoor Localization (PPIL) based on the k-Nearest Neighbors

(k-NN) algorithm relying on Paillier encryption. Their work

has several shortcomings: Yang and Järvinen [35] very recently

presented an attack against this system that reveals the server’s

database under a realistic attack model. Our most efficient

Euclidean distance-based PPIL protocol performs 121× faster

with respect to the total run-time and 553× faster in the online

phase than the protocol of [37] (see §VI-E for details).

Shu et al. [38] make use of the Paillier cryptosystem and

Oblivious Transfer (OT) to construct a localization protocol

that involves other mobile devices knowing their locations for

determining the user’s location. Our protocol requires only

access to the mobile Internet by the mobile client. In [38], the

weak battery-powered mobile client performs computational

heavy public-key crypto, whereas in our protocol it performs

only very cheap operations (Pseudorandom Generator (PRG)

evaluations and XORs).

In [39], Ziegeldorf et al. apply HE for computing Hidden

Markov Model-based PPIL. Our most efficient Euclidean

distance-based PPIL protocol has 100× faster total run-time

and 500× faster online run-time than the protocols in [39],

even though we benchmark on a real mobile client and a

cellular network, whereas they benchmark on two servers

connected via a Gigabit LAN (see §VI-E for details).

Konstantidis et al. [40] use k-anonymity [41] for PPIL. In

PPIL, the k-anonymity approach guarantees that the client is

hard to identify in a set of k clients, and it generally reduces

the utility of the data by adding noise.

Zhang et al. [42] propose Support Vector Machine (SVM)-

based solutions for PPIL using HE. This is, however, insecure

because the client can easily reconstruct the server’s model

using specially crafted queries. For example, the attack on a

linear SVM with the kernel function f(�x) = �w · �x+ b can be

conducted as follows: (i) determine b by sending all-zero �x
and (ii) determine each element of �w by sending a unit vector

with a single one entry for each of the M elements in �x with

all other elements being zero.

Yang and Järvinen [35] present four high-level proposals

for implementing secure PPIL: fully homomorphic encryp-

tion, Garbled Circuits (GCs), Paillier encryption only, and

Paillier encryption combined with GCs. They conclude that

while some of them are clearly unpractical (especially, fully

homomorphic encryption), at least the one combining Paillier

encryption with GCs should be feasible in practice. Their best

scheme would require more than 3 MB communication per

query (i.e., more than 1 GB per hour with 1 query every 10 s)

vs. less than 2 kB per query in our work (less than 720 kB

per hour with 1 query every 10 s). Unfortunately, the paper

does not provide enough details to make a meaningful run-

time comparison with our protocols possible. However, even

their most efficient proposal requires expensive Paillier en-

cryption operations, for computing Euclidean distances under

encryption, and evaluation of a GC for k-NN computation

(62 thousand AND gates in our setting), which introduce sig-

nificant computational overheads for the server and the mobile

client [43], and we expect their protocol to have run-times in

the order of tens of seconds. Although the computation of a

GC can be outsourced [44, 45], which decreases the overhead

of the mobile client, it requires an additional party for the

computation and hence they would be in the same setting as

we are.

To summarize, the existing literature still lacks a PPIL

solution that is both secure and efficient enough for practical

deployment.

III. PRELIMINARIES

In this section, we describe the distance metrics

used for fingerprint-based Indoor Localization (IL) and

the application of the k-Nearest Neighbors (k-NN) al-

gorithm for IL. Afterwards, we give a summary of

Secure Multi-Party Computation (SMPC). Table I depicts no-

tation that we use throughout the paper.
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Table I: Notation used throughout this paper.

P0, P1 Parties performing secure computation
t ∈ {A,B, Y } Type of sharing: Arithmetic, Boolean, or Yao

〈s〉ti Share s in sharing t held by party Pi

〈z〉t = 〈x〉t � 〈y〉t Operation � on shares 〈x〉t and 〈y〉t
〈x〉s = s2t(〈x〉t) Sharing conversion from source s to target t

〈0〉, 〈1〉, 〈2〉 Secret-shared constants 0, 1, and 2
〈F(·)〉 Secret-shared output of a local function F

GT(〈x〉, 〈y〉) Greater Than gate yielding 1 if x > y, and 0 otherwise
MUX(〈x〉, 〈y〉, 〈s〉) Multiplexer gate yielding 〈x〉 if s = 0, and 〈y〉 otherwise

x⊕ y and x ∧ y Bit-wise XOR and AND operation
L[i] i-th element in list L

κ Symmetric security parameter; κ=128 in this work

Figure 1: Exemplified setting for IL in a three-floor building

with several Access Points (APs) (blue), pre-measured finger-

prints at the Reference Points (RPs) (orange), and a client/user

carrying a mobile device (green).

A. Indoor Localization

Location information already drives many services that

are part of our daily routines. The spectrum of the services

that rely on location information will broaden even further

as the Internet of Things and 5G cellular networks emerge.

The location information for these services is derived from

the signal’s propagation time, bearing or signal strength. We

will focus here on Received Signal Strength (RSS)-based

fingerprint localization, exemplified for Wi-Fi networks, as

Wi-Fi fingerprinting is frequently used for IL due to its balance

of complexity, availability of infrastructure, and accuracy [46].

However, our techniques can also be applied to fingerprint lo-

calization systems in other networks, e.g., cellular or Bluetooth

networks. Fig. 1 presents a typical IL setting: a three-floor

building with APs, RPs, and a user who wants to know his or

her location.

Wi-Fi fingerprinting is a technique based on the spatial

distribution of signal strengths. A location (RP) is assigned a

signal strength signature, so-called fingerprint, that is ideally

unique and therefore recognizable at a later point. It consists

of the RSSs of the surrounding APs and identifiers relating the

Table II: Positioning performance of selected Received Signal

Strength (RSS) distance metrics from [47] that are well-

suited for Secure Multi-Party Computation (SMPC). The least

accurate but most efficient metric is at the top, and the most

accurate but least efficient metric is at the bottom.

Distance Metric Success Rate (%) Error (m)

Manhattan 90.73 7.06
Euclidean 92.71 7.40
Kumar-Hassebrook 94.33 7.00
Sørensen 94.78 6.86

RSSs to their APs. To use Wi-Fi fingerprinting for localization,

first, the service provider establishes an RSS map of the

environment of interest. In a second step, a user records his

or her RSS signature at a certain location, and the service

provider can localize the user by comparing this RSS signature

with the ones stored in the database holding the RSS map. The

most likely location is the one whose fingerprint matches best

the user’s RSS signature under some distance metric, i.e., the

Nearest Neighbor (NN) in RSS space.
The comparison of the user’s RSS signature and the RSS

signatures in the RSS map is done with distance measures

which we detail below. The notation xi and yi represents

the RSS of the i-th AP found in the RSS map and the one

measured by the user, respectively. N is the number of APs. A

comparison of the success and error rates using the different

metrics is given in Tab. II. Success rate is the percentage of

test points for which the building and the floor were estimated

correctly. The error is the two-dimensional, horizontal distance

between the estimated position and the ground truth position

of test points; it was only computed for test points whose

building and floor was estimated correctly.
1) Manhattan Distance: The Manhattan (also City Block)

distance is a distance metric where only horizontal and vertical

paths are allowed. It is calculated as shown in Eq. 1.

dm =
N∑
i=1

|xi − yi| (1)

2) Euclidean Distance: The Euclidean distance is the diag-

onal distance between two points. For computing the diagonal

between two points, we apply the Pythagorean theorem to the

distances between particular dimensions as shown in Eq. 2.

de =

√√√√ N∑
i=1

(xi − yi)2 (2)

3) Sørensen Distance: The Sørensen distance is based on

the Manhattan distance, which is normalized by the sum of

the values. The calculation of this metric is shown in Eq. 3.

ds =

∑N
i=1 |xi − yi|∑N
i=1(xi + yi)

(3)

According to [47], the Sørensen Distance outperforms most

other metrics for IL in terms of accuracy, and in particular the

two aforementioned metrics (see Tab. II).
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4) Kumar-Hassebrook Distance: The Kumar-Hassebrook

distance is almost as accurate as the Sørensen distance, and it

requires similar operations. It is computed as shown in Eq. 4.

dkh =

∑N
i=1(xi · yi)∑N

i=1 x
2
i +

∑N
i=1 y

2
i −

∑N
i=1(xi · yi)

(4)

This distance metric performs better than the Euclidean and

Manhattan distance, but marginally worse than the Sørensen

distance (see Tab. II). However, as we will show in §V-B4, the

Kumar-Hassebrook distance can be computed more efficiently

in general-purpose SMPC than the Sørensen distance.

Choice of a distance metric: In this work, we aim at

designing, implementing, and benchmarking a practically ef-

ficient PPIL system and PPIL protocols for different distance

metrics. We select the distance metrics that either can be

implemented very efficiently using SMPC or are one of the

most accurate among others (see Tab. II) but can still be

efficiently implemented. Based on the benchmarks, we show

and discuss the trade-off between the more accurate but less

efficient metrics and more efficient but less accurate metrics.

However, the choice of the best-suited metric for a specific

application is out of the scope of this paper.

Indoor Localization using k-Nearest Neighbors: To increase

the accuracy of IL, the k-Nearest Neighbors (k-NN) algorithm

can be used. In that case, not only one entry of the database

is retrieved, but instead the positions corresponding to the k
smallest RSS distances are averaged to estimate the user lo-

cation. The value k is chosen to yield good performance [48].

Typical values are k=3 or k=4 [49, 50].

B. Secure Multi-Party Computation

A Secure Multi-Party Computation (SMPC) protocol en-

ables n parties, each of whom holding a secret input, to

compute a public function on their inputs without revealing

anything except the result. In the following, we briefly review

the main cryptographic tools and implementation of SMPC

used in our solutions.

ABY Framework [51]: Among the variety of

Secure Multi-Party Computation (SMPC) frameworks,

e.g., [52, 51, 53, 54], we choose the ABY framework [51]

for its efficiency and the ability to mix multiple SMPC

protocols. ABY is a state-of-the-art framework for

Secure Two-Party Computation (STPC). It supports three

sharing types with state-of-the-art optimizations: Yao sharing

based on Yao’s Garbled Circuits (GCs) [55], Boolean sharing

based on the GMW protocol [56], and Arithmetic sharing

based on Arithmetic GMW. ABY guarantees passive security

which means that an adversary is assumed to follow the

protocol, but he or she may try to learn additional information

from the received messages.

The STPC protocols have different benefits and drawbacks.

GCs require a constant number of communication rounds, but

need substantial communication and computation per AND

gate. In low-latency networks, securely evaluating circuits with

low depth using the GMW protocol is often faster than using

GCs, but requires multiple rounds of interaction (one message

for each layer of AND gates in the circuit). Arithmetic

GMW allows computation of addition and subtraction without

any interaction, and multiplication utilizes one Multiplication

Triple (MT) [57] which can be efficiently precomputed using

Oblivious Transfer (OT) extensions [58, 59] as shown in [51].

The drawback of Arithmetic GMW is that these are the only

operations that can be computed efficiently.

The ABY framework allows to efficiently convert between

these different types of sharing and benefit from their re-

spective advantages. Moreover, it supports outsourcing of the

computation to Semi-Trusted Third Parties (STTPs) and Single

Instruction Multiple Data (SIMD) gates [60]. In principle,

ABY also allows to compute very complex distance met-

rics that require logarithm or exponentiation operations using

IEEE 754 Floating Point numbers [61], but this will slow down

the protocols significantly and thus will not be considered in

this paper.

In this work, we use Arithmetic sharing to improve the ef-

ficiency of distance computation, Boolean sharing to compute

the depth-optimized Bitonic sort (for finding k nearest RPs),

and Yao sharing to compute the size-optimized k-NN algo-

rithm (instead of Bitonic sort). The choice between Boolean

and Yao sharing depends on the network latency and the value

of nearest neighbors k (see §VI).

Arithmetic Sharing: Arithmetic sharing is a protocol that

enables two parties to secret-share an �-bit integer x, and to

evaluate a function which is expressed as an Arithmetic circuit

consisting of addition and multiplication gates based on secret-

shared values. Namely, for an integer x, each party has a

random share 〈x〉Ai , i ∈ {0, 1}, such that 〈x〉A = 〈x〉A0 + 〈x〉A1
(mod 2�) and multiplication using the OT extension-based

multiplication protocol of [51] requires O(�) bits communi-

cation and one round of interaction, whereas addition and

subtraction can be evaluated locally. However, XOR and AND

operation are expensive in Arithmetic sharing as they would

require expensive bit decomposition.

Boolean Sharing: In [56], Goldreich, Micali, and Wigder-

son (GMW) introduced a protocol which allows multiple

parties to securely evaluate a function f expressed as Boolean

circuit consisting of XOR and AND gates. We use the two-

party variant of GMW, where each input and intermediate

wire is shared by both parties with a 2-out-of-2 secret sharing

scheme, i.e., each party Pi, i ∈ {0, 1}, holds a Boolean

share 〈x〉Bi for a secret-shared bit 〈x〉B such that 〈x〉B =
〈x〉B0 ⊕ 〈x〉B1 . While a XOR gate can be evaluated locally,

an AND gate requires 2κ bits of communication in the setup

phase and 4 bits in the online phase, as described in [59]. The

communication of GMW can be further reduced at the cost of

a higher computation complexity [62, 63].

Yao Sharing: Another approach for securely evalu-

ating a Boolean circuit between two parties are Yao’s

Garbled Circuits (GCs) [55]. A GC can be generated as fol-

lows: the sender encrypts the Boolean gates of the circuit

using randomly chosen symmetric keys for the wires and

sends the encrypted function, called garbled circuit, together
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with the keys representing its input bits to the receiver.

The receiver obliviously obtains the keys corresponding to

its inputs by running an Oblivious Transfer (OT) protocol

with the sender which can be efficiently implemented using

OT extension [58, 59]. Now, the receiver can evaluate the

garbled circuit gate-by-gate using the keys and obtains the

result. ABY implements state-of-the-art GC improvements

such as point-and-permute [64], free-XOR [65], fixed-key AES

garbling [66], and half-gates [67]. With this, XOR gates are

free, whereas an AND gate costs 2κ bits of communication

in the setup phase and no communication in the online phase,

i.e., no additional rounds of communication.

Conversions: The cost of one Arithmetic to Yao (A2Y)

or Arithmetic to Boolean (A2B) conversion is 6�κ bits of

communication within 2 messages and 12� AES operations,

where � is the bit-length of the Arithmetic share [51].

Hardware-Enhanced Secure Multi-Party Computation:
Several works propose to use additional assumptions in

form of trusted hardware to improve generic SMPC which

could be used to improve PPIL schemes on mobile devices.

Demmler et al. [68] use a smartcard in a mobile device

for locally generating correlated randomness for the GMW

protocol. Gupta et al. [69] design STPC protocols that use

Intel SGX5 for improving the efficiency of STPC. However,

all these protocols require substantial trust in the hardware

manufacturer.

IV. SYSTEM DETAILS

In this section, we describe our system PILOT for Privacy-

Preserving Indoor Localization (PPIL) using outsourcing and

detail the underlying security assumptions.

A. Outsourcing Scheme

Motivation: The best known solutions to PPIL without

the non-colluding STTPs, i.e., PPIL in the client/single server

setting, are very communication intensive. It is important to

note that by using the outsourcing setting we achieve practical

PPIL with security against malicious PPIL clients and mali-

cious PPIL servers, whereas in the client/server setting even

solutions with substantially weaker security against a semi-

honest client currently have impractical runtimes and commu-

nication. Furthermore, the outsourcing model with multiple

STTPs is widely adopted not only in recent academic papers,

e.g., for private machine learning [70, 71], and genomic

privacy [72, 73, 74, 75, 76, 77], to name just a few, but also

deployed in industrial products, see [78] for a few examples.

Implementation: The outsourcing scheme we use is de-

picted in Fig. 2. The scenario involves three parties: a client

who is interested in finding his or her coordinates, and two

non-colluding Semi-Trusted Third Parties (STTPs), denoted

as T0 and T1, that obliviously compute coordinates of the

client using STPC. An additional entity in our scenario is the

PPIL server (IL provider), which is not depicted in the figure

because its overhead is one-time, and it is involved in the

5https://software.intel.com/en-us/sgx

T0 T1

Client

(1,5)

(2
) (2)

(3)
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Figure 2: System model of our outsourcing scenario for

efficient Privacy-Preserving Indoor Localization (PPIL). The

PPIL server is not depicted in the figure, because it shares its

database with the Semi-Trusted Third Parties T0 and T1 only

once for the initialization of the protocol.

initialization of the STTPs only. On the initialization of the

system or whenever updates occur (which in practice happens

rarely), the PPIL server secret-shares its database of N ·M
Received Signal Strength (RSS) values between T0 and T1,

where N is the number of APs and M is the number of RPs.

The STTPs are assumed to not collude. The assumption

for STTPs not colluding is supported also by the facts that

(i) a privacy-preserving service is a selling-point by itself to

privacy-aware customers and getting caught from colluding

would seriously damage reputation, and (ii) modern legisla-

tion, e.g., the EU General Data Protection Regulation (GDPR),

emphasizes users’ privacy and services have an obligation to

protect their customers’ data.

The PPIL works as follows (see Fig. 2):

1) The client collects RSS data from the APs (predefined by

the PPIL server) to create a list (RSS1, . . . ,RSSN ), and

secret-shares these values into (〈RSS1〉, . . . , 〈RSSN 〉).
2) The client sends (〈RSS1〉0, . . . , 〈RSSN 〉0) to T0 and

(〈RSS1〉1, . . . , 〈RSSN 〉1) to T1 over two secure channels.

3) The STTPs execute a PPIL protocol using STPC. As

the result of the computation, they get the secret-shared

coordinate (〈x〉, 〈y〉, 〈z〉).
4) T0 sends (〈x〉0, 〈y〉0, 〈z〉0) to the client and T1 sends

(〈x〉1, 〈y〉1, 〈z〉1) to the client over two secure channels.

5) The client recombines the shares and reconstructs the

cleartext coordinate (x, y, z).

B. Deployment

In a practical deployment, the parties in our system can be

run by the following entities:

Client can be run by any visitor of the building on his/her

mobile device.

Each of the STTPs can be operated by any of the following

entities: the building owner, the mobile network operator,

or a cloud provider.

PPIL server can be run by the mall or building owner. Real-

world examples of IL providers are given in §I-A.
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For the number of STTPs, we see three possible real-world

settings: one, two, and three STTPs.

One STTP has the advantage that it requires only one server

and one entity to operate the STTP. However, the computa-

tional overhead is substantial (cf. §II and §VI-E), and here

the single server learns the database in the clear.

Two STTPs is the best model for real-world applications

regarding the costs and security, since it is substantially

more efficient than the model with one STTP, and the

support and maintenance costs remain moderate compared

to the setting with three STTPs. Furthermore, the STTPs

obtain only a secret-shared database which preserves its

privacy. Due to this, we choose the two-STTP setting in

this paper.

Three STTPs can be more efficient than both previous mod-

els in an honest majority setting where at most one party can

be corrupted, e.g., using the protocols of [79, 80]. However,

it (i) guarantees a weaker level of security (it is easier

to corrupt any two out of three parties than two out of

two), and (ii) has much higher costs for the support and

maintenance (to mitigate attacks, each STTP would need a

different software stack and its own administration team).

C. Security Assumptions

In this work, we concentrate on a realistic scenario where

the STTPs can only be passively corrupted, and the client

and PPIL server can be actively corrupted. The latter is

due to the fact that an actively corrupted PPIL server can

only affect the correctness of the protocol by changing its

inputs, and an actively corrupted client can only change the

single message sent which corresponds to choosing a different

input to the ideal functionality. The two STTPs have no

inputs to the protocol (the inputs are already shared by the

PPIL server and client) and thus can only try to learn more

information from the protocol. Using standard techniques for

outsourcing with active security [81, 82, 83], our protocols

can be extended to full active security at the expense of

higher communication and run-times. In this case, the system

will detect one actively corrupted STTP, which can arbitrarily

deviate from the protocol.

In order to guarantee privacy of the PPIL users, we make

the following assumptions:

• When a device connects to a Wi-Fi Access Point (AP), it

transmits to the AP its global Media Access Control (MAC)

address, which is a unique, persistent identifier. Therefore,

the client should be aware that there exists the possibility

of being tracked by the AP owner, who could collude

with the PPIL server or even be the same entity, e.g., the

building owner provides a PPIL service and free Wi-Fi in

the building. The use of such an AP would allow its owner

to track the potential presence of the user in particular parts

of the building. To mitigate this, we propose to use mobile

Internet for PPIL, since even when a Wi-Fi enabled device

is not connected to other Wi-Fi devices, it periodically scans

its environment by sending probe requests. These requests

also include the sender’s MAC address and can be used to

track the user [84]. However, in these requests the device

is allowed to use a local MAC instead of its global MAC.

Therefore, the client must use a randomized, changing local

MAC address in the probe requests. This became possible

in iOS version 8 and in Android version 6 [85].6 One can

root older Android devices or jailbreak older iOS devices

that do not support randomized MACs by default, which

enables randomized MACs and monitor mode.

• The STTPs must be chosen s.t. there is a strong incentive

to not collude. One possibility is that the building oper-

ator operates T0 and the user’s mobile Internet provider

operates T1.

• For preventing an attacker from restoring the secret-shared

inputs or coordinates by intercepting both shares, secure

channels between the client and the STTPs must be used.

However, a persistent TLS channel would leak information

about the client. We avoid this potential leakage by estab-

lishing a new TLS connection for each new dynamically

assigned IP address of the client. If the client’s IP address is

hidden behind a Network Address Translation (NAT) router

getting a new network port for each query, he or she could

establish a new TLS channel for each PPIL query to prevent

tracking of his or her session.

D. Security Analysis

Here, we briefly analyze the security of our outsourc-

ing scheme based on the SMPC model defined in [88]

with concrete participants, i.e., client, PPIL server, and

two outsourcing parties: STTPs T0 and T1. Kamara and

Raykova [88] define and prove secure a generic construc-

tion that turns an n-party SMPC protocol into a protocol,

where computation is outsourced to n non-colluding out-

sourcing parties. For our PPIL protocol, we instantiate the

outsourcing scheme of [88] with the secure two-party (n=2)

ABY framework. Our PPIL scheme is secure against semi-

honest non-colluding STTPs, malicious clients, and malicious

PPIL servers. Our threat model does not cover malicious

Received Signal Strength (RSS) values and the leakage from

the protocol output (i.e., client’s coordinate), but in practice

it would be hard to learn the PPIL server’s database by

fabricating RSS values.

Theorem IV.1. Suppose that the SMPC building blocks im-

plemented in ABY [51] are secure, then our PPIL scheme is

secure against passively corrupted non-colluding STTPs, and

malicious clients and malicious PPIL servers.

Proof (sketch). Each secret-share 〈φ〉ti for i ∈ {0, 1}
and some value φ is blinded with a one-time random value

(determined by the sharing type t of ABY). Namely, each

uncompromised secret-share is statistically close to a truly

6Recent research, e.g., [86], have shown that MAC randomization is
vulnerable to different types of attacks. As additional privacy measure, the
client could set its Wi-Fi card into monitor mode which disables the probe
requests but allows listening to the beacons from APs and measuring their
RSS. In the current Android implementations, the Wi-Fi monitor mode
requires rooting the Android device and installing the required application
packages [87].
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Figure 3: Uniform 2-bit quantizer showing the partitions.

random value. Hence, a corrupted party obtaining a secret-

share from its honest partner cannot obtain any useful in-

formation from it with overwhelming probability. Since two

non-colluding STTPs cannot be both corrupted by definition,

they will not collude in the security experiment. In this sense,

at least one of the inputs of the subsequent STPC protocol

is from an uncorrupted STTP (which received it from the

corresponding uncorrupted party). Thus, we can reduce the

security of our protocol to that of the STPC protocol (executed

between STTPs) that uses the secure building blocks from

the ABY framework. Namely, the security of the ABY-based

STPC protocol ensures that the intermediate secret-shares (i.e.,

the outcome of any operation between secret shares), share

conversions, and the final target location coordinate shares

are secure as well. If the client and at least one STTP are

not corrupted, then no party except the client can get the

final location since the location coordinate shares are only

reconstructed by the client. Analogously, if the PPIL server

and at least one STTP are not corrupted, all secret shares leak

no information about the RSSs of the server’s database. PPIL

server’s malicious input can only affect the correctness of the

protocol. Each malicious input from the client corresponds to

a different input to the ideal functionality.

V. PRIVACY-PRESERVING INDOOR LOCALIZATION

In this section, we show our practical protocols for Privacy-

Preserving Indoor Localization (PPIL) and optimizations.

A. Quantization of Received Signal Strength

We rely on the concept of a uniform quantizer to quantize

the Received Signal Strength (RSS) values. A uniform quan-

tizer is characterized by equally spaced boundary points [89]

forming 2� non-overlapping partitions, where � is the number

of available bits. The midpoints of these partitions (except

the two outermost partitions) correspond to the output levels,

such that an input to the quantizer that lies within a partition is

rounded off to the partition’s midpoint. Each output level can

be represented arbitrarily according to the application. Fig. 3

illustrates a uniform quantizer for �=2.

To construct the quantizer for the RSSs, we specify the

midpoints of the partitions by dividing the range between the

lower and upper limit of the RSS values (of all fingerprints) by
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Figure 4: Positioning Root Mean Square Error (RMSE) in me-

ters of k-NN for 1-, 2-, 4-, and 8-bit quantization of Received

Signal Strength and different distance metrics obtained in a

field experiment.

2�− 1. To allow the localization algorithm to benefit from the

information about the approximate coverage areas of the APs,

we want to distinguish the cases when a signal is received

with low RSS from the cases when a signal is not received

at all. Therefore, we reserve one quantization partition for

recording these signal-not-received cases and use this special

partition during both the collection of the fingerprint database

and the positioning phase. The boundary points for the RSS-

quantizer are given by the midpoints plus half the size of

a partition. The reserved partition for the zero-bit is added

to the uniform quantizer, making it actually non-uniform. Its

midpoint is chosen to be smaller than the lower RSS limit.

For the purpose of RSS-based Indoor Localization (IL) via

fingerprinting it suffices to represent the output levels of the

quantizer simply by �-bit codewords. The fingerprints of the

Reference Points (RPs) can be quantized off-line on the server

side. The fingerprints measured by the user must be quantized

on the user device, thus, the quantizer must be made available

for the clients.

Localization Performance: We compare the positioning

accuracy, in terms of Root Mean Square Error (RMSE), of

the k-NN algorithm for the four distance metrics specified in

§III and consider additionally the modified Sørensen metric

(see Eq. (5) in §V-B3). The data for that experiment was

collected in a three-floor building at Tampere University of

Technology, which is shown in Fig. 1. The corresponding

database consists of M=446 RPs and N=449 APs; further

details and the database itself are available at [90].

Fig. 4 shows the RMSE (averaged over a path through the

building) for these four distances for several bit-lengths �.
The number of neighbors of the k-Nearest Neighbors (k-NN)

was set to k=3. As shown in the figure, the accuracy of 4-bit

quantization is similar to that of 8-bit with only 0.1–5 % loss of

accuracy. Even with 1-bit quantization, a positioning accuracy

of about 7–9 meters is achievable. This confirms the benefit of

the information about the approximate coverage of the APs.

The positioning error reduces with the number of bits spent

to quantize the RSS, as expected. The Manhattan distance

shows the poorest accuracy, whereas the (Modified) Sørensen

distance is the most accurate one. We further investigate the

effects of RSS quantization in [91].
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Table III: AND-sizes and minimum bit-length of the circuits for the distance algorithms with N=241 Access Points, bit-length

of Received Signal Strength �, and the scaling factor of γ=16 bits.

Distance metric
Naive: Boolean / Yao Sharing Optimized: Arithmetic, Boolean, Yao Sharing, OT

Min. bit-length
Min. bit-length with fixed �

AND-size AND-size A∗ A2B / A2Y C-OTs �=1 �=2 �=4 �=8

Manhattan 4(N · �)− � N · (3�− �log2 �� − 2) 0 0 2N log2 N + � 8.9 9.9 11.9 15.9

Euclidean7 N(2�2 + 2�) 0 N 0 0 log2 N + 2� 9.9 11.9 15.9 23.9
Sørensen 6(N · �)− 2�+ 7079 N · (3�− �log2 �� − 2) + 7 079 0 2 2N log2 N + �+ γ 24.9 25.9 27.9 31.9

Modified Sørensen N(2�2 + 3�) + 7 079 7 079 N 2 0 log2 N + 2�+ γ 25.9 27.9 31.9 39.9

Kumar-Hassebrook 2N(3�2 − �) + 2�+ 7079 7 079 N 2 0 log2 N + 2�+ γ 25.9 27.9 31.9 39.9

B. Secure Multi-Party Computation of Distance Metrics

In this section, we describe in detail our privacy-preserving

evaluation of the aforementioned distance metrics using the

ABY framework [51]. These can be split into four categories:

pure Arithmetic sharing (A), pure Boolean sharing (B), pure

Yao sharing (Y), and mixed sharing (AB, AY, ABOY where

O denotes OT) implementations. The latter use Arithmetic

sharing first and then convert into Boolean or Yao sharing,

respectively. In the following, we give the complexities for

computing one distance, but for Privacy-Preserving Indoor

Localization (PPIL), M instances need to be computed in

parallel, one for each of the M Reference Points (RPs).

For Yao sharing we use size-optimized circuits of [92], and

for Boolean sharing we use depth-optimized circuits of [60], as

implemented in ABY [51], see [60, Tab. 7] for the complexities

of the building blocks. We give an overview of size and depth

complexities of the described algorithms as well as the mini-

mum bit-length of the output to guarantee the correctness in

Tab. III. In all our algorithms for securely computing distance

metrics, we use sufficient bit-lengths which guarantees that

the accuracy of the metrics does not decrease when compared

with the cleartext protocols (denoted as minimum bit-length

in Tab. III).

1) Manhattan Distance (cf. Eq. 1 on p. 4): The Manhattan

distance requires computation of absolute values. This opera-

tion is nonlinear and hence cannot be efficiently computed in

Arithmetic sharing. This is why we propose two workarounds

to mitigate this issue: (i) enhancing the “naive” computation

of the Manhattan distance without the loss of predicting accu-

racy by using Correlated OT (C-OT)-based multiplication of

Arithmetic shares by a secret-shared bit (inspired by [93, 51]),

and (ii) reducing the bit-length of the RSSs to 1 bit, which

allows for the use of more efficient building blocks while

guaranteeing accuracy acceptable in many scenarios.

To compute the Manhattan distance in a “naive” way, we

use the size-optimized circuit of [92] that requires 1 Greater

Than (GT), 2 Multiplexer (MUX), and 1 Subtraction (SUB)

circuit which results in 4N�− � AND gates, where N is the

number of APs and � is the bit-length of the RSS values.

In our first improvement, we use very efficient C-OT-based

multiplication of secret-shared values to choose either the

initial result of 〈RSSC〉A − 〈RSSS〉A or its two’s comple-

ment [94] based on the outcome of the comparison of both

in Boolean sharing (the comparison can also be performed

by using the underflow bit of the result, but this also incurs

some overhead because of the conversion to Boolean sharing).

This does not violate the security, since the multiplication

protocol is performed obliviously on random-looking secret-

shared values and yields random-looking secret-shared values

as the result. A similar technique was used, for example,

in the ABY framework for precomputing MTs [51]. This

protocol is not only much more efficient than doing this

using the “naive” solution, but also allows to sum up the

distances of all dimensions locally, since the computation

yields Arithmetic shares for each dimension. This protocol

requires only 1 Greater Than (GT) gate and 2 C-OTs for each

dimensions resulting in N(3�− �log2 �� − 2) AND gates and

2N parallel C-OTs of �-bit strings. We depict our C-OT-based

implementation of the Manhattan distance in Alg. 1 in §A.

In our second improvement, which we denote as 1-bit

Manhattan distance, we use 1-bit RSS values and compute

the distance in pure Yao sharing. Since the Manhattan dis-

tance of 1-bit values corresponds to their XOR, we per-

form the computation non-interactively. To compute the sum

of the computed distances, we utilize the AND-optimized

Hamming Weight (HW) circuit of Boyar and Peralta [95] with

� − dH(�) AND gates, where dH(�) denotes the HW of �.
This protocol comes at the price of accuracy reduction, which,

however, remains meaningful for many scenarios, i.e., 9 m

RMSE in our experiments (see Fig. 4). By replacing the

HW circuit with the custom C-OT-based protocol of [96]

for securely computing an Arithmetic sharing of the HW,

the communication of this protocol can be improved by a

factor of 3.7× from 5.2 MB to 1.4 MB. Overall, this improves

communication over the naive approach by factor 215×.

2) Euclidean Distance (cf. Eq. 2 on p. 4): Since computing

the square root is very expensive in SMPC, we replace the

Euclidean distance with its squared version, which only omits

the last operation of computing the square root. Note that

this does not affect the outcome of finding the nearest RPs

because all distances are squared. The Boolean circuit-based

Euclidean distance requires N(2�2+2�) AND gates, whereas

the Arithmetic sharing optimized algorithm can completely

be computed using Arithmetic sharing only. This algorithm

utilizes N multiplication gates in Arithmetic sharing. An

important difference to the other securely computed distance

metrics is that the result of the computation has to be con-

verted to another sharing type for efficient computation of k
nearest RPs, which for other metrics either happens during

the distance computation (if required) or does not happen at

all (if not required). We give our Arithmetic sharing-based

implementation of the Euclidean distance in Alg. 2 in §A.

456



3) Sørensen Distance (cf. Eq. 3 on p. 4): The Boolean

circuit-based Sørensen Distance can be computed using 6(N ·
�) − 2� + 7079 AND gates. To reduce the overhead for

computing the Manhattan distance in the numerator, we utilize

the idea of the C-OT-based Manhattan distance protocol. Since

the addition of the values in the denominator is performed

on the Arithmetic shares, the difference in the interactive

operations to the Manhattance distance protocol comes from

the 32-bit division operation, which costs 7079 AND gates.

Modified Sørensen Distance: Since the computation of

absolute values cannot be efficiently done in Arithmetic

sharing, we introduce a more SMPC-friendly variant of the

Sørensen Distance where we replace the Manhattan distance

by the Euclidean distance (cf. Eq. 5) and evaluate its IL

accuracy. We denote this distance metric as modified Sørensen

distance.

d′s =
∑D

i=1(xi − yi)
2

∑D
i=1(xi + yi)

(5)

The Root Mean Square Error (RMSE) of the modified

Sørensen distance is depicted in Fig. 4, and in particular

settings this metric is even more accurate than the origi-

nal Sørensen distance. The Boolean circuit-based Modified

Sørensen distance can be computed using N(2�2+3�)+7 079
AND gates. As a result, this protocol requires 7 079 AND

gates, N multiplication gates in Arithmetic sharing, and 2 A2B

or A2Y conversions, respectively.

In Alg. 4 in §A, we show the AY implementation of the

modified Sørensen distance. We use a γ=16-bit scaling factor

for both Sørensen and Kumar-Hassebrook distance to achieve

a precision comparable to that of floating point arithmetic, i.e.,

we perform a bit-shift on the distance by γ bits before dividing

it by the denominator.

4) Kumar-Hassebrook Distance (cf. Eq. 4 on p. 5): The

Kumar-Hassebrook distance, unlike the Sørensen distance, re-

quires multiplications in the numerator. Therefore, its Boolean

circuit-based algorithm requires 2N(3�2 − �) + 2� + 7079
AND gates. However, it can naturally be optimized in Arith-

metic sharing. The complexities of the optimized algorithm

are as follows: 7 079 AND gates, N multiplication gates

in Arithmetic sharing, and two A2B or A2Y conversions,

respectively. The implementation of the optimized Kumar-

Hassebrook distance is shown in Alg. 3 in §A.

C. k-Nearest Neighbors

Songhori et al. [97] propose a circuit for k-Nearest Neigh-

bors (k-NN) with size M(2k−1)(2�+�log2 M�) AND gates,

where M is the number of elements (here, the number of

Reference Points) and � is their bit-length.

Optimized k-Nearest Neighbors: We improve the k-NN

circuit of [97] by using more efficient conditional swap circuits

of [65]. This results in Mk(2�+ �log2 M�) AND gates which

for k=3 is an improvement by factor 1.6× over [97]. Our

modified k-NN implementation is given in Alg. 6 in §A.

k-Nearest Neighbors via Oblivious Sorting: An alterna-

tive approach for computing k-NN is to use Oblivious Sorting.

This improves the efficiency of the non-constant round SMPC

protocols such as GMW because the k-NN algorithm of [97]

has high depth of O(Mk�). Instead, we use the Bitonic Sort

algorithm of [98] that is summarized in Alg. 5 in §A. As a

baseline for our implementation, we use the algorithm of [99].

The algorithm requires 0.5 · �log2 M�(�log2 M� + 1) stages

with M(4�−�log2 ��−2+�log2 M�) AND gates each. This is

by factor ∼12x larger than for our optimized k-NN algorithm

for M=505 and k=3. However, this algorithm produces a

Boolean circuit that is by factor ∼10x shallower than that of

our improved k-NN already for k=3, and its AND-depth does

not grow with k.

D. Oblivious Array Access

In order to find the user’s coordinates in Privacy-Preserving

Indoor Localization (PPIL), we have to find the coordinates

that correspond to the nearest Reference Points (RPs) by

their secret-shared indices computed by the k-NN algorithm.

We use an approach similar to the one proposed by Keller

and Scholl [100] for our size-optimized implementation, and

design a new Single Instruction Multiple Data (SIMD) capable

circuit for the depth-optimized implementation with the same

AND-depth and slightly larger AND-size than the circuit pro-

posed by Buescher et al. [101] (the latter cannot be parallelized

easily with SIMD).

The size-optimized circuit is built as an inverted binary tree,

i.e., initial elements represent leaves, and the selected element

represents the root. Each intermediate node between the root

and the leaves is a MUX-gate which has two elements and a

choice bit as input. The tree has �log2 M� depth, where M
is the length of the array, and all MUX-gates on the layer i
have the same choice bit 〈idx〉b[i], i.e., the i-th bit of the

secret-shared index 〈idx〉b with b ∈ {B, Y }. This requires

M − 1 MUX-gates which yields �(M − 1) AND gates (8 064

for M=505 and �=16), where � is the bit-length of the coor-

dinate. The AND-depth is hereby �log2 M� (9 for M=505).

The size-optimized circuit is depicted in Alg. 7 in §A.

The depth-optimized circuit is designed as follows: the

server provides a list l which contains the secret-shared

coordinates corresponding to the APs. For each index 〈idx〉b
which corresponds to one of the k nearest APs, we compare

〈idx〉b with (〈1〉b, . . . , 〈M〉b) using a comparison circuit. This

yields a list of secret-shared zeros with a single secret-shared

one entry. Afterwards, we apply a MUX gate to each set of

coordinates which results in all coordinates being zeros except

of exactly one set. To get the final result, we perform the

XOR operation on all the coordinates. This circuit has AND-

depth �log2�log2 M�� + 1 (5 for M=505, 44 % shallower

than the size-optimized) and M(�log2 M�− 1+ �) AND-size

(12 120 for M=505 and �=16, by 50 % larger than the size-

optimized). The depth-optimized circuit is shown in Alg. 8

in §A. In contrast to the circuits of Buescher et al. [101],

7The optimized Euclidean distance uses only Arithmetic sharing.
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our Oblivious Array Access (OA) circuit is slightly larger, but

it has a much simpler structure and therefore the same sub-

circuits can be applied in parallel using SIMD.

For PPIL, the circuits are applied kD times to find all D
dimensions of the k coordinates. Note that for both Oblivious

Array Access circuits the AND-depth is independent of k and

D because the circuits are evaluated in parallel.

E. Extended Functionalities

A service provider runs the Indoor Localization (IL) service

in order to get financial profit, e.g., by using customers’ loca-

tion information for location-based advertising. Hence, it is

essential that Privacy-Preserving Indoor Localization (PPIL)

can be extended with other Location-Based Services (LBSs),

because otherwise the service provider could lose its incentive

to offer the IL service in the first place. We emphasize that

this requirement is met by PILOT. The extended functionalities

can be implemented either (i) as an additional layer within

PILOT (which would even not leak the location as intermediate

result) or (ii) as an additional privacy-preserving protocol after

localization with PILOT (which leaks the location).

VI. EVALUATION

We implement and benchmark our protocols on two servers

acting as Semi-Trusted Third Parties (STTPs) T0 and T1,

respectively, each equipped with an Intel Core i7-4770K

3.5 GHz processor and 16 GB RAM. The servers are located

in a local Gigabit network with average network latency

of about 0.1 ms. The client is run on a Samsung Galaxy

S7 mobile device equipped with a Qualcomm MSM8996

Snapdragon 820 processor and 4 GB RAM and is connected

to the servers via LTE mobile Internet with 229 ms average

Round Trip Time (RTT) and 163 ms median RTT.

Here, we describe the benchmarking results of our algo-

rithms in the outsourcing scenario. We instantiate all primi-

tives with a security level of κ=128-bit and report run-times

averaged over 10 executions. We use 4-bit Received Signal

Strength (RSS) values (see §V-A) in all but one (1-bit Yao

sharing-based Manhattan distance) of our benchmarks.

For establishing a TLS 1.28 connection between the client

and the STTPs given an established TCP connection (establish-

ing a TCP connection adds a delay of ∼1 RTT), we measured

468 ms average run-time, which is approximately equal to 2

RTTs. The time for transferring the data was approximately

1 RTT. These additional time demands depend almost only

on the network latency which significantly varies depending

on the environment. Note that with broader use of TLS 1.39,

the latency for establishing a secure channel will be reduced

by half due to the 1-RTT handshake protocol. Furthermore,

in TLS 1.3 it is possible to resume the connection at very

low additional costs due to the 0-RTT connection resumption

protocol.

8https://tools.ietf.org/html/rfc5246
9https://tools.ietf.org/html/rfc8446

A. Input Sharing of Mobile Client

As shown in Tab. IV, the overhead for sharing the RSS

values ranges from 0.2 ms to 6.1 ms depending on the number

of Access Points (APs) N and hence is negligible com-

pared to the run-time of the STPC protocols, e.g., about 2 %

overhead compared to the run-time in the online phase of

the most efficient Euclidean distance-based PPIL. In addi-

tion, both the bit-length of the shared value and the shar-

ing type only slightly influence the run-times because of

the high level of abstraction for the Java code that runs

on the mobile client. The shares are created using a mod-

ified java.security.SecureRandom class, which is

extended for generating also values of small byte-lengths.

B. Precomputation in the Setup Phase

As shown in Tab. V, the setup phase of the 4-bit protocols

has between 164 MB and 6.1 GB communication and a run-

time between 0.7 s and 66.3 s, depending on which distance

metric and protocol is used. Since the setup phase is indepen-

dent of the inputs (only correlated randomness is produced),

it can efficiently be precomputed by the STTPs while they

are idling, e.g., over night. The most important advantage of

our outsourcing scheme is that this setup phase is run only

between the STTPs, i.e., it is independent of the PPIL server

and client. Moreover, the PPIL computation is independent

of the user’s identity, i.e., neither the identity of the user

influences the setup phase nor the precomputation of the setup

phase violates the privacy of the user. Due to the fact that the

STTPs are easy to equip with hard disk drives of large capacity

for a reasonable price, the STTP servers can precompute

thousands of PPIL queries. If this throughput is not sufficient,

we can think of the following: one can either upgrade the

available hardware or continue the precomputation on the days

while the building is closed (weekends, holidays). While the

first gives many degrees of freedom for possible efficiency

improvements, the second allows the precomputation of more

than 100 000 queries during only one weekend.

C. k-Nearest Reference Points

We show the performance differences between the k-NN

and Bitonic Sort algorithm on the left of Tab. IV. As it can be

seen, k-NN in Yao sharing significantly outperforms Bitonic

Sort in Boolean sharing for k=3. On the other hand, Bitonic

Sort becomes more efficient with increasing k and would be

more efficient than k-NN when k is greater than 40 or 50

because its performance is independent of k. However, for

IL k is usually small, e.g., k=3 or k=4. Our k-NN protocol

achieves a 1.4× to 1.6× run-time improvement over [97].

D. Oblivious Array Access

The run-times of the Yao-based size-optimized and GMW-

based depth-optimized Oblivious Array Access (OA) algo-

rithm for the ranges of RPs are given in the middle of

Tab. IV. As it turns out, the size-optimized implementation of

OA slightly outperforms the depth-optimized implementation

in our standard setting with M=505 RPs. While the first
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Table IV: The run-times in milliseconds for sharing client’s inputs and for the online phase of our most promising PPIL protocols

for N Access Points (APs) and M Reference Points (RPs). In the right part of the table, we depict the best-performing protocols

for PPIL using the corresponding distance metrics. k-Nearest Neighbors (k-NN) is implemented in Yao and Bitonic Sort in

Boolean sharing.

M
Input k nearest RPs Oblivious Array Manhattan (ABOY) Euclidean (AY) Kumar-Hassebrook (AY) Sørensen (ABOY) Mod. Sørensen (AY)

sharing 3-NN 3-NN [97] 30-NN Bitonic Sort Size-opt. Depth-opt. N=256 N=512 N=256 N=512 N=256 N=512 N=256 N=512 N=256 N=512

32 0.2 0.7 1.1 8.3 26.5 1.2 2.1 47.2 75.0 11.7 18.9 57.6 61.1 66.2 80.9 58.8 61.6
64 0.4 1.5 2.3 16.3 51.9 2.3 4.1 85.6 151.9 20.6 35.8 109.7 114.5 123.0 151.2 112.0 119.3
128 0.8 3.1 4.5 32.7 106.1 4.6 7.3 159.8 289.7 38.3 62.0 213.6 230.5 234.9 293.6 215.4 228.9
256 1.5 5.9 10.3 59.0 186.9 9.3 15.6 304.1 570.9 74.5 124.1 420.3 455.2 476.7 575.0 424.9 455.2
512 3.1 12.3 19.7 120.4 332.4 20.1 31.0 599.7 1 137.4 162.5 270.9 843.8 922.8 948.7 1 144.4 874.6 948.1
1 024 6.2 24.7 40.4 239.8 681.3 39.5 63.8 1 184.6 2 167.8 363.7 594.3 1 646.4 1 969.4 1 873.4 2 179.8 1 710.1 1 979.9

Table V: Benchmarking results for Privacy-Preserving Indoor

Localization run between two Semi-Trusted Third Parties

(STTPs) based on the introduced distance metrics with N=241
Access Points and M=505 Reference Points. The most effi-

cient solutions for each metric are marked in bold.

Distance metric (Protocol)
Comm. across STTPs in MB Runtimes across STTPs in s

Setup Online Total Setup Online Total

Manhattan (B) 974 15 990 4.2 15.0 20.6
Manhattan (Y) 301 51 B 301 3.9 2.2 6.1
Manhattan (ABOY) 167 11 178 0.7 0.4 1.1
Manhattan (1-bit, Y) 5.2 47 B 5.2 0.3 0.2 0.5

Euclidean (Y) 6 100 50 B 6 100 66.3 16.9 82.3
Euclidean (AB) 203 4.0 207 1.0 0.9 1.9
Euclidean (AY) 164 2.7 167 0.8 0.15 1.0

Kumar-Hassebrook (AB) 319 6.6 326 1.6 2.5 4.1
Kumar-Hassebrook (AY) 280 2.5 283 2.2 0.8 3.0

Sørensen (ABO) 196 9.2 205 1.1 2.0 3.1
Sørensen (ABOY) 148 5.7 154 1.5 0.9 2.6

Modified Sørensen (AB) 321 6.6 328 1.6 2.4 4.0
Modified Sørensen (AY) 282 2.6 285 2.2 0.8 3.0

requires 34 ms run-time in the online phase, the second runs

in 39 ms which is by ∼15 % slower. However, in total the

depth-optimized algorithm runs by factor ∼1.5× faster than

the size-optimized (46 ms vs. 72 ms) and requires almost 2×
less communication (1.3 MB vs. 2.3 MB).

E. Performance of Privacy-Preserving Indoor Localization
Concrete parameters for Indoor Localization (IL) depend on

the specific application:

• The accuracy of IL depends on the number of RPs, the

demands of which depend on the particular scenario, e.g.,

in one scenario we need to determine whether a user is in

a room and in another scenario whether the user is in a

particular part of the room.

• One will not always require all possible RPs in the building,

e.g., only one floor, or all floors, but only one wing of the

building.

• The APs often have many MAC addresses which causes

duplicating the same APs in IL. Duplicates can be filtered

out by creating the public list of single APs. Moreover, the

APs that provide unreliable data can also be filtered out

using machine learning techniques, such as [102]. Using

these techniques, also the most reliable APs can be found.

In this section, we present the performance results for our

PPIL protocols: (i) for a real-world dataset with N=241 APs

and M=505 RPs, (ii) for the settings used in the existing

literature for comparing our solutions with those proposed in

the previous works, and (iii) for ranges of APs and RPs.

Real-World Setting: In Tab. V we show the benchmarking

results of our algorithms for N=241 APs, M=505 RPs, and

k=3 Nearest Neighbors. The setting is the same as in [35]

and represents a typical size for a single building database.

Examples on databases with similar sizes can be found, e.g.,

in [103, 104, 105]. Note that only algorithms fitting into

16 GB RAM on the STTPs are depicted in the table. Since

the setup phase can efficiently be precomputed, the most

important information in this table are the online run-times

and communication.

We can deduce the following from Tab. V:

• Even with all our optimizations, 4-bit PPIL in the

client/server setting with a single server would require

transferring at least 100 MB between the mobile client and

the server over the mobile Internet per query. This is highly

unpractical, especially given today’s mobile dataplans of

usually a few GB per month. Therefore, outsourcing to two

or more non-colluding servers as in the model investigated

in this work is the only realistic model because only a few

kB need to be sent over the mobile Internet.

• Our most efficient Euclidean distance-based PPIL protocol

using Arithmetic and Yao sharing achieves 1.0 s total and

0.15 s online time, which is a reasonable delay in practice.

• Many optimized algorithms require less than 1 second on-

line time even for the most precise metrics which is also a

reasonable delay in practice.

• The optimized algorithms outperform the non-optimized

ones in terms of online run-time by up to factor 100×.

• The optimized algorithms in Yao sharing outperform the

ones in Boolean sharing in terms of online time by factor

3–4×. This is due to the fact that although the circuits in

Boolean sharing have reasonable depth (298–596), they are

up to factor 6× larger than the circuits in Yao sharing.

• For the Manhattan/Euclidean/Kumar-Hassebrook/Sørensen/

Modified Sørensen-based PPIL in Arithmetic and Yao shar-

ing (AY), our two commodity hardware-based servers can

daily precompute 172k/86k/28k/33k/28k queries, and pro-

cess 432k/576k/108k/96k/108k queries, respectively.

• The 1-bit Manhattan distance PPIL protocol yields 57× less

communication than the “naive” solution (only 5.2 MB in

total), it requires only 0.5 s of total run-time, 0.2 s online

time, and its online communication is in the order of a few

Bytes, which makes this protocol an excellent candidate also

for the client-server scenario without outsourcing.
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Comparison with Related Work: In the following,

we compare our most efficient 4-bit Euclidean distance-

based PPIL protocol with the most recent related works of

Li et al. [37] and Ziegeldorf et al. [39].

[37]: The experiments of [37] have very high run-times

of 60.9 s for very small IL parameters (N=15 APs and

M=1000 RPs) and outdated security parameters (1024-bit

Paillier modulus which is considered insecure today [106]).

For these values of N and M and state-of-the-art 128-bit

security, our solution has an online run-time of 0.11 s (553×
faster) and a total run-time of 0.5 s (121× faster).

[39]: Evaluation of the prototype implementation of [39] on

two servers with 1 ms network latency resulted in a 10 s run-

time for only N=20 APs and 160 possible states. For the

same setting (we set the number of RPs to M=160), we

achieve an online run-time of 0.02 s (500× faster) and a total

run-time of 0.1 s (100× faster).

Ranges of APs and RPs: An intuitive solution for rep-

resenting the real-world scalability of our algorithms is to

perform benchmarks for different real-world buildings. This,

however, has the drawback that the benchmarks for a few

buildings are valid only for these buildings and say nothing

about other buildings. To solve this problem, we benchmark

our algorithms on ranges of APs and RPs in constant in-

tervals. This allows to interpolate the benchmarking results

for determining overhead for any numbers of APs and RPs

in the measured range. Since the function or shape of a

building does not affect the performance of our algorithms,

the benchmarking results will apply to all buildings with the

same number of APs and RPs. We give the online times for our

most efficient protocols for ranges of APs and RPs in Tab. IV.

VII. CONCLUSION

In this work, we designed, implemented, and evaluated

PILOT, a system for practical Privacy-Preserving Indoor Lo-

calization (PPIL). To the best of our knowledge, PILOT is the

first PPIL system with practical online run-times of less than

1 s and is by several orders of magnitude faster than previous

works. We applied quantization to reduce the Received Sig-

nal Strength bit-length without significant loss of accuracy.

We designed efficient building blocks for PPIL, which are

of independent interest: a size-efficient k-Nearest Neighbors

circuit, and a Single Instruction Multiple Data-capable and

easy-to-implement Oblivious Array Access circuit. We used

an outsourcing scenario that shifts most of the communication

and computation away from the weak and battery-powered

mobile client. Overall, our PPIL system PILOT can process

hundreds of thousands of queries per day on commodity

hardware.
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[9] K. Järvinen, Á. Kiss, T. Schneider, O. Tkachenko, and Z. Yang, “Faster
privacy-preserving location proximity schemes,” in CANS, 2018.

[10] J. Einsiedler, I. Radusch, and K. Wolter, “Vehicle indoor positioning:
A survey,” in IEEE Workshop on Positioning, Navigation and Commu-
nications (WPNC), 2017.

[11] L. Chen, S. Thombre, K. Järvinen, E. S. Lohan, A. Alén-Savikko,
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[91] P. Richter, H. Leppäkoski, E. S. Lohan, Z. Yang, K. Järvinen,
O. Tkachenko, and T. Schneider, “Received signal strength quantization
for secure indoor positioning via fingerprinting,” in International
Conference on Localization and GNSS (ICL-GNSS), 2018.

[92] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “Improved garbled
circuit building blocks and applications to auctions and computing
minima,” in CANS, 2009.

[93] N. Gilboa, “Two party RSA key generation,” in CRYPTO, 1999.

[94] J. von Neumann, “First draft of a report on the edvac,” IEEE Annals
of the History of Computing, 1993.

[95] J. Boyar and R. Peralta, “Tight bounds for the multiplicative complexity
of symmetric functions,” Theoretical Computer Science, 2008.

[96] J. Bringer, H. Chabanne, M. Favre, A. Patey, T. Schneider, and
M. Zohner, “GSHADE: Faster privacy-preserving distance computation
and biometric identification,” in IH&MMSec, 2014.

[97] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, and F. Koushanfar,
“Compacting privacy-preserving k-nearest neighbor search using logic
synthesis,” in DAC, 2015.

[98] K. E. Batcher, “Sorting networks and their applications,” in Spring
Joint Computer Conference, 1968.

[99] H. W. Lang, “Bitonic sorting network for n not a power
of 2,” http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/
oddn.htm, 2017, accessed: 2018-01-16.

[100] M. Keller and P. Scholl, “Efficient, oblivious data structures for MPC,”
in ASIACRYPT, 2014.

[101] N. Buescher, A. Holzer, A. Weber, and S. Katzenbeisser, “Compiling
low depth circuits for practical secure computation,” in ESORICS,
2016.

[102] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial Intelligence, 1997.

[103] E. Sansano Sansano, R. Montoliu Colás, O. Belmonte Fernández,
and J. Torres-Sospedra, “IndoorLoc Platform, a public repository for
comparing and evaluating indoor positioning and navigation databases
and algorithms,” http://indoorlocplatform.uji.es/, 2017, accessed: 2018-
05-07.

[104] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
https://archive.ics.uci.edu/ml/, 2017, accessed: 2018-05-07.

[105] D. Kotz, T. Henderson, I. Abyzov, and J. Yeo, “CRAWDAD, a
community resource for archiving wireless data at Dartmouth,” https:
//crawdad.org/index.html, 2009, accessed: 2018-05-07.

[106] E. Barker, “Recommendation for key management part 1: General
(revision 4),” NIST, 2016.

APPENDIX

A. Algorithms
In this appendix, we give details on our algorithm imple-

mentations in the ABY framework [51].

distances← dABOYm (RSSC, RefPoints, N)

1 : distances← ∅
2 : foreachRSSS in RefPoints do

3 : 〈dist〉A ← 0

4 : for i = 1 : N do

5 : 〈gt〉B ← Y2B(GT(〈RSSS[i]〉Y , 〈RSSC[i]〉Y ))

6 : 〈d〉A ← 〈RSSS − RSSC〉A

7 : 〈d′〉A ← Two’sComplement(〈d〉A)
8 : 〈d〉A ← 〈d〉A · 〈gt〉B //using C-OT

9 : 〈d′〉A ← 〈d′〉A · INV(〈gt〉B) //using C-OT
10 : 〈dist〉A ← 〈dist〉A + 〈d〉A + 〈d′〉A

11 : distances.append(〈dist〉A)
12 : returndistances

Algorithm 1: Manhattan distance using Arithmetic, Boolean,

and Yao sharing, and Correlated OT (C-OT).

distances← dAe (RSSC, 〈RSS2C〉A, RefPoints, N)

1 : distances← ∅
2 : foreachRSSS in RefPoints do

3 : 〈dist〉A ← 〈RSS2C〉A + 〈RSS2S 〉A //precomputed

4 : for i = 1 : N do

5 : 〈product〉A ← 〈RSSC[i]〉A · 〈RSSS[i]〉A

6 : 〈product〉A ← 〈product〉A + 〈product〉A

7 : 〈dist〉A ← 〈dist〉A − 〈product〉A

8 : distances.append(〈dist〉A)
9 : returndistances

Algorithm 2: Euclidean distance using Arithmetic sharing.

distances←dAY
kh (RSSC, 〈RSS2C〉A, RefPoints, N, ScalingFactor)

1 : distances← ∅
2 : foreachRSSS in RefPoints do

3 : 〈nom〉A ← 0

4 : 〈denom〉A ← 〈RSS2C〉A + 〈RSS2S 〉A //precomputed

5 : for i= 1 : N do

6 : 〈product〉A ← 〈RSSS[i]〉A · 〈RSS[i]C〉A

7 : 〈nom〉A ← 〈product〉A

8 : 〈denom〉A ← 〈denom〉A − 〈product〉A

9 : 〈nom〉Y ← A2Y(〈nom〉A)
10 : 〈nom〉Y ← 〈nom〉Y � ScalingFactor //bit-shift

11 : 〈denom〉Y ← A2Y(〈denom〉A)
12 : distances.append(〈nom〉Y /〈nom〉Y )

13 : returndistances

Algorithm 3: Kumar-Hassebrook distance using Arithmetic

sharing and Yao sharing.
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distances← d
′AY
s (RSSC, RefPoints, N, 〈ScalingFactor〉A)

1 : distances← ∅
2 : foreach RSSS in RefPoints do

3 : 〈num〉A ← 0

4 : 〈denom〉A ← 0

5 : for i = 1 : N do

6 : 〈eucl〉A ← dAe (〈RSSS[i]〉A, 〈RSSC[i]〉A)
7 : 〈sum〉A ← 〈RSSS[i]〉A + 〈RSSC[i]〉A

8 : 〈num〉A ← 〈num〉A + 〈eucl〉A

9 : 〈denom〉A ← 〈denom〉A + 〈sum〉A

10 : 〈num〉Y ← A2Y(〈num〉A)
11 : 〈num〉Y ← 〈num〉Y � ScalingFactor //bit-shift

12 : 〈denom〉Y ← A2Y(〈denom〉A)
13 : distances.append(〈num〉Y /〈denom〉Y )

14 : return distances

Algorithm 4: Modified Sorensen distance using Arithmetic

sharing and Yao sharing. Euclidean distance is computed

similar to Algorithm 2.

BitonicSort(dists, ids, start,M)

1 : for i = 1 : M do

2 : m = M/2

3 : BitonicSort(dists, ids, start,m)

4 : BitonicSort(dists, ids, start+m,M −m)

5 : BitonicMerge(dists, ids, start,M)

BitonicMerge(dists, ids, start,M)

1 : m = PO2LT(M)

2 : for i = begin : begin−M +m

3 : 〈gt〉B = GT(〈dists[i]〉B , 〈dists[i+m]〉B)
4 : CondSwap(〈dists[i]〉B , 〈dists[i+m]〉B , 〈gt〉B)
5 : CondSwap(〈ids[i]〉B , 〈ids[i+m]〉B , 〈gt〉B)
6 : BitonicMerge(dists, ids, start,m)

7 : BitonicMerge(dists, ids, start+m,M −m)

Algorithm 5: Bitonic Sort algorithm using Boolean sharing.

The function y ← PO2LT(x) finds an y such that y is the

biggest power of two less than x.

minIds← k-NN(dists,M, k)

1 : minDists,minIds← ∅
2 : for i = 1 : k + 1 do

3 : minDists.append(〈MAX_VALUE〉Y )

4 : minIds.append(〈0〉Y )

5 : for i = 1 : M do

6 : minDists[k + 1]← dists[i]

7 : minIds[k + 1]← 〈i〉Y
8 : for j = k + 1 : 2 do

9 : 〈gt〉Y ← GT(〈minDists[j − 1]〉Y , 〈minDists[j]〉Y )

10 : CondSwap(〈minDists[j]〉Y , 〈minDists[j − 1]〉Y , 〈gt〉Y )

11 : CondSwap(〈minIds[j]〉Y , 〈minIds[j − 1]〉Y , 〈gt〉Y )

12 : return minIds[1 : k]

Algorithm 6: k-Nearest Neighbors (k-NN) circuit using Yao

sharing.

〈coord〉Y ← OAs(coords, 〈idx〉Y ,M)

1 : poTwo← PO2LT(M)

2 : for i = M − 1 : 2 · poTwo do
3 : coords.append(NULL)

4 : i← 1

5 : bitNum← 0

6 : while (i < 2 · poTwo) do
7 : 〈sel〉Y ← 〈idx〉Y [bitNum]

8 : j ← 0

9 : while (j < coords.size()) do

10 : if (〈coords[j]〉Y == NULL)

11 : j ← j + 2 · i
12 : continue

13 : else if(〈coords[j + i]〉Y == NULL)

14 : j ← j + 2 · i
15 : continue

16 : else

17 : 〈coords[j]〉Y ← MUX(

18 : 〈coords[j + i]〉Y , 〈coords[j]〉Y , 〈sel〉Y )

19 : j ← j + 2 · i
20 : i← 2 · i
21 : bitNum← bitNum+ 1

22 : return 〈res[0]〉Y

Algorithm 7: Size-optimized Oblivious Array Access (OA)

circuit using Yao sharing.

〈coord〉B ← OAd(coords, ids, 〈idx〉B ,M)

1 : res← ∅
2 : for i in 1 : M do

3 : res.append(EQ(〈ids[i]〉B , 〈idx〉B))
4 : 〈res[i]〉B ← MUX(〈0〉B , 〈coords[i]〉B , 〈res[i]〉B)
5 : for i in 2 : M do

6 : 〈res[0]〉B ← 〈res[0]〉B ⊕ 〈res[i]〉B

7 : return 〈res[0]〉B

Algorithm 8: Depth-optimized Oblivious Array Access (OA)

circuit using Boolean sharing.
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