
Towards Understanding Limitations of Pixel
Discretization Against Adversarial Attacks

Jiefeng Chen 1 Xi Wu 2 Vaibhav Rastogi 1 Yingyu Liang 1 Somesh Jha 1

1 University of Wisconsin-Madison 2 Google

Abstract—Wide adoption of artificial neural networks in var-
ious domains has led to an increasing interest in defending
adversarial attacks against them. Preprocessing defense methods
such as pixel discretization are particularly attractive in practice
due to their simplicity, low computational overhead, and appli-
cability to various systems. It is observed that such methods
work well on simple datasets like MNIST, but break on more
complicated ones like ImageNet under recently proposed strong
white-box attacks. To understand the conditions for success and
potentials for improvement, we study the pixel discretization
defense method, including more sophisticated variants that take
into account the properties of the dataset being discretized. Our
results again show poor resistance against the strong attacks. We
analyze our results in a theoretical framework and offer strong
evidence that pixel discretization is unlikely to work on all but
the simplest of the datasets. Furthermore, our arguments present
insights why some other preprocessing defenses may be insecure.

I. INTRODUCTION

Deep learning models have been shown to be vulnerable

to adversarial perturbations, which are slight perturbations of

natural input data but are classified differently than the natural

input [1]. Adversarial robustness, or reducing this vulnerability

to adversarial perturbations, of deep neural networks (DNNs)

has received significant attention in recent years ([2], [3], [4],

[5], [6], [7], [8], [9]), due to the interest of deploying deep

learning systems in various security-sensitive or security-critical

applications, such as self-driving cars and identification systems.

Among various methods, defense methods that preprocess the

input and then pass them to the existing learning systems are

particularly attractive in practice due to their simplicity, low

computational overhead, and direct applicability to various

neural network systems without interfering with the training.

Various such preprocessing methods have been proposed and

achieve good results against some old attacks. Unfortunately,

as observed by Athalye et al. [10], when applied to typical

datasets, these methods fall in front of the stronger Backward

Pass Differentiable Approximation attack (BPDA). It is now

a general perception that preprocessing methods cannot work

against such strong attacks. However, the question about why

they fail remain largely open.
This paper studies a prototypical preprocessing defense

method called pixel discretization, taking a first step towards

understanding the effectiveness and limitations of such methods.

Pixel discretization works by first constructing a codebook of

codewords (also called codes) for pixel values, then discretizing

an input vector using these codewords, and finally feeding the

discretized input to a pre-trained base model, with the hope

that adversarial noise can be removed by the discretization.

For example, the color-depth reduction by Xu et al. [5] and

the subsequent thermometer encoding technique proposed by

[6] essentially “round” pixels to nearby codewords during

preprocessing. They achieve good results on simple datasets

such as MNIST [11] against strong attacks such as Carlini-

Wagner [12], but later are shown to achieve poor performance

against BPDA when applied to datasets of moderate or higher

complexity (such as CIFAR-10 [13]). However, we observe that

both of these pixel discretization proposals employ very simple

codes which are completely independent of the data distribution.
This thus leads to the following natural and intriguing question:

Are there more sophisticated pixel discretization

techniques, especially those that are data-specific,
which would be significantly better against white-
box attacks?

This paper studies the effectiveness of pixel discretization

techniques, including data-specific ones, through extensive

theoretical and empirical analyses. Our main results suggest a

strong negative answer for the above question: if the underlying

base model has poor adversarial robustness, pixel discretization

is unlikely to improve robustness except for very simple

datasets. On one hand, we obtain strong performance on simple

datasets like MNIST, identify conditions under which the

method can provably work, and propose a simple certificate that

can be computed to lower bound the performance against any

attacks within a budget. On the other hand, poor performance

is observed on more complicated datasets like CIFAR-10. We

then provide detailed analysis on why the method fails on such

data.
A primary tenet of our study is to view discretization by

codewords as constructing a clustering of pixels, where pixels

in the same cluster gets assigned to the same codeword. Our

key observation is a stringent tradeoff between accuracy and

robustness: To allow only a marginal reduction in accuracy,

we would like to keep our clusters of pixels small so that

only close enough pixels map to cluster centers. However, on

complex data this requires many small, closely-packed clusters

whose boundary pixels can be easily perturbed to pixels in

other clusters, implying that robustness will not be high enough

if the underlying base model has poor adversarial robustness.
As a result, our theoretical and empirical analyses hinge on

the separability of pixels: If the pixels form well-separated clus-

ters, we can easily map them to cluster centroids and achieve

a discretization where pixel perturbation does not change the

clusters they belong to, implying adversarial robustness. Based

480

2019 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2019, Jiefeng Chen. Under license to IEEE.
DOI 10.1109/EuroSP.2019.00042

on this understanding, we provide a framework for formally

certifying adversarial robustness. While our theory is able to

provide certificates of robustness for simple datasets such as

MNIST, for more complex datasets like CIFAR-10, we show

by various means that pixel discretization is an inadequate

defense against adversarial examples. More specifically, com-

plex datasets do not form well-separated clusters, so pixel

discretization is unlikely to improve adversarial robustness.

Many of our arguments are general and may be used to

study other preprocessing techniques as well. For instance, if

a defense is not performed at the pixel level but at the level

of patches of pixels, our arguments will extend to that defense

as well.

In summary, this paper makes the following contributions:

• We develop more sophisticated pixel discretization tech-

niques that take into account the structure of the data

points for discretization. Our experiments show that even

these sophisticated defenses do not perform well against

BPDA attacks.

• We develop a theoretical framework for pixel discretization

defenses and present conditions under which they are

robust.

• We confirm the general expectation that pixel discretiza-

tion works well on simple datasets like MNIST. In fact,

we are able to formally certify that pixel discretization on

such datasets is robust against any adversarial attack. This

also shows that gradient masking preprocessing defenses

are possible for some simple distributions.

• We further analyze complex datasets like CIFAR-10 to

argue that it is unlikely to achieve robustness with pixel

discretization on these datasets.

The rest of this paper is organized as follows. Section II

presents the necessary background. We then present our

experiments with color-depth reduction defense in Section III.

We then explore data-specific pixel discretization defenses in

Section IV. In Section V, we present our theoretical framework

for analyzing the results as well as present further empirical

results on MNIST and CIFAR-10 supporting the analysis. We

present a discussion with insights on preprocessing defenses

in general in Section VI. Finally, we present related work in

Section VII and conclude in Section VIII.

The code for the experiments is available at https://github.

com/jfc43/pixel-discretization.

II. PRELIMINARIES

This section presents the relevant background for this work,

important definitions, and the datasets used in our evaluations.

A. Background

Deep neural network (DNN) models are often vulnerable to

adversarial inputs, which are slight perturbations of “natural”

test inputs but lead the model to produce adversary-selected

outputs different from the outputs to the natural inputs. The

susceptibility of neural networks to adversarial perturbations

was first discovered by [14], [1], and a large body of research

has been devoted to it since then. A long line of recent research

is dedicated to attacks with and defenses against adversarial

perturbations. Several other types of attacks have been explored

in the context of machine learning. These include training-time
attacks where an adversary wishes to poison a data set so

that a “bad” hypothesis is learned by an ML-algorithm; model
extraction attacks where an attacker learns a model by making

queries to an available model; and a model inversion attack

where the attacker recovers the inputs used to train a model.

The reader is referred to Section VII for a very brief survey

of these research works.

In this paper, we focus on test-time attacks on super-

vised image classification problems. The input image x ∈
R

H×W×C (the image has H rows, W columns and C channels).

x[i, j, l] represents the value of ith row, jth column and lth
channel of the image. x[i, j] represents the pixel at ith row

and jth column. We have a DNN model Fθ (where θ are

model parameters, and we simply write F if θ is clear from

the context) that maps R
H×W×C to a set of class labels. In

our context we assume that the classifier F has been trained

without any interference from the attacker (i.e. no training time

attacks). Given an attack distance metric ‖ · ‖, the goal of an

attacker is to craft a perturbation δ so that F (x+δ) �= F (x),
where x ∼ D and ‖δ‖ ≤ ε. There are several algorithms for

crafting the perturbation δ, but in this paper we use the recent

method by [10].

There have been several directions for defenses to test-

time attacks, but we mainly focus on preprocessing defenses.

In such defenses, one designs a preprocessing function T :
R

H×W×C �→ R
H×W×C , and with a base model F , the end-

to-end predictions are produced as F (T (·)). In this context

there are three types of attacks: (1) Black Box Attack where

the attacker can only get zero-order information of F (i.e. the

outputs of F correspond to the given inputs), (2) Gray Box
Attack where the attacker knows F , but is unaware of T , and

(3) White Box Attack where the attacker knows both F and

T . This paper considers white-box attacks since this is the

strongest attack model.

Given a preprocessing technique T , the goal of an adversary

is thus to find another image z such that ‖z − x ‖ ≤ ε and

F (T (z)) �= F (T (x)).

B. Backward Pass Differentiable Approximation (BPDA) Attack

Introduced recently by Athalye et al. [10], the backward
pass differentiable approximation (BPDA) attack is a white-box

attack that assumes the knowledge of both the classifier F
and the preprocessor T . The BPDA-attack, given an input and

a target label, computes adversarial perturbations by gradient

descent over F (T (·)). The main problem that BPDA solves

is that many preprocessing techniques “obfuscate gradients”

by using a T that is not differentiable or is random. BPDA

addresses this issue by using F (T (·)) for the forward pass

but switching to a “differentiable approximation” of T when

computing gradients for the backward pass.

481

C. Adversarial Training

We briefly describe the technique of adversarial training. For

detailed account the reader is referred to [15]. Roughly speaking

adversarial training works as follows: before processing data

x (e.g. using it in an iteration of stochastic-gradient descent

(SGD)) we apply an algorithm for crafting adversarial examples,

such as BPDA, and obtain an adversarial example x∗. The
learning algorithm uses x∗ instead of x. The theoretical

underpinnings of adversarial training can be found in robust

optimization.

D. Metrics and Definitions

We now provide the necessary definitions that are used in

our work.

Definition 1 (Accuracy). Accuracy of a classifier F is defined
as

Pr
(x,y)∼D

[F (x) = y]

Definition 2 (Local robustness predicate). Given an image x,
the condition for an adversary with budget ε to not succeed is
defined as the following predicate:

Rε(x, y) ≡ {F (T (z)) = y for any ‖z− x ‖ ≤ ε}
We call this predicate the robustness predicate.

Definition 3 (Local certificate). A predicate P (x, y) is called
a local certificate iff P (x, y) implies Rε(x, y). In other words,
if P (x, y) is true then it provides a proof of the robustness at
x.

Definition 4 (Robustness accuracy). The following quantity is
called robustness accuracy

Pr
(x,y)∼D

[F (T (z)) = y for any ‖z− x ‖ ≤ ε]

= Pr
(x,y)∼D

[Rε(x, y)]

Robustness accuracy is the measure of robustness across the

entire probability distribution. This quantity is the accuracy

under the strongest attack. However, we cannot measure it

directly in experiments. We instead measure the accuracy under

the attacks we perform as an estimation of robustness accuracy.

In general, any norm can be used for the attack distance

metric‖ · ‖ used in the definitions above. We specifically use

the �∞ norm (‖ · ‖∞) for all discussions and results in this

paper. The �∞ norm is defined as

‖u‖∞ = max
i
|ui|

where u is a vector (u1, · · · , un). Throughout this paper, any

mention of the norm means �∞ norm.

E. Datasets

We use a variety of simple and complex datasets to

understand the interaction of pixel discretization and adversarial

attacks.

a) MNIST and Fashion-MNIST: The MNIST dataset [11]

is a large dataset of handwritten digits. Each digit has 5,000

training images and 1,000 test images. Each image is a 28x28

grayscale with the pixel color-depth of 8 bits.

The MNIST dataset is largely considered a simple dataset,

so we also consider a slightly more complex dataset called

Fashion-MNIST [16]. Images in this dataset depicts wearables

such as shirts and boots instead of digits. The image format,

the number of classes, as well as the number of examples are

all identical to MNIST.

b) CIFAR-10: The CIFAR-10 dataset [13] is also a dataset

of 32x32 color images with ten classes, each consisting of 5,000

training images and 1,000 test images. The classes correspond

to dogs, frogs, ships, trucks, etc.

c) GTSRB: The German Traffic Sign Recognition Bench-

mark (GTSRB) [17] is a dataset of color images depicting 43

different traffic signs. The images are not of a fixed dimensions

and have rich background and varying light conditions as would

be expected of photographed images of traffic signs. There are

about 39,000 training images and 12,000 test images.

Some of the images in the dataset are very dark, making

it difficult to identify the right features in the images. This

makes adversarial perturbations on them easier. Therefore, we

remove all images that have an average intensity of less than

50.

d) ImageNet: ImageNet [18] is a complex dataset with

over 14 million images and twenty thousand categories. We use

the subset of ImageNet used by the NIPS Adversarial Attacks

& Defenses Challenge [19], which contains 1000 development

images and 5000 test images from 1001 categories.

F. Experiment Settings

a) Pre-trained Models: For MNIST and CIFAR-10, we

use naturally and adversarially pre-trained models from [15].

For ImageNet, we use a naturally pre-trained InceptionResNet-

V2 model from [20] and an adversarially pre-trained

InceptionResNet-V2 model from [21].

b) Training Hyper-parameters.: For MNIST and CIFAR-

10, we use the same training hyper-parameters as [15]. To

train models on Fashion-MNIST, we use the same hyper-

parameters as those we use to train MNIST. And the same

hyper-parameters as those used on CIFAR-10 are used to train

models on GTSRB. In order to reduce training time, when we

naturally (or adversarially) retrain models, we use naturally (or

adversarially) pre-trained model to initialize model parameters

and train for 10000 epochs.

c) Attack Methods: If gradient approximation is needed,

we use the BPDA attack, otherwise we use the PGD attack.

For MNIST and Fashion-MNIST, we set ε = 0.3 and use 100
steps for the attack. For CIFAR-10, when we use naturally

trained model as base model, we set ε = 2 and use 40 steps

attack; when we use adversarially trained model, we set ε = 8
and use 40 steps. For GTSRB, we set ε = 8 and use 40 steps.

For ImageNet, when we use naturally trained model as based

model, we set ε = 1 and use 1 steps attack; when we use

482

adversarially trained model, we set ε = 4 and use 10 steps for

the attack.

III. ROBUSTNESS OF COLOR-DEPTH REDUCTION

We begin by discussing a simple pixel discretization tech-

nique as described by Xu et al. [5], a prototypical example of

pixel discretization defenses. They describe their techniques

as “feature squeezing”, which are preprocessing techniques

intended to condense a number of features into a smaller

number of features. The intuition is that by giving an adversary

a smaller space from which to select features, it will make

performing an adversarial attack difficult. One of their feature

squeezing techniques is color-depth reduction. This is a “simple

binning” approach where, for example, a 256-bin color channel

(as represented by 8 bits) may be quantized to a 8-bin color

channel. Color values are essentially "rounded" to their nearest

color bins.

On an image x, we can do k-bin discretization via the

following function:

T (x)[i, j, l] =

(k − 1)x[i, j, l] + 0.5�

k − 1

Where, i ∈ [H], j ∈ [W] and l ∈ [C]. Here, [H] =
{1, 2, · · · , H}. This assumes that the pixel values of the input

image have been scaled to be in [0, 1].
Evaluation. As mentioned by Athalye et al. in their BPDA

attack paper, color-depth reduction can be attacked by ap-

proximating the preprocessing function T with the identity

function. Below we reproduce these results with a more

sophisticated differentiable approximation of T and provide

details of the robustness on different datasets. We will also use

this approximation later in the paper when we discuss more

sophisticated data-specific pixel discretization.

In our evaluation of color-depth reduction using the BPDA

method, we compute F (T (x)) in the forward pass, while for

the backward pass, we replace T (x) by g(x), which is:

g(x)[i, j, l] =

∑k
t=1 ct · e−α‖x[i,j,l]−ct‖∑k

t=1 e
−α‖x[i,j,l]−ct‖

.

where i ∈ [H], j ∈ [W], l ∈ [C] and ct =
t−1
k−1 . Note that

when α→∞, g(x) = T (x). For MNIST and Fashion-MNIST,

we set α = 10. For other datasets, we set α = 0.1. To evaluate

classifier’s robustness without discretization, we use the PGD

attack. We define natural accuracy, or simply accuracy, as the

accuracy on clean data. Similarly, robustness accuracy, which

we denote as robustness, is the accuracy under attack.

Results. We present results on MNIST, Fashion-MNIST,

CIFAR-10, GTSRB and ImageNet datasets as shown in Table I.

Our intention is to see if we can achieve sufficient robustness

while maintaining accuracy on these datasets through color-

depth reduction.

For MNIST, as Xu et al. showed, we obtain good accuracy

with just 2 bins. As can be seen from the table, we obtain a

substantial improvement in both the naturally trained model and

the adversarially trained model. The results are also very good

for Fashion-MNIST. This is somewhat expected as MNIST

and Fashion-MNIST are similar datasets.

We also obtain results on CIFAR-10, GTSRB and ImageNet.

We present detailed results with different bins. As can be seen

from the table, color-depth reduction does not substantially

improve robustness under whitebox attacks.

The difference in robustness results for MNIST-like simple

datasets and for other datasets is due to the complexity of the

datasets. In Section V, we will further investigate this issue. We

next try data-specific pixel discretization, which may possibly

improve robustness over complex datasets.

IV. DATA-SPECIFIC PIXEL DISCRETIZATION

The fact that the simple binning does not work naturally

leads to the question whether one can design more sophisticated

discretization schemes with better performance. In particular,

a reason why simple binning fails is that it does not take

into account the properties of the data. Consider the following

intentionally simplified setting: each image has just one pixel

x taking values in [0, 1], and images of class 0 lie close

to 0.6 and those of class 1 lie close to 1. Using simple

binning with codewords {0, 1} then fails, as the images will

all be discretized to 1. This example then motivates more

sophisticated approaches that takes into account the distribution

of the data, so as to improve robustness over simple binning

by color-depth reduction. Our approach in this section is data-

specific: we aim to discretize pixels in a way that takes the

density of pixels in the dataset into account. We wish to derive

a codebook of pixels from the dataset, which is used by T that

replaced each pixel with its nearest codeword under a suitable

distance metric.

We begin by describing our framework for codebook

construction and then present our experimental results on data-

specific discretization.

A. Preprocessing Framework and Codebook Construction

At the high level, our framework is very simple and has the

following two steps:

1) At training time, we construct a codebook C =
{c1, c2, · · · , ck} for some k, where ci is in the pixel

space. This codebook C is then fixed during test time.

2) Given an image x at test time, T replaces each pixel

x[i, j] with a codeword c ∈ C that has minimal distance

to x[i, j].

Intuitively, on one hand, we would like to have a set of codes

that are far apart from each other, similar to the requirements

of error correcting codes in coding theory, such that even after

adversarial perturbation the discretized result will not change.

On the other hand, we would like to lose little information so

that we can keep a high accuracy after discretization. More

precisely, a set of good codes should satisfy the following

properties:

• Separability. Pairwise distances of codewords is large

enough for certain distance metric.

483

Dataset Base Model k
Pre-trained Re-trained

MNIST Naturally Trained
Model

Accuracy Robustness Accuracy Robustness
2 98.76% 75.39% 99.09% 80.91%

256 99.17% 0.00% N/A

Adversarially
Trained Model

2 98.18% 97.32% 98.49% 92.89%
256 98.40% 92.72% N/A

Fashion-MNIST

Naturally Trained
Model

2 98.97% 78.05% 99.15% 82.11%
256 99.10% 0.00% N/A

Adversarially
Trained Model

2 98.38% 95.78% 98.74% 92.32%
256 98.53% 87.38% N/A

CIFAR-10

Naturally Trained
Model

2 38.30% 18.05% 80.38% 46.44%
8 83.66% 9.12% 92.27% 28.13%
16 92.71% 6.72% 94.22% 13.84%
32 94.40% 4.51% 94.81% 6.10%
256 95.01% 4.20% N/A

Adversarially
Trained Model

2 74.59% 34.30% 78.35% 38.32%
8 86.51% 46.80% 87.24% 46.89%
16 87.09% 47.11% 87.65% 47.18%
32 87.20% 47.20% 87.60% 47.13%
256 87.25% 45.50% N/A

GTSRB

Naturally Trained
Model

2 61.91% 32.12% 68.70% 29.60%
8 95.06% 18.28% 95.39% 18.47%
16 97.15% 13.88% 97.15% 14.98%
32 97.34% 9.93% 97.43% 10.02%
256 97.35% 7.83% N/A

Adversarially
Trained Model

2 68.43% 55.55% 70.93% 55.30%
8 93.08% 74.46% 93.80% 74.90%
16 93.85% 75.66% 94.96% 76.65%
32 94.02% 75.45% 94.92% 76.20%
256 94.11% 74.34% N/A

ImageNet

Naturally Trained
Model

2 50.80% 24.40%
8 88.10% 30.80%
16 92.80% 30.60%
32 94.40% 27.30%
256 94.50% 27.50%

N/A

Adversarially
Trained Model

2 56.20% 11.90%
8 94.00% 12.90%
16 96.10% 11.80%
32 96.40% 8.40%
256 96.40% 5.20%

TABLE I: Results on MNIST, Fashion-MNIST, CIFAR-10, GTSRB and ImageNet with color-depth reduction. k is the number

of bins. k = 256 means we use all possible codes in the input space, that is we don’t discretize images.

• Representativity. There exists a classifier F that has good

accuracy on the discretized data based on C, as described

by the framework above.

Therefore, one may want to apply common clustering

algorithms, such as k-means and k-medoids, to find such

separable codes. Note however, that these algorithms do not

make a guarantee of separability. In search for separability, we

therefore try both k-medoids and another algorithm that we

develop based on density estimation. We next describe the two

algorithms.

1) Density Estimation-based Algorithm: We devise a new

algorithm to construct separable codes based on density

estimation and greedy selection on all the pixels P in the

training data. This algorithm is described in Algorithm 1. This

algorithm takes as input a set of images D, a kernel function

for density estimation, and number of codes k and a distance

parameter r. It repeats k times and at each time, first estimates

the densities for all pixel values, then adds the one with highest

density to the codebook, and finally, remove all pixels within

r distance of the picked.

Algorithm 1 DERIVING CODES VIA DENSITY ESTIMATION

Input: A training dataset D, distance parameter r and number

of codewords k, a kernel function ρ(·, ·).
Output: a set of codewords C = {c1, c2, · · · , ck}.
1: Let P denote all the pixels from images in D.

2: for i = 1, 2, · · · , k do
3: For each pixel value v, estimate its (unnormalized)

density as h[v] =
∑

p∈P ρ(p, v).
4: Set ci ← argmaxv h[v], and P ← P − {p ∈ P :

‖p− ci‖ ≤ r}.
5: end for

Instantiation. There are many possible kernel functions we

can use to instantiate Algorithm 1. In this work we use the

simplest choice, the identity kernel, ρ(p1, p2) = 1 if p1 = p2
and 0 otherwise. In that case, the density estimation at line

3 above becomes counting the frequencies of a pixel v in P .

The values of k and r can be tuned and we will report results

for different choices of these parameters.

484

Algorithm 2 DERIVING CODES VIA k-MEDOIDS

Input: A training dataset D, number of codewords k, number

of iterations T , a distance function d(·, ·).
Output: a set of codewords C = {c1, c2, · · · , ck}.
1: Let P denote all the pixels from images in D.

2: For any set of codewords C, define the k-medoid cost (w.r.t.

to the distance function d) as

cost(P, C) =
∑
p∈P

min
c′∈C

d(p, c′).

3: Randomly pick k pixels as the initial medoids C =
{c1, c2, · · · , ck}.

4: for t = 1, 2, · · · , T do
5: for Each pixel p �∈ C and each c ∈ C do
6: Let Cc,p = C \ {c} ∪ {p}
7: if cost(P, Cc,p) < cost(P, C) then
8: Set C ← Cc,p
9: end if

10: end for
11: end for

2) k-Medoids Algorithm: The k-medoids algorithm is simi-

lar to the k-means algorithm and aims to minimize the distance

between points inside a cluster to the cluster centroid, a point

in the cluster, which is representative of the entire cluster. The

parameter k is an input to the algorithm (a hyperparameter).

The algorithm works as follows: we initially select k points

from the given data points as the medoids. Each point is then

associated with the closest medoid. The cost of the association

is calculated as the sum of pairwise distance between each

point and its medoid. The algorithm then iteratively continues

by switching a medoid with another data point and checking

if this switch of medoids reduces the cost. See Algorithm 2

for the details.

Typically, the �1 distance, also called the Manhattan distance,

is used as the distance metric, and is also the distance used

in our experiments. If �2 distance (the Euclidean distance)

is used, the algorithm reduces to the commonly named k-
median algorithm. A third option is �∞ distance. Experimental

results show that using �2 and �∞ distances lead to similar

performance as �1, so we only report those results for �1.
Finally, one can use the popular k-means algorithm for

constructing the codewords. However, it is known to be

sensitive to outliers, and indeed leads to worse performance

in our experiments. So we do not include experimental results

using the k-means algorithm.

We now present experimental results using the algorithms

using density estimation and k-medoids.

B. Experimental Results

We now present our evaluation of data-specific discretization.

Since these approaches are more sophisticated than simple

color-depth reduction, it is possible for these approaches

to yield robust behavior for a wide range of datasets. To

summarize this section, however, our key findings are negative:

data-specific discretization techniques do not provide much

robustness to complex datasets such as CIFAR-10, GTSRB

and ImageNet.

Our experimental setup is similar to that of the previous

experiments. We use the same differentiable approximation

to T , with ci this time being the codewords derived from

our algorithms and performing operations on pixel space. Our

experiments consist of the following three parts:

• We would like to evaluate the effectiveness of the specifi-

cally designed code construction Algorithm 1 on different

datasets. We would also like to check the variation of

robustness as we change the adversarial budget ε.
• As in the color-depth reduction experiments, we would

also like to understand how the preprocessing technique

provides robustness on different datasets quantitatively as

we vary the number of codewords.

• Finally, we would like to see how the k-Medoid algorithm

for codebook construction affects the performance.

Effectivenss. We now evaluate the robustness obtained by pixel

discretization using the codebook constructed by Algorithm 1

on different datasets. We consider six settings:

1) nat_pre: no defenses, model naturally trained on original

data;

2) adv_pre: no defenses, model adversarially trained on

original data;

3) disc_nat_pre: discretization defense + model naturally

trained on original data;

4) disc_adv_pre: discretization defense + model adversari-

ally trained on original data;

5) disc_nat_re: discretization defense + model naturally

trained on preprocessed data;

6) disc_adv_re: discretization defense + model adversarially

trained on preprocessed data.

We further vary the adversarial budget ε to give a more complete

evaluation of the method.

Figure 1, 2, and 3 show the results on the five datasets, with

varying ε. We observe that on MNIST and Fashion-MNIST, the

method improves over the naturally trained model significantly,

and further improves the adversarially trained models. The

improvements with discretization are however still minor for

datasets other than MNIST and Fashion-MNIST.

We also confirm the so-called adversarial generalization gap

phenomenon previously reported in [22], that is, there is a

big gap between training and test robustness accuracy. This

suggests there is not sufficient data for improving the robustness.

The right subfigure in Figure 3 shows this gap on CIFAR-10.

In general, the results suggest that for complex datasets (such

as CIFAR-10, GTSRB, and ImageNet), it is difficult to achieve

robustness via pixel discretization. This is potentially because

the separability and representativity conditions of codewords

cannot be satisfied simultaneously due to the data lacking good

structure and the base model having peculiar properties. In

Sections V, we will study in detail the failure of the method.

Effect of Number of Codewords. Given the results, one may

wonder whether the performance can be improved by tuning the

485

Dataset Base Model k r
Pre-trained Re-trained

MNIST

Naturally Trained
Model

Accuracy Robustness Accuracy Robustness
2 0.6 98.81% 75.35% 99.15% 80.91%

256 N/A 99.17% 0.00% N/A

Adversarially
Trained Model

2 0.6 98.17% 97.24% 98.56% 92.80%
256 N/A 98.40% 92.72% N/A

Fashion-MNIST

Naturally Trained
Model

2 0.6 98.81% 75.35% 98.93% 79.93%
256 N/A 99.10% 0.00% N/A

Adversarially
Trained Model

2 0.6 98.17% 97.24% 98.56% 92.55%
256 N/A 98.53% 87.38% N/A

CIFAR-10

Naturally Trained
Model

2 64 24.20% 15.90% 68.50% 46.70%
5 64 39.60% 18.70% 79.90% 46.00%
10 64 42.70% 16.40% 81.60% 43.40%
50 48 67.70% 12.50% 89.70% 37.10%
100 16 86.30% 7.60% 92.80% 23.90%
300 16 91.30% 7.60% 94.40% 20.50%
500 16 91.21% 9.01% 93.53% 19.81%
2563 N/A 95.01% 4.20% N/A

Adversarially
Trained Model

2 64 63.20% 24.40% 68.30% 33.20%
5 64 76.10% 33.40% 78.70% 40.20%
10 64 78.30% 34.70% 81.00% 43.80%
50 48 84.30% 39.50% 84.80% 43.80%
100 16 86.00% 42.50% 85.40% 44.40%
300 16 87.30% 46.90% 86.80% 46.60%
500 16 86.99% 46.77% 87.60% 46.84%
2563 N/A 87.25% 45.50% N/A

GTSRB

Naturally Trained
Model

2 64 44.02% 23.94% 55.39% 29.46%
5 64 66.65% 21.11% 80.55% 25.42%
10 64 80.51% 27.80% 84.75% 23.87%
50 48 90.01% 26.42% 91.48% 23.12%
100 16 96.62% 16.45% 96.45% 17.91%
300 16 96.80% 16.22% 96.84% 17.08%
500 16 96.82% 15.49% 96.80% 16.25%
2563 N/A 97.35% 7.83% N/A

Adversarially
Trained Model

2 64 54.79% 43.18% 58.53% 43.94%
5 64 74.56% 53.88% 81.43% 58.52%
10 64 85.83% 66.84% 85.93% 67.36%
50 48 91.09% 74.26% 91.34% 74.48%
100 16 93.97% 74.74% 94.72% 76.06%
300 16 93.96% 75.31% 94.78% 76.18%
500 16 93.98% 75.54% 94.73% 76.66%
2563 N/A 94.11% 74.34% N/A

ImageNet

Naturally Trained
Model

10 64 53.90% 23.00%
50 48 77.10% 28.50%
100 16 88.40% 32.40%
200 16 89.50% 32.80%
300 16 89.30% 34.80%
500 16 92.10% 34.10%
2563 N/A 94.50% 27.50%

N/A

Adversarially
Trained Model

10 64 62.60% 7.50%
50 48 85.30% 11.20%
100 16 92.80% 12.00%
200 16 94.00% 13.30%
300 16 94.20% 14.10%
500 16 94.80% 16.00%
2563 N/A 96.40% 5.20%

TABLE II: Results on MNIST, Fashion-MNIST, CIFAR-10, GTSRB and ImageNet with data-specific pixel discretization. We

derive codes via density estimation. k and r are hyper-parameters used to find the codes. k = 256 in MNIST and Fashion-MNIST

and k = 2563 in CIFAR-10, GTSRB and ImageNet mean we use all possible codes in the input space, that is we don’t discretize

images.

486

Fig. 1: Results on MNIST and Fashion-MNIST using 2 codes under 100 steps attack. The method significantly improves

robustness on naturally pre-trained model and adversarially pre-trained model.

(a) (b)

Fig. 2: Results on GTSRB and ImageNet. (a) Results on GTSRB using 50 codes under 40 steps attack. On the naturally

trained model, our method could improve its robustness. However, there is little improvement in robustness on the adversarially

pretrained model. (b) The results on ImageNet using 300 codes under 10 steps attack. The method slightly improves robustness

on either naturally pre-trained models or adversarially pre-trained models.

parameters of the code construction Algorithm 1, in particular,

the number of codewords k. Here, we study the relationship

between number of codewords and accuracy and robustness.

Table II shows the results on MNIST, Fashion-MNIST, CIFAR-

10, GTSRB and ImageNet dataset. For MNIST and Fashion-

MNIST, we only report results using 2 codewords since we can

achieve very good accuracy and robustness using 2 codewords.

For other dataset, we report results on a range of k.
From the results, we can know without attacks, high

accuracies can be achieved with only a few number of

codewords (e.g., 100), especially when models are retrained.

On naturally trained models, with fewer codewords, we gain

more robustness. This is because the distances between the

codewords are larger and it is harder for the attacker to change

the discretization results. On adversarially trained models, an

increasing number of codewords leads to better robustness. This

is different from the naturally trained case, potentially because

the the data points are further away from the decision boundary

of adversarially trained models, and thus increasing number

of codes does not make it easier for the attacker to change

the discretization outcome while giving more representativity

487

Fig. 3: Results on CIFAR-10 using 50 codes under 40 steps attack. (a) On the naturally trained model, the method could

improve its robustness. On the adversarially trained model, there is little improvement so we omit the plot. Instead, we plot the

adversarial gap underlying this failure. (b) Adversarial gap phenomenon on CIFAR-10. When we adversarially retrain the model

on discretized images, we can achieve nearly 100% robustness in training but no higher than 50% in test. This is referred to as

an adversarial generalization gap [22].

Dataset Base Model k
Pre-trained Re-trained

MNIST
Naturally Trained Model

Accuracy Robustness Accuracy Robustness
2 98.81% 75.43% 98.99% 80.66%

Adversarially Trained Model 2 98.17% 97.20% 98.50% 92.20%

Fashion-MNIST
Naturally Trained Mode 2 98.85% 76.42% 99.00% 81.23%

Adversarially Trained Model 2 98.14% 97.21% 98.52% 92.72%

CIFAR-10
Naturally Trained Model 300 92.73% 8.56% 93.91% 17.08%

Adversarially Trained Model 300 86.97% 46.68% 87.53% 47.11%

GTSRB
Naturally Trained Model 300 97.31% 14.61% 97.39% 15.02%

Adversarially Trained Model 300 93.98% 75.56% 95.06% 76.46%

ImageNet
Naturally Trained Model 300 92.30% 33.80%

N/A
Adversarially Trained Model 300 94.90% 12.20%

TABLE III: Results on MNIST, Fashion-MNIST, CIFAR-10, GTSRB and ImageNet with data-specific pixel discretization. We

derive codes via k-medoids. k is the number of medoids.

leading to better results. This also means that discretization

does not lead to significantly change in the robustness. This

is confirmed by observing that adversarially trained models

without discretization can get 45.60% robustness on CIFAR-10.

This is further investigated in Section V.

Using k-Medoids. Finally, we also try k-medoids algorithm

for generating the codebook. As mentioned, using �2 or �∞
distances leads to similar performance as �1, so we report only

the results for �1 in Table III. As is quite clear from the table,

the results are on par with the results when using the density

estimation algorithm. With MNIST and Fashion-MNIST, this

is somewhat obvious as both algorithms select codewords at

or close to 0 and 1. With other dataset, while not so obvious,

the accuracy and robustness still remain similar to those with

the codebook construction algorithm via density estimation.

V. ANALYSIS OF RESULTS

In this section we address the following question: when
does pixel discretization work? Experimental results show that

the pixel discretization defense methods can achieve strong

performance on the MNIST data set and alike, but fail on

more complex data sets, such as CIFAR-10 and ImageNet. A

better understanding of the conditions under which the simple

framework will succeed can help us identify scenarios where

our technique is applicable, and also provide insights on how

to design better defense methods.

We aim at obtaining better insights into its success by the

pursuing two lines of studies. First, we propose a theoretical

model of the distribution of the pixels in the images and

then prove that in this model the pixel discretization provably

works. Second, inspired by our theoretical analysis, we propose

a method to compute a certificate for the performance of the

defense method on given images and a given adversarial budget.

488

This certificate is the lower bound of the performance for any
attacks using a given adversarial budget. If the certified robust

accuracy is high, then it means that the defense is successful

for any attack within the budget, not just for existing. This is

much desired in practice, especially considering that new and

stronger attacks are frequently recently proposed for DNNs.

The certificate, as a lower bound, also allows a rough estimation

of the performance, when combined with the robust accuracy

under the currently available attacks which is an upper bound.

1) An idealized model and its analysis: To garner additional

insights, we propose and analyze an idealized model under

which we can precisely analyze when the adversarial robust-

ness can be improved by pixel discretization method using

codewords constructed by Algorithm 1.

In the center of our analysis is a generative model for images,

i.e., a probabilistic model of the distributions of the images.

Roughly speaking, in this model, we assumes that there exists

some “ground-truth” codewords that are well separated, and the

pixels of the images are slight perturbations of these codewords,

and thus form well separated clusters. This idealized model

of the images are directly inspired by the known clustering

structure of the pixels in the MNIST data set, i.e., most pixels

from MNIST are either close to 1 or close to 0. Given such

a clustering structure, the codeword construction algorithm

(Algorithm 1) can find codewords that are good approximations

of the ground-truth codewords, and the adversarial attacks

cannot change the discretization results much. In summary,

our analysis results suggest the following: Suppose that data

is good in the sense that it can be “generated” using some

“ground-truth” codewords that are sufficiently well separated;

then, as long as we can find a ν-approximation for the ground

truth codewords and we have a base model F that is robust

with respect to the ν-budget, it follows F (T (·)) is immune

to any adversarial attack with a small budget ε ≤ 5ν, thus
providing a boost of adversarial robustness. Or in other words,

pre-processing provides a 5x boost on adversarial robustness.

We now present details.

An idealized generative model of images. Each image x is

viewed as a d-dimensional array (a typical image of width

W and height H can be flattened into an array of dimension

W ×H). Suppose each pixel x[i] is 3-dimensional vector of

discrete values in [K]. Assume that there is a set of ground-truth

codewords C∗ = {c∗1, . . . , c∗k}, where the codewords c∗i ∈ [K]3

lies in the same space as the pixels. Also, assume that the

codewords are well separated so that ‖c∗i − c∗j‖ ≥ Γ for some

large Γ.
Now we specify the generative process of an image. Each

image is generated in two steps, by first generating a “skeleton

image” u where each pixel is a codeword, and then adding

noise to the skeleton. We do not make assumptions about the

distribution of the label y. Formally,

1) u is generated from some distribution over (C∗)d, where

the marginal distributions satisfy

1

d

∑
j∈[d]

Pr(uj = c∗i) =
1

k
, ∀i ∈ [k].

2) x[i] = u[i] + ζi, where ζi takes valid discrete values so

that x[i] ∈ [K]3, and

‖ζi‖ ≤ Γ/8, and Pr[‖ζi‖ = t] = α exp(−t2/σ2)

where t takes valid discrete values, σ is a parameter, and

α is a normalization factor.

We would like to make a few comments about our generative

model. First, the assumption on the skeleton u is very mild,

since the only requirement is that the probability of seeing any

codeword is the same 1/k, i.e., randomly pick a pixel in u and

it is equal to any codeword with the same probability. This

is to make sure that we have enough pixels coming from any

codeword in the training data, so this condition can be relaxed

to 1
d

∑
j∈[d] Pr(uj = c∗i) ≥ εc for a small εc. We set εc = 1/k

for simplicity of the presentation.

For the second step of the generative process, the assumptions

that the noise ζi takes discrete values and that ‖ζi‖ ≤ Γ/8
are also for simplicity. The actually needed assumption is that

with high probability, the noise is small compared to Γ, the
separation between the ground-truth codewords.

Quantifying robustness. We now prove our main theoretical

result in the idealized model.

As a first step, we first show that the codewords constructed

are quite close to the ground-truth. Formally, we say that a

set of codewords {c1, . . . , ck} is a ν-approximation of C∗ if

for any i, ‖ci − c∗i ‖ ≤ ν. For the above generative model,

one can show that the codewords found by Algorithm 1 are

ν-approximation of the ground truth C∗.
Lemma 1. Let N denote the number of pixels in the training
set. For any δ > 0, if Γ > 16ν where ν is defined as in
Proposition 1, then with probability at least 1− δ, Algorithm 1
with r = 2ν outputs a set of codes C = {c1, . . . , ck} such that
‖ci − c∗i ‖ ≤ ν, ∀i.
Proof. Let x denote a pixel in the generated images. We have

for any i, Pr[x = c∗i] ≥ α/k, and for any c such that ‖c−c∗i ‖ ≥
ν for all i, Pr[x = c] ≤ α exp(−ν2/σ2). By Hoeffding’s

inequality [23, Section 2.6], with probability at least 1− δ, the
empirical estimations satisfy

P̂r[x = c∗i] ≥ α/k − γ,

P̂r[x = c] ≤ α exp(−ν2/σ2) + γ.

Then P̂r[x = c∗i] > P̂r[x = c]. Note that r = 2ν and Γ > 16ν,
so for each c∗i , Algorithm 1 picks a code from the neighborhood

around c∗i of radius ν exactly once. This completes the proof.

Our main result, Proposition 1, then follows from Lemma 1.

To state the result, let us call a transformation G to be a

ν-code perturbation of C∗ if given any skeleton u, G(u)
replaces any c∗i in it with a code c′i satisfying ‖c′i − c∗i ‖ ≤ ν.
With this definition we show that, on an image attacked with

adversarial budget ε ≤ 5ν, our discretization T will output a

ν-code perturbation on u. Lemma 1 then leads to the following

proposition (proof is straightforward).

489

Proposition 1. Assume the idealized generative model, and
Γ > 16ν where

ν = σ

√
log

1

1/k − 2γ/α
, γ =

√
4

N
log

K

δ
, (1)

where N is the number of pixels in the training dataset. Assume
r = 2ν in Algorithm 1. Then for any ε ≤ 5ν,

Pr(x,u,y)[F (T (z)) = y for any ‖z− x ‖ ≤ ε]

≥ min
G

Pr(x,u,y)[F (G(u)) = y]

with probability at least 1 − δ, where the minimum is taken
over all ν-code perturbation G.

Essentially, this proposition says that one can “reduce”

defending against 5ν adversarial attacks to defending against

ν-code perturbations G. Therefore, as long as one has a base

model F that is robust to small structured perturbation (i.e.,

the ν-code perturbation), then one can defend against any 5ν
adversarial attacks, which is a significant boost of robustness.

Indeed, we observed that the intuition is consistent with the

experimental results: the method gives better performance using

an adversarially trained F (·), than a naturally trained F , on

structured data like MNIST.

This analysis also inspires the following simple approach

for computing a certificate of the robust accuracy for a set of

codewords on given images and a given adversarial budget.
2) Certification for discretization defense: The analysis

shows that the method succeeds when the adversarial attack

cannot cause significant changes after discretization, and the

base model is robust to the slight change in the discretized

image. In fact, the intuition is also applicable to general cases

beyond the idealized model. In particular, one can empirically

check if such conditions are met when the images, the base

model, and the adversarial budget are all given. This observation

then gives our algorithm for computing the certificate for the

defense method.

Now we formally derive the certificates for the defense.

Given the codewords C = {c1, c2, . . . , ck} used in the pixel

discretization, for a pixel x[i], let c∗(x[i]) denote its nearest

code in C, and define

C(x[i]) = {c : ‖x[i]− c‖ < ‖c∗(x[i])− x[i]‖+ 2ε} (2)

where ε is the adversarial budget.

Then after perturbation δ bounded by ε, the distance between

the perturbed pixel x[i] + δ and c∗(x[i]) is

‖x[i] + δ − c∗(x[i])‖ ≤ ‖x[i]− c∗(x[i])‖+ ‖δ‖
≤ ‖x[i]− c∗(x[i])‖+ ε

by the triangle inequality. On the other hand, the distance

between the perturbed pixel x[i] + δ and any c �∈ C(x[i]) is

‖x[i] + δ − c‖ ≥ ‖x[i]− c‖ − ‖δ‖
≥ ‖x[i]− c‖ − ε.

By the definition of C(x[i]), we know that

‖x[i]− c‖ − ε > ‖x[i]− c∗(x[i])‖+ ε.

So after perturbation, the pixel x[i] + δ can only be discretized

to a code in C(x[i]).
Then all possible outcomes of the discretization after

perturbation are

S(x) = {z = (z[1], . . . , z[d]) : z[i] ∈ C(x[i])}. (3)

This then leads to the following local certificate for a given

image, and global certificate for the whole distribution.

Local certificate. For a data point (x, y), if for any z ∈ S(x)
we have F (z) = y, then it is guaranteed that x is correctly

classified by F (T (·)) to y even under the adversarial attack

with ε-budget. Formally, let IF (x, y) be the indicator that

F (z) = y for all z ∈ S(x), then
IF (x, y) = I[F (z) = y, ∀z ∈ S(x)]

≤ I[F (T (z)) = y for any ‖z− x ‖ ≤ ε], (4)

so IF (x, y) is a lower bound on the robust accuracy for this

data point. It serves as a local certificate for (x, y).
Global certificate. Define s = E(x,y)∼D[IF (x, y)]. Then

clearly, we have

s ≤ Pr
(x,y)∼D

[F (T (z)) = y for any ‖z− x ‖ ≤ ε],

so s serves as a lower bound for the robustness accuracy of

the defense on the whole data distribution.

Of course, computing the exact value of s is not feasible,

as it requires access to the true data distribution. Fortunately,

this certificate s can be easily estimated on a validation set of

data points. Even with a medium number of samples we can

compute an estimation ŝ∗ that is with high probability a close

lower bound of s. Formally, applying a standard concentration

bound (in particular, the Hoeffding’s inequality) leads to the

following.

Proposition 2. Let ŝ be the fraction of IF (x, y) = 1 on a set
V of m i.i.d. samples from the data distribution. Then with
probability at least 1− δ over V ,

Pr
(x,y)∼D

[F (T (z)) = y for any ‖z− x ‖ ≤ ε]

≥ ŝ∗ :=

(
1−

√
1

2m
log

1

δ

)
ŝ.

Note that computing the certificate needs enumerating S(x)
that can be of exponential size. However, when the pixels are

well clustered, most of them are much closer to their nearest

code than to the others, and thus will not be discretized to

a new code after perturbation, i.e., |C(x[i])| = 1. Then S(x)
is of small size and the certificate is easy to compute. This

is indeed the case on the MNIST data, which allows us to

compute the estimated certificate ŝ in our experiments.

3) Certifying robustness on datasets: Here we compute the

certificate derived above on real world data sets, including

MNIST and others. It is expected that the certificate can

be computed in reasonable time on well structured data like

MNIST, while it may not be efficiently computed or provide

no useful lower bound for other less structured data sets.

490

ε b Unable Success(ŝ) Fail ŝ∗
0.00 0 0.0% 98.1% 1.9% 96.61%
0.05 30 0.43% 97.43% 2.14% 95.95%
0.10 30 1.3% 96.43% 2.27% 94.97%
0.15 26 29.18% 69.01% 1.81% 67.96%
0.20 25 74.38% 24.96% 0.66% 24.58%
0.25 25 89.48% 10.37% 0.15% 10.21%
0.30 25 95.67% 4.31% 0.02% 4.24%

TABLE IV: Certificate results on MNIST for different adversar-

ial budget ε. For computational reasons, we set a threshold b,
and if |S(x)| > 2b where S(x) is defined in Eqn (3), we report

it as an Unable case. ŝ and ŝ∗ are defined in Proposition 2.

Fig. 4: Certificate results on MNIST for the codewords

constructed by Algorithm 1, compared to the empirical result

without defense (nat_pre), and the empirical result with defense

(disc_adv_pre). We plot two certificate results: estimated

certificate on test images ŝ, and global certificate ŝ∗, as defined

in Proposition 2. Also see Table IV for the detailed numbers.

MNIST Certificate. We compute the estimated certificate (ŝ
in in Proposition 2) on 10000 test images of MNIST for the

codewords constructed by Algorithm 1. We also compute the

global certificate (ŝ∗ in Proposition 2) for the same set of

codewords, where the failure probability δ is set to be 0.01.

For computational reasons we set up a threshold b and for

x with |S(x)| > 2b where S(x) is defined in (3), we report

Unable and treat them as failure cases when computing the

certificates.

Our results are provided in Table IV, and exact values of

ŝ and ŝ∗ are compared with experimental results in Figure 4.

There exists some methods to compute estimated certificate

robustness, like [24], [25], [26]. The state-of-art estimated

certificate robustness on MNIST under �∞ perturbations with

ε = 0.1 is 94.18% [25], with a fairly sophisticated method.

Our discretization defense, which is much simpler and more

efficient, gives a better estimated certificate robustness of

96.43%. This demonstrate the effectiveness of this simple

certificate method. It also verifies the analysis for our idealized

generative model of images, providing positive support for the

conclusion that in the presence of well separated clusters of

pixels, the pixel defense method on a good base model can

successfully defend the adversarial attacks.

A. How hard is a dataset to defend?

The discretization defenses against adversarial attacks are

effective only for some datasets (e.g, MNIST). In the last

section we analyzed why on datasets like MNIST our method

can succeed. But it is also interesting and can help improve

the method if we can understand why our techniques fail on

other datasets and quantify how far they are to the conditions

for the success. In this section, we propose metrics for these

purposes and provide empirical results using these metrics.

Before formally defining these metrics, let us first describe

the concrete context for using these metrics to show the level

of hardness for defense. These include the intuition about the

base model, and our goal for using the metrics.

First, let F denote our base model that is naturally trained.
The fact that they fail miserably under adversarial attacks

with small adversarial budgets suggests that such models have

“peculiar behaviors”. Concretely, for any input feature vector

x, we define its robust radius with respect to F and �p norm,

δF,p(x), as

δF,p(x) = sup
δ
{∀x′, ‖x′−x ‖p ≤ δ, F (x′) = F (x)}.

In other words, δF,p(x) is the largest radius (in �p-norm),

under which F still gives consistent predictions around x.
The fact that the base model is vulnerable to small adversarial

perturbations can then be formalized as the following statement:

Vulnerability of natural models: For most points x in the
domain, δF,p(x) is small (“infinitesimal”).

Now let T denote the discretization preprocessing algorithm,

which takes as input x, and outputs another feature vector z =
T (x) (of the same dimensionality), and the final classification

is F (z) = F (T (x)). Our goal is the following:

Goal: Arguing that it will be very hard to come up with a
T that works for the naturally trained F , except for trivial
situations.

The intuition is that the base model F is peculiar while

the discretization is “regular” (i.e., the discretized image is a

product of the same discretization scheme on each of its pixel).

The restriction on the discretization, when facing the peculiarity

of the base model, prevents simultaneously getting a good

accuracy and getting consistent output in the neighborhood of

the input data.

To get the intuition, consider the following intentionally

simplified setting: each image has only one pixel taking values

in [0, 1]. Divide [0, 1] into m many intervals [(i− 1)/m, i/m]
for 1 ≤ i ≤ m, and the images in the i-th interval belong to

class 0 if i is even, and belong to class 1 if i is odd. Now

discretize with k codewords. When m is much larger than k,
no matter where we place the codewords, the accuracy will

not be good: if Ic denotes the set of images discretized to the

codeword c, then we know that many intervals with different

491

classes will fall into the same Ic’s, resulting in bad accuracy

for any classifiers on top of the discretized images. On the

other hand, if k is comparable to m, the distance between the

codewords will be small and the attacker can easily change

the discretized outcome by perturbing the image from one Ic
to another Ic′ . Therefore, the fracture decision boundary of the

data and the regularity of the discretization combined together

can prevent obtaining at the same time good accuracy and

unchanged predictions w.r.t. adversarial perturbations.

Now let us provide a more detail argument below.

1) An argument based on equivalence classes: We think of

T as creating equivalence classes, where x ∼T x′ if T (x) =
T (x′), that is, they are discretized to the same output. Now,

given an �p-norm adversary with adversarial budget ε, for each
input x, we can consider the set of equivalence classes obtained

in the ball Np(x, ε). In mathematical terms this is exactly:

Np(x, ε) = Np(x, ε)/ ∼T

where ∼T denotes the equivalence relation induced by T .

Now, we want to argue the following:

1) For a naturally trained model F , Np(x, ε) is tiled with

infinitesimal balls of different classification labels given

by the base model.

2) In order to keep accuracy, we tend to create small

equivalence classes with ∼T . In other words, |Np(x, ε)|
is large (i.e. there are lot of equivalence classes in

a neighborhood around x). In fact, not only we can

assume that it is large, but we can assume that Np(x, ε)
subtracting the equivalence class of x has a large volume
(under uniform measure say).

3) If the above two hold, then it is now very likely that

there is a small ball, with a different label, that lies in a

different equivalence class than x. In other words, if we

denote x as the equivalence class of x in Np(x, ε)/ ∼T ,

then that there is x′ such that x �= x′, and F (x) �= F (x′),
and we can easily find an adversarial example.

2) An instantiation for �∞ norm: We note that for �∞ norm,

it is very easy to construct N∞(x, ε). Specifically, suppose
that the input feature vectors are d-dimensional. Then for

each “pixel” x[i], we can consider the discretization of x[i]
under T , i.e., T (x[i]) (note that we are abusing the notation

and now consider the effect of T on a single pixel). So for

every i, we can consider the equivalence classes created at

dimension i for the interval: Ci = {T (z) | ‖z − x[i]‖ ≤ ε}.
Then all the equivalence classes we can create for an image

x are simply:
∏d

i=1 Ci. Therefore, the |N∞(x, ε)| becomes∏d
i=1 |Ci|. We can thus either use this number as a measure

of how fragmented the ball is under T , reflecting how difficult

it is to do the defense.

We would like to measure the quantity
∏d

i=1 |Ci| for the

datasets we use. In Figures 5a and 5b, we plot the CDF

(cumulative distribution function) of 1
d logk

∏d
i=1 |Ci| for both

MNIST and CIFAR-10, where k is the number of codes (2 for

MNIST and 300 for CIFAR-10 and d is the number of pixels

in one image (282 for MNIST and 322 for CIFAR-10).

For MNIST, the measure of the median figure is about 0.06,

which means the median
∏d

i=1 |Ci| is approximately 47. Out

of 784 pixels of an image, in the median case only 47 can be

perturbed to a different equivalence class. This shows why it

is easy to achieve robustness on MNIST. For CIFAR-10, the

measure for median figure is about 0.27, which implies that

the number of equivalence classes
∏d

i=1 |Ci| is 300276, which

is a huge number and supports the hypothesis that defending

CIFAR-10 will be hard using pixel discretization techniques.

Furthermore, this equivalence class argument also gives an

explanation to the adversarial gap phenomenon (see Figure 3):

adversarial training only helps to adjust the labels of the

equivalence classes of the perturbations of the training data

points, which could be quite different from those classes of

the perturbations of the test data points due to the peculiar

decision boundary. This then leads to high robust accuracy in

training time but low in test time.

B. How Separable is a Dataset?

One key requirement for pixel discretization is separability.

In a separable dataset, pixel clusters are far from each other

such that perturbation of a pixel in one cluster cannot make

the resultant pixel to move to another cluster. This is directly

related to the equivalence classes argument discussed above.

We visualize MNIST and CIFAR-10 datasets to study if they

can have separable clusters. Figure 6 presents visualizations

of CIFAR-10 pixel neighborhoods. Each axis in the plots

corresponds to a color channel. There are about 4 million

distinct pixels in the CIFAR-10 training dataset. These being

too many pixels, we plot only samples of these pixels in

this figure. Figure 6a shows 40,000 pixels on the plot,

with each axis representing a color channel. We assume a

colorscale range of [0, 1]. The color of each pixel x is given

by |N∞(x, ε)|/maxx |N∞(x, ε)|, where N∞(x, ε) is the �∞
neighborhoods of radius ε around x. For these figures we use

ε = 8. Note that the maximum neighborhood size is over 1.5

million and there are many pixels with neighborhood sizes in

hundreds or a few thousands and hence most of pixels have

colors close to zero.

To overcome the long-tail distribution of neighbor-

hood sizes, we also do a log scale plot in Figure 6b,

this time using a sample of 400,000 pixels and using

log |N∞(x, ε)|/ logmaxx |N∞(x, ε)| to color the pixels on a

colorscale of [0, 1]. As can be seen from both these plots,

there does not appear to be a clear, separable clustering
in the CIFAR-10 dataset. Note that the line x = y = z,
which corresponds to gray colors on RGB, is lighter-colored,

implying large neighborhoods in this area. In fact, we have

verified that our density estimation-based algorithm selects

codewords along this line. Clearly, these codewords are neither

very representative of pixels far from this line nor do they lead

to the separability property for the clusters around them.

We also visualize the MNIST pixels. Figure 7 presents a

histogram of MNIST pixels. As we can see, most of the pixels

are black or highly white and very few are in between. This

leads to very good separability as there are very few pixels

492

Fig. 5: CDFs measuring the hardness of defending images in MNIST and CIFAR-10.

(a) Linear scale (b) Log scale

Fig. 6: 3D visualization of CIFAR-10 pixels colored by their neighborhood size. (a) A sample of 40,000 pixels color-coded by

their neighborhood sizes in the dataset. (b) A sample of 400,000 pixels color-coded by their neighborhood sizes on logscale.

We normalize the colorscale of the two figures using maximum neighborhood size and log of maximum neighborhood size

respectively. The maximum neighborhood size is 1,567,080.

that can actually be perturbed to another cluster or equivalence

class.

VI. COMMENTS

In the previous section, we developed a theory for evaluating

pixel discretization defenses and presented empirical results on

CIFAR-10 showing why it is unlikely for pixel discretization

techniques to successfully defend against adversarial perturba-

tions on this dataset. While our argument until now was applied

on color-depth reduction and the data-specific discretization

in Section IV, the same argument can be applied on other

discretizations such as the thermometer encoding defense by

Buckman et al. [6].

The thermometer encoding defense encodes each pixel value

x[i, j, l] as an L-dimensional vector whose k-th component is

1 if x[i, j, l] > k/L and 0 otherwise. Thermometer encoding

essentially rounds a pixel to one of L levels like color-depth

reduction but provides a fancier encoding, which was intended

to break gradient descent. Therefore, the equivalence classes

argument that we developed in Section V-A can be directly

applied here. As our results in Figure 5 have shown, CIFAR-10

will be quite difficult to defend with this technique (the exact

statistics on the number of equivalence classes will differ in

493

Fig. 7: A histogram of pixel values in MNIST. Note that y-axis
is in log scale.

this technique and will also depend on L).

We also observe that most preprocessing defenses to date

have been developed in an ad hoc manner, with the only

evaluation being how well the defense works against currently-

known adversarial attacks. A better lower-bound performance

of a preprocessing defense may be obtained by quantifying

how much the preprocessing technique results in the reduction

of equivalence classes for an image for a given dataset. For

pixel discretization, this quantification is somewhat easy as

the equivalence classes at the pixel level can be lifted to

equivalence classes at the image level. For other preprocessing

techniques, the specifics of those techniques will dictate how

this quantification is done.

In general, few preprocessing techniques may provide

robustness without significantly affecting accuracy to a naturally

trained model. A preprocessor T is useful only if it increases

the robustness radius (Section V-A) so that δF (T (·)),p(x) =
δF,p(T (x)) > δF,p(x). However, this requirement may result

in sacrificing some natural examples that have a label different

from x but are nonetheless mapped by T to x, resulting in a

sacrifice of accuracy. This is similar to the equivalence class

argument in the previous section. Therefore, the design of

the preprocessing defense has to be conservative so as to not

sacrifice accuracy too much. A stark example of this is in the

accuracy-robustness results of pixel discretization on CIFAR-

10 and a naturally-trained model in Table II. Formalizing this

intuition for broader class of preprocessing defense methods

is left for future work.

VII. RELATED WORK

a) Adversarial settings in machine learning: A number of

adversarial settings exist in machine learning. The primary ones

are training-time attacks, model inversion, model extraction,

and test-time attacks. Training time attacks poison the training

data resulting in learning a wrong machine learning model.

The attacker may skew the classification boundary to their

favor by introducing bad data labeled as good. Data pollution

attacks have been studied long before other attacks became

relevant [27]. In a model inversion attack, the attacker learns

information about data used to train the machine learning

model [28], [29], [30]. A similar but stronger setting is the

membership inference attack where the attacker identifies

whether an individual’s information was present in the training

data [31]. Model extraction attacks attempt to steal a model

simply through blackbox queries [32]. All these settings are

different from the setting that this paper focuses on, namely,

small perturbations to natural inputs to get them classified

differently than original inputs.

b) Adversarial perturbations: Adversarial perturbation

attacks usually work by starting with a natural example and

solving an optimization problem to derive an adversarial

example that has a different label. A number of techniques

with varying settings and efficacy have been developed [33],

[1], [34], [35], [12], [15]. The BPDA attack [10] is helpful

when the gradient of a part of the model is not available so

that gradient descent is not possible. The attack overcomes the

problem by using the gradient of a differentiable approximation

of the function whose gradient is not available. We use this

attack as the pixel discretization defense is not differentiable.

c) Defenses against adversarial perturbations: Most

defenses can be divided into adversarial training defenses and

preprocessing defenses. Currently, the most successful way

to defend against adversarial attacks is adversarial training,

which trains the model on adversarial examples. This training

in general imparts adversarial robustness to the model. The

state-of-the-art in this area is Madry et al. [15].

Several other defenses fall under the category of preprocess-

ing defenses. These defenses are model agnostic, not requiring

changing the model, and rather simply transform the input

in the home of increasing adversarial robustness. We have

already discussed pixel discretization works of Xu et al. [5] and

Buckman et al. [6]. Other techniques include JPEG compres-

sion [2], total variance minimization [3], image quilting [3],

image re-scaling [7], and neural-based transformations [8],

[9], [4]. Total variance minimization randomly selects a small

set of pixels from the input and then constructs an image

consistent with this set of pixels while minimizing a cost

function representing the total variance in the image. The idea is

that adversarial perturbations are small and will be lost when the

image is simplified in this way. Similar ideas are behind JPEG

compression. Image quilting on the other hand uses a database

of clean image patches and replaces patches in adversarial

images with the nearest clean patches. Since the clean patches

are not adversarial, the hope is that this approach will undo

any adversarial perturbation. Image rescaling and cropping can

change the adversarial perturbations’ spatial position, which

is important for their effectiveness. Neural-based approaches

train a neural network to “reform” the adversarial examples.

Most of these techniques above have been explicitly broken

by the BPDA attack and others are also believed broken under

BPDA attack. We also presented compelling evidence why pixel

discretization cannot work for complex dataset. We believe

494

that our intuition can be extended to many other classes of

preprocessing techniques and argue that they would not work

under strong adversarial settings.

VIII. CONCLUSION

With all preprocessing defenses developed to date against

test-time adversarial attacks on deep learning models called into

question by recently proposed strong white box attacks, we take

a first step towards understanding these defenses analytically.

For this study, we focused on pixel discretization techniques,

and, through a multi-faceted analysis, showed that if the base

model has poor adversarial robustness, pixel discretization

by itself is unlikely to improve robustness on any but the

simplest datasets. Our study may pave the way for a broader

understanding of the robustness of preprocessing defenses in

general and guide how to design future preprocessing defenses.

IX. ACKNOWLEDGMENTS

This material is partially supported by Air Force Grant

FA9550-18-1-0166, the National Science Foundation (NSF)

Grants CCF-FMitF-1836978, SaTC-Frontiers-1804648 and

CCF-1652140 and ARO grant number W911NF-17-1-0405.

Any opinions, findings, conclusions, and recommendations

expressed herein are those of the authors and do not necessarily

reflect the views of the funding agencies. Yingyu Liang

would also like to acknowledge that support for this research

was provided in part by the Office of the Vice Chancellor

for Research and Graduate Education at the University of

Wisconsin-Madison with funding from the Wisconsin Alumni

Research Foundation.

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[2] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the effect of
jpg compression on adversarial images,” arXiv preprint arXiv:1608.00853,
2016.

[3] C. Guo, M. Rana, M. Cissé, and L. van der Maaten, “Countering adversar-
ial images using input transformations,” arXiv preprint arXiv:1711.00117,
2017.

[4] D. Meng and H. Chen, “Magnet: a two-pronged defense against
adversarial examples,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 135–147.

[5] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” in Proceedings of the 2018 Network
and Distributed Systems Security Symposium (NDSS), 2018.

[6] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer
encoding: One hot way to resist adversarial examples,” in Submissions
to International Conference on Learning Representations, 2018.

[7] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adversarial
effects through randomization,” arXiv preprint arXiv:1711.01991, 2017.

[8] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pixelde-
fend: Leveraging generative models to understand and defend against
adversarial examples,” arXiv preprint arXiv:1710.10766, 2017.

[9] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting
classifiers against adversarial attacks using generative models,” in
International Conference on Learning Representations, vol. 9, 2018.

[10] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
arXiv preprint arXiv:1802.00420, 2018.

[11] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of handwritten
digits,” http://yann.lecun.com/exdb/mnist/.

[12] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Security and Privacy (SP), 2017 IEEE Symposium on.
IEEE, 2017, pp. 39–57.

[13] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Tech. Rep., 2009.

[14] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in 6th European Machine Learning and Data Mining
Conference (ECML/PKDD), 2013.

[15] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[16] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[17] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs.
computer: Benchmarking machine learning algorithms for traffic sign
recognition,” Neural Networks, no. 0, pp. –, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608012000457

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[19] A. Kurakin, I. Goodfellow, and S. Bengio, “Nips 2017:
Defense against adversarial attack,” https://www.kaggle.com/c/
nips-2017-defense-against-adversarial-attack, 2017.

[20] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning.” in
AAAI, vol. 4, 2017, p. 12.

[21] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel,
“Ensemble adversarial training: Attacks and defenses,” arXiv preprint
arXiv:1705.07204, 2017.

[22] L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Mądry,
“Adversarially robust generalization requires more data,” arXiv preprint
arXiv:1804.11285, 2018.

[23] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 2013.

[24] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in International Conference on Computer Aided Verification. Springer,
2017, pp. 97–117.

[25] J. Z. Kolter and E. Wong, “Provable defenses against adversarial
examples via the convex outer adversarial polytope,” arXiv preprint
arXiv:1711.00851, 2017.

[26] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against
adversarial examples,” arXiv preprint arXiv:1801.09344, 2018.

[27] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif, “Misleading
worm signature generators using deliberate noise injection,” in Security
and Privacy, 2006 IEEE Symposium on. IEEE, 2006, pp. 15–pp.

[28] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart,
“Privacy in pharmacogenetics: An end-to-end case study of personalized
warfarin dosing.” in USENIX Security Symposium, 2014, pp. 17–32.

[29] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1322–1333.

[30] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton, “A methodology for
formalizing model-inversion attacks,” in Computer Security Foundations
Symposium (CSF), 2016 IEEE 29th. IEEE, 2016, pp. 355–370.

[31] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Security and
Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017, pp. 3–18.

[32] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis.” in USENIX Security
Symposium, 2016, pp. 601–618.

[33] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
Security and Privacy (EuroS&P), 2016 IEEE European Symposium on.
IEEE, 2016, pp. 372–387.

[34] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[35] S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), no. EPFL-CONF-218057, 2016.

495

