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Abstract—We present EZPC, a secure two-party computation
(2PC) framework that generates efficient 2PC protocols from
high-level, easy-to-write programs. EZPC provides formal cor-
rectness and security guarantees while maintaining performance
and scalability. Previous language frameworks, such as CBMC-
GC, ObliVM, SMCL, and Wysteria, generate protocols that use
either arithmetic or boolean circuits exclusively. Our compiler
is the first to generate protocols that combine both arithmetic
and boolean circuits for better performance. We empirically
demonstrate that the performance of the protocols generated by
EZPC is comparable to or better than (in some cases upto 19x)
their state-of-the-art, hand-crafted implementations, while EZPC
protocols also outperform their boolean circuits only counterparts
by as much as 25x.

I. INTRODUCTION

Today it is hard for developers to program secure applica-

tions using cryptographic techniques. Typical developers lack

a deep understanding of cryptographic protocols, and cannot

be expected to use them correctly and efficiently on their

own. Ideally, a developer would declare the functionality in

a general purpose, high-level programming language and a

tool, e.g. a compiler, would generate an efficient protocol

that implements the functionality securely, while hiding the

cryptography behind-the-scenes.

This paper presents such a framework for Secure Two-party

Computation (2PC), a powerful cryptographic technique that

allows two mutually distrusting parties to compute a publicly

known joint function of their secret inputs in a way that

both the parties learn nothing about the inputs of each other

beyond what is revealed by their (possibly different) outputs.

For example, 2PC can be used for secure prediction ([1], [2],

[3], [4], [5]), where one party (the server) holds a proprietary

classifier to predict a label (e.g., a disease, genomics, or spam

detection), and the other party (the client) holds a private input

that it wants to run the classifier on. Using 2PC guarantees that

the server learns nothing about the client’s input or output, and

that the client learns nothing about the classifier, beyond what

is revealed by the output label.

To understand the state-of-the-art, let us consider an exam-

ple underlying many secure prediction algorithms. Suppose

Alice wants to write a 2PC protocol to securely compute

wTx > b. Here w (a vector) and b (a scalar) constitute the

server classifier, and x is the client’s input vector. Further, ·T
is the matrix transpose operator, and wTx denotes the inner

product of wT and x. Alice has the following options.

She can program the computation in one of the sev-

eral programmer friendly, domain-specific languages (such

as Fairplay [6], Wysteria [7], ObliVM [8], CBMC-GC [9],

SMCL [10], Sharemind [11], [12] etc.) that would automat-

ically compile it to a 2PC protocol. However, all of these

frameworks use cryptographic backends that take as input the

computation expressed either as a boolean circuit ([13], [14])

or as an arithmetic circuit ([15], [16], [17]). The efficiency of

the generated 2PC protocol is thus bounded by the efficiency

of representing the computation in one of these representa-

tions. For instance, multiplication of two �-bit integers can

either be expressed as a boolean circuit of size O(�2), or as an

arithmetic circuit with 1 multiplication gate. It is well-known

that boolean circuits are not suitable for doing arithmetic

operations such as integer multiplications but are unavoidable

for boolean operations such as comparison [18], [19], [20],

[5], [4], [21]. For better efficiency, Alice would ideally like to

compute wTx using an arithmetic circuit, and the comparison

with b using a boolean circuit. Unfortunately, none of the

above frameworks support combinations of arithmetic and

boolean circuits, and using different tools for different parts

of the computation is cumbersome and error-prone.

Alternatively, Alice can use a tool such as ABY (Demmler

et al. [18]) that allows the computation to be expressed as a

combination of arithmetic and boolean circuits. However, here,

the programming interface is quite low-level: the programmer

is required to first manually split the computation into arith-

metic and boolean components, and then write the circuits

for all the components manually, including the appropriate

interconversion gates between them. Although some of this

work can be automated [22], [23], [19], [20], [24], writing

large computations at a circuit level in such frameworks

can be tedious (a sentiment echoed by Demmler et al. [18]

themselves).

A third option for Alice is to earn a PhD in cryptography,

and design and implement specialized, efficient 2PC protocols

(similar to [1], [2], [4], [25]) for her tasks.

A. Our Contributions

This paper presents EZPC1, the first “cryptographic cost

aware” compiler that generates efficient and scalable 2PC

1Read as “easy peasy”, stands for Easy 2 Party Computation. The imple-
mentation is available at https://github.com/mpc-msri/EzPC.



1 uint w[30] = input1(); uint b = input1();
uint x[30] = input2();

3 uint acc = 0;
for i in [0 : 30] { acc = acc + (w[i] × x[i]); }

5 output2((acc > b) ? 1 : 0) //only to party 2

Fig. 1: EZPC code for wTx > b

protocols using combinations of arithmetic and boolean cir-

cuits. EZPC source language is a simple imperative language

absent of any cryptographic details. The compiler is backed

by a formal model that enables it to choose arithmetic or

boolean representations for different parts of the program,

while automatically inserting interconversion gates as neces-

sary. In addition to guiding the compiler, the formal model

also provides strong correctness and security theorems. Our

comprehensive evaluation shows that the automatically gener-

ated protocols have performance comparable to or better than

the custom, specialized protocols from previous works [1], [2],

[4], [5], [26], [25]. In fact, these papers (and others) cite the

inefficiency of generic 2PC as the major motivation behind the

design of specialized protocols. Using EZPC, we empirically

demonstrate that generic 2PC implementations are much more

efficient at ML tasks than what they were believed to be.

Below we describe the salient features of EZPC.

1) Ease of programming: EZPC source programs are ideal

functionalities that describe “what” computation needs to be

done, rather than “how” to do it. In particular, the programmer

writes the high-level computation without thinking about the

underlying cryptographic details. For example, Figure 1 shows

an EZPC source program for wTx > b. The program is quite

similar to what a programmer might write in C++ or Java. The

simplicity of the language comes with the usual benefits: it is

easily accessible to the developers, there are fewer avenues

for making mistakes, developers don’t bear the burden of

getting cryptographic details right, code optimizations can be

left to the compiler, and it is easy to maintain and modify the

programs. Needless to say, frameworks that expose low-level

circuit APIs to the programmer do not enjoy these benefits.

2) Cryptographic cost aware compiler: The EZPC com-

piler compiles a source program to a hybrid computation

consisting of public and secret parts. In the example above,

for instance, EZPC compiler realizes that the array index i

is public, and generates non-cryptographic code for the array

accesses. Further, within the secret parts, EZPC compiler is

aware of the cryptographic costs of arithmetic and boolean rep-

resentations of the source language operators. Based on these

costs, the compiler automatically picks arithmetic or boolean

representations for different sub-parts, and generates the cor-

responding circuits along with the required interconversion

gates. The outcome is an efficient 2PC protocol combining

arithmetic and boolean circuits, while the programmer remains

oblivious of all these cryptographic details. Indeed, EZPC is

the first such cryptographic cost aware compiler.

3) Scalability (secure code pipelining): 2PC tools often

do not scale to large functionalities. The reason is that most

2PC implementations use a circuit-like representation as an

intermediate language. Hence, the largest compute that can

be done securely is upper-bounded by the largest circuit that

can fit in the machine memory2. This is a show-stopper for

applications like secure machine learning, secure prediction,

etc. that operate on large data. EZPC addresses the scalability

concern using a novel technique that we call secure code

pipelining (or SCP in short). At a high level, we decompose the

original program into a sequence of small sub-programs, which

are then sequentially processed by EZPC, while appropriately

threading the intermediate outputs along. While this addresses

the scalability concern (i.e., the circuit sizes of the sub-

programs are now small enough to fit in the memory), we still

have to address the security risk of revealing the intermediate

outputs. EZPC comes to the rescue: it automatically inserts the

required instrumentation to ensure security of these interme-

diate outputs (Section V). As we show in our evaluation, SCP

allows us to program large applications in EZPC. Furthermore,

all prior pipelining approaches work at circuit level and are

intimately tied to garbled circuits. SCP operates at source code

level and this design ensures compatibility with arbitrary 2PC

protocols.

4) Formal guarantees: We prove formal correctness and

security theorems for our compiler. The correctness theorem

relates the “trusted third party” semantics of a source program

and the “protocol” semantics (the distributed 2PC semantics

that relies on circuit evaluation) of the corresponding compiled

program. The theorem guarantees that for all well-typed source

programs, the two semantics successfully terminate (e.g.,

there are no array index out-of-bounds errors) with identical

observable outputs. For the security theorem, we formally

reduce the security of our scheme against semi-honest (or

“honest but curious”) adversaries to the semi-honest security

of the 2PC backend. The theorem provides protection against

side-channels arising from conditionals and memory access

patterns. We also prove a formal security theorem against

semi-honest adversaries for SCP (Section IV and Section V).

5) Evaluation: We have implemented EZPC using

ABY [18] as the cryptographic backend. We compare EZPC

with prior compilers in Section I-D and with specialized

protocols in Section VII. We evaluate EZPC by implement-

ing a wide range of secure prediction benchmarks including

linear and naı̈ve Bayes classifiers, decision trees, deep neural

networks, state-of-the-art classifiers from Tensorflow [27] and

BONSAI [28], and also matrix factorization from Nikolaenko

et al. [25]. Our results demonstrate three key points. First,

EZPC makes it convenient for general programmers to write

2PC protocols. The lines of EZPC code are comparable to the

lines of C++ or Java code required to describe the functionality

to be computed. Second, the performance of the protocols

generated by EZPC is comparable to or better than (up to 19x)

2Using swap and disk space is feasible but it causes huge slowdown
(Figure 15).



their state-of-the-art, hand-crafted implementations. Finally,

we demonstrate the usefulness of SCP by implementing an

application that requires more than 300 million gates (Sec-

tion VI and Section VII).

Summary. EZPC is carefully designed to enable non-

cryptographers (and cryptographers alike) to write efficient

2PC protocols for ML algorithms. With the novel combination

of language design, cryptographic cost aware compiler, and

scalability through SCP, programmers can program in a high-

level language absent of all the cryptographic details, while the

compiler chooses the best circuit representation (boolean or

arithmetic) for different parts of the program and also handles

interconversions between them – all this in a provably secure

manner. Without EZPC, implementing 2PC protocols for the

wide array of ML algorithms from Section VII would have

been a Herculean task and has never been done.

B. Formalization

The need for formalization in, and proving correctness of, a

compiler for secure computation, cannot be overemphasized.

Systems such as CBMC-GC [9] and HyCC [29], claim to

translate ANSI-C to cryptographic protocols without a formal

model, which can be quite problematic to the user. It is

unknown whether the system would support a specific feature

of ANSI-C or not. As a result, the user of such a system

is left to guess which language features she can or cannot

use. For example, none of these works mention how they

handle function pointers, undefined behaviors, and many other

vagaries of ANSI-C, but remark that they handle “some”

pointer arithmetic [29]. Hence, a user who writes code in these

systems using pointers, would have to speculate whether her

code is supported or not: the declaration int x(int[2])
is probably supported but char (*(*x[3])())[5] is

probably not, even though both are natural in ANSI-C. In

addition, it is unknown what would happen if a user were to

erroneously write a program that dereferences arrays beyond

their bounds.

On the other hand, EZPC provides a clean programming

interface and everything the user can express in the language

is completely supported. When the user writes an incorrect

program, the type checker guides her to a correct imple-

mentation. In particular, the compiler catches all the buffer

overflow errors and reports them at compile time. The formal

semantics completely specify how each program is evaluated

and there are no surprises. Although proving correctness of

the compilation process has distinct advantages, formalization

is non-trivial when multiple protocols interact with each other.

This work provides the first such formal model, majorly

differentiating itself from informally specified systems like

HyCC [29] that leave users to guesswork.

C. Related Work

Compilers such as Wysteria [7], ObliVM [8], and CBMC-

GC [9] use backends with single representations (either

boolean or arithmetic), and so the challenges associated

with multiple representations and interconversions are absent.

Fig. 2: EZPC toolchain

Moreover, as shown in Section I-D, they perform poorly

on ML tasks that involve a mix of arithmetic and boolean

computations. Before ABY [18], several works have proposed

combining secure computation protocols based on homomor-

phic encryption and Yao’s garbled circuits (e.g. [3], [30], [31],

[32], [33], [25], [34], [35]), and some have also developed

tools that allow writing such combinations (e.g. [22], [23],

[19], [20], [24]). However, as Demmler et al. [18] observe, due

to the high conversion cost between homomorphic encryption

and Yao’s garbled circuits, these combined protocols do not

gain much performance over a single protocol. Additionally,

these prior works are low-level and provide informal languages

or libraries that lack formal semantics and static guarantees.

We provide a detailed survey of related work in Section VIII.

D. Empirical comparison with prior frameworks

We show that it is critical to use a mix of arithmetic

and boolean circuits for performance. Previous works have

observed that Yao’s garbled circuits do not scale to machine

learning examples that require a large number of multiplica-

tions [18], [19], [20], [5], [4], [21]. Indeed, this is one of the

main drivers behind the development of various specialized

2PC protocols in previous works [5], [4], [1] (we compare

against them in Section VII) . Here, we empirically demon-

strate the performance benefits of mixed computations over

boolean-only compute by comparing with the state-of-the-art

Yao-based compilers CBMC-GC [9] and ObliVM [8].

The largest benchmark in CBMC-GC is a multiplication of

two 8 × 8 matrices for which it generates about a million

gates and takes about 10 seconds to run. In contrast, EZPC

uses arithmetic sharing, generates 1218 gates, and runs in less

than 0.1 seconds. On the same benchmark, EZPC is over two

orders of magnitude faster than ARM2GC [36]. When we

tried multiplying two 20 × 20 matrices with CBMC-GC, it

timed out after 5 hours. Our benchmarks require much bigger

computations (e.g., multiplying a 64 × 576 matrix with a

576× 1024 matrix). Unlike CBMC-GC, ObliVM can scale to

larger benchmarks through Yao-pipelining [37]. We evaluated

the program in Figure 1 with vectors of lengths varying

between 103 and 106 using both EZPC and ObliVM. EZPC

evaluates the inner-product in arithmetic and, empirically, is

at least 25x faster than ObliVM on the same hardware.



1 //circuit builders for arithmetic and boolean
Circuit ∗ ycirc = s[S_YAO] → GetCircuitBuildRoutine();

3 Circuit ∗ acirc = s[S_ARITH] → GetCircuitBuildRoutine();
. . .

5 if(role == SERVER) {
//Put gates to read w and b

7 } else { //role == CLIENT
//Put gates to read x

9 }

11 for(uint32_t i = 0; i < 30; i = i+ 1) { //acc = wTx
share ∗ a_t_0 = acirc → PutMULGate(a_w[i], a_x[i]);

13 a_acc = acirc → PutADDGate(a_acc, a_t_0);
}

15

//convert acc and b from arithmetic to boolean
17 share ∗ y_acc = ycirc → PutA2YGate(a_acc);

19 share ∗ y_pred = ycirc → PutGTGate(y_acc, y_b);
uint32_t one = 1;

21 share ∗ y_1 = ycirc → PutCONSGate(one, bitlen);
uint32_t zero = 0;

23 share ∗ y_0 = ycirc → PutCONSGate(zero, bitlen);
share ∗ y_t = ycirc → PutMUXGate(y_pred, y_1, y_0);

25

share ∗ y_out = ycirc → PutOUTGate(y_t, CLIENT);
27 party → ExecCircuit();

29 if(role == CLIENT){ //only to the client
uint32_t_o = y_out → get_clear_value〈uint32_t〉();

31 }

Fig. 3: EZPC compiler (partial) output for Figure 1

II. EZPC OVERVIEW

Figure 2 shows an overview of the EZPC toolchain. We

give a brief overview of each of these phases below.

Source language. Consider the example wTx > b from

Section I, where w and b are the server’s input (a classifier)

and x is the client’s input vector. Figure 1 shows the EZPC

code for this example. The code first reads the server’s (resp.

client’s) input using input1 (resp. input2). It then uses a for

loop to compute acc, the inner product of w and x. Finally,

the code compares acc with b and outputs this only to the

client using output2.

EZPC source language is a simple, imperative language

that enables the programmers to express 2PC computations

in terms of their “ideal” functionalities, without dealing

with any cryptographic details. The language provides multi-

dimensional arrays with public indices, conditional expres-

sions (the ternary ? : operator), for loops, if statements,

and syntax for input/output from each party.

EZPC compiler. EZPC compiler takes as input a source

program and produces a C++ program as output. Figure 3

shows (partial) output code for the example in Figure 1 –

this is also how a program written directly in ABY would

look like. The output program contains party-specific code for

inputs and outputs (role == SERVER and role == CLIENT),

and common code for the computation.

The compiler splits the input program into public and secret
components. The public components translate into regular C++

code, while the secret components translate into API calls

into our 2PC backend (ABY). For example, in Figure 1, the

EZPC compiler realizes that the array index i in the inner

product loop is public, and hence the access locations need

not be hidden. Therefore, it compiles the for loop into a C++

for loop that will be executed in-clear (line 11).

Within the secret components, the EZPC compiler is “cryp-

tographic cost aware”, and appropriately picks either arith-

metic or boolean circuit representations for different sub-

components. For example, the compiler realizes that the inner

product computation is more efficient in the arithmetic rep-

resentation, and therefore it builds the corresponding circuit

using the arithmetic circuit builder acirc (lines 12 and 13).

On the other hand, since the comparison with b, and the con-

ditional expression (the ’? :’ operator) computation are more

efficient in the boolean representation, the EZPC compiler

uses the Yao circuit builder ycirc to build the corresponding

comparison and multiplexer circuits (lines 19 to 24).

Using both arithmetic and boolean representations requires

conversions between them. The EZPC compiler also instru-

ments these conversion gates accordingly. For example, on

line 17, the compiler converts a acc to a boolean represen-

tation, before it is input to the comparison and multiplexer

circuits.

Circuit generation and evaluation. The next step is to com-

pile the output C++ code and execute it. Doing so evaluates

away the public parts of the program, including the array

accesses, and generates a circuit comprising of arithmetic and

boolean gates, with appropriate conversion gates. The circuit

is then evaluated using a 2PC protocol.

Advantages of EZPC. We can now concretely see the ad-

vantages of EZPC. Unarguably, it is easier for a developer

to program and get the code right in Figure 1, rather than

the code in Figure 3. EZPC also enables the programmer

to easily modify their code, while the compiler takes care

of efficiency. For example, consider in Figure 1 a change

from multiplication to bitwise-or in the for loop. It turns

out that in this case, it is more efficient to do both the

addition and bitwise-or using boolean circuits (if the addition

is done using arithmetic, the conversion cost starts to take

over). In EZPC, the programmer simply needs to change

one operator in the source code, and the compiler generates

efficient code that uses boolean addition. Whereas, if the

programmer was writing ABY code, she either has to sacrifice

performance, or would have to revisit many parts of the circuit

and change them. In summary, EZPC raises the level of

abstraction for the programmer, and generates efficient 2PC

protocols automatically, while its metatheory provides strong

correctness and security guarantees.

Comparison with ABY. We have evaluated against handwrit-

ten ABY code for the examples in the ABY repository and

EZPC has comparable performance. However, these examples

are not representative of practical ML tasks. Writing sophis-

ticated ML applications such as neural networks in ABY is a

very tedious and nearly-impossible engineering task even for

crypto experts – automating the same is our main contribution.



III. CRYPTOGRAPHIC COST AWARENESS

In this section, we explain various heuristics that EZPC

uses to split the computation in a program into arithmetic and

boolean parts. Since finding an optimum split is an NP-hard

problem (the predicates in if statements can have arbitrary

non-linear arithmetic), EZPC uses heuristics that perform well

in practice (Section VII).

The split between arithmetic and boolean requires knowing

the cost of individual operations (addition, multiplication, in-

terconversion between arithmetic and boolean, etc.). Demmler

et al. [18] document these costs by running microbenchmarks

for basic operations and interconversions (Figures 2 and 3 in

[18]). EZPC heuristics are based on their results.

Converting an arithmetic share to a boolean share requires

computing a garbled circuit for addition. The size of this

circuit grows linearly in the bit-width of the inputs. Similarly,

converting from boolean to arithmetic requires computing a

garbled circuit for subtraction, which is also linear. Since

each conversion has roughly the same cost as a boolean

addition, EZPC performs addition using a boolean circuit if

the operands are boolean shared, else it uses an arithmetic

circuit.

For multiplication, EZPC always chooses an arithmetic

circuit, as the cost of a boolean multiplication is much higher

than the cost of converting the operands from boolean to

arithmetic, performing an arithmetic multiplication, and then

converting the result back to boolean (∼ 9x more time and

∼ 20x more communication in a LAN setting when using

garbled circuits3 ). The size of a boolean multiplication circuit

is quadratic, which causes this performance gap. Roughly,

multiplying two 64-bit integers using arithmetic sharing re-

quires only 2 multiplications, whereas Yao requires at least

4096 AES operations in the online phase. Since this gap is

quite large, we believe that this choice is optimal for realistic

network settings. Finally, EZPC chooses boolean circuits for

all the operations lacking arithmetic support in ABY, e.g.

comparisons, bit-shifts, etc. We provide more implementation

details in Section VI.

IV. FORMAL DEVELOPMENT

In this section we describe the syntax of EZPC and prove

correctness and security of the compiler. We first formalize our

source language (an example program being Figure 1), and

its runtime semantics. This semantics describes the “trusted

third party” execution semantics of the source programs and

generates observations corresponding to the values revealed

to the parties. We then present the compilation rules that

type check a program in the source language and generate a

program in the intermediate language (an example program

being Figure 3). Next, we present the runtime semantics

of our intermediate language that evaluates to a circuit by

“evaluating away” the public parts and the arrays. Crucially,

this step does not have access to the secret inputs; those are

processed by our distributed circuit semantics that models the

3Using boolean computation based on [14] was slower than garbled circuits.

2PC backend. Evaluation in this distributed setting involves

the parties running an interactive protocol. This step, like

the source semantics, emits observations corresponding to the

values revealed to the parties.

To prove the correctness of EZPC, we prove that the

observations in source semantics and the distributed circuit

semantics are identical (Theorem 1). We combine this correct-

ness theorem and the security of the 2PC backend to prove

security of the protocols generated by EZPC (Theorem 2). We

present the representative parts of our formalization.

Base type σ ::= uint | bool
Type ψ ::= σ | σ[n]

Constant c ::= n | � | ⊥
Expression e ::= c | x | e1 × e2 | e1 > e2 | e1 ? e2 : e3

| [ei]n | x[e] | inj
Statement s ::= ψ x = e | x := e | for x in [n1, n2] do s

| x[e1] := e2 | if(e, s1, s2) | out e | s1; s2
| while x ≤ n do s

Fig. 4: Source language syntax

Source language. Our language is a simple imperative lan-

guage shown in Figure 4. Types ψ consist of the base types

σ, and arrays of base types σ[n], where n is the array length.

Expressions e in the language include the integer constants

n, bool constants � and ⊥, variables x, binary operations

e1 × e2 and e1 > e2, conditionals e ? e1 : e2, array literals

[ei]n
4, and array reads x[e]. The expression inj denotes input

from party j. The statements s in the language comprise of

variable declarations, assignments, for loops, array writes,

if statements, and sequence of statements. The statement

out e denotes revealing the value of e to the parties. The

while statement is an internal syntax that is not exposed

to the programmer. The full EZPC language has additional

features that are discussed in Section IV-A. The readers who

are interested in using the compiler as a black box can move

directly to Section IV-A without loss of continuity.

Source semantics. The runtime semantics for the source

language is shown in Figure 5. These semantics show how

a “trusted third party” computes the outputs when given the

inputs of both the parties. Values v, runtime environments ρ,

and observations O are defined as follows:
Value v ::= c | [ci]n

Runtime environment ρ ::= · | ρ, x 	→ v
Observation O ::= · | c,O

Values consist of constants and array of constants, runtime

environment ρ maps variables to values, and observations are

sequences of constants.

The judgment ρ � e ⇓ v denotes the big-step evaluation of

an expression e to a value v under the runtime environment ρ.

Rule (E-VAR) looks up the value of x in the environment. Rule

(E-MULT) inductively evaluates e1 and e2, and returns their

product. Rule (E-READ) evaluates an array read operation. It

first evaluates x to an array value [ci]n1 , and e to a uint value

n. It then returns cn, the n-th index value in the array, provided

4We write e (and similarly for other symbols) to denote a sequence of
expressions. The length of the sequence is usually clear from the context.



ρ 
 e ⇓ v ρ 
 s ⇓ ρ1;O

E-VAR

ρ 
 x ⇓ ρ(x)

E-MULT

∀i ∈ {1, 2}. ρ 
 ei ⇓ ni

ρ 
 e1 × e2 ⇓ n1 × n2

E-COND

ρ 
 e ⇓ c
c = � ⇒ e3 = e1
c = ⊥ ⇒ e3 = e2

ρ 
 e3 ⇓ c3

ρ 
 e ? e1 : e2 ⇓ c3

E-READ

ρ 
 x ⇓ [ci]n1

ρ 
 e ⇓ n n < n1

ρ 
 x[e] ⇓ cn

E-ARR

∀i ∈ [n]. ρ 
 ei ⇓ ci

ρ 
 [ei]n ⇓ [ci]n

E-INP

ρ 
 inj ⇓ c

E-DECL

ρ 
 e ⇓ v

ρ 
 ψ x = e ⇓ ρ, x 	→ v; ·

E-LOOPT
ρ(x) > n

ρ 
 while x ≤ n do s ⇓ ρ; ·
E-LOOPI

ρ(x) ≤ n
ρ 
 s ⇓ ρ1;O1

ρ2 = [ρ1]dom(ρ)[x 	→ ρ1(x) + 1]
ρ2 
 while x ≤ n do s ⇓ ρ3;O2

ρ 
 while x ≤ n do s ⇓ ρ3;O1, O2

E-IF

ρ 
 e ⇓ c
c = � ⇒ s = s1
c = ⊥ ⇒ s = s2
ρ 
 s ⇓ ρ1;O

ρ 
 if(e, s1, s2) ⇓ ρ1;O

E-FOR

ρ, x 	→ n1 
 while x ≤ n2 do s ⇓ ρ1;O

ρ 
 for x in [n1, n2] do s ⇓ ρ1 − {x};O

E-OUT

ρ 
 e ⇓ c

ρ 
 out e ⇓ ρ; c

Fig. 5: Source semantics

n < n1, the length of the array. Rule (E-INP) evaluates to

some constant c denoting party j’s input. An array input can

be written in the language as [inj ]n, which can then evaluate

using the rule (E-ARR) (the notation ∀i ∈ [n] is read as ∀i ∈
{0 . . . n − 1}). The remaining rules are straightforward, and

are elided for space reasons.

The judgment ρ � s ⇓ ρ1;O represents the big-step evalu-

ation of a statement s under environment ρ, producing a new

environment ρ1 and observations O. Rule (E-DECL) evaluates

the expression e to v, and returns the updated environment

ρ, x 	→ v, with empty observations. The for statements evalu-

ate through the internal while syntax. Specifically, the rule (E-

FOR) appends ρ with x 	→ n1, evaluates whilex ≤ n2 dos to

ρ1;O, and returns ρ1−{x} (removing x from ρ1) and O. Rule

(E-LOOPI) shows the inductive case for while statements,

when ρ(x) ≤ n. The rule evaluates s, producing ρ1;O1. It

then restricts ρ1 to the domain of ρ ([ρ1]dom(ρ)) to remove the

variables added by s, increments the value of x, and evaluates

the while statement under this updated environment. Rule (E-

LOOPT) is the termination case for while, when ρ(x) > n.

Finally, the rule (E-OUT) evaluates the expression, and adds

its value to the observations.

Intermediate language. Figure 6 shows the intermediate

language of our compiler. The syntax follows that of the

source language, except that the types and operators are

labeled. A label � can be the public label P or one of the

secret labels A or B, which denote arithmetic and boolean

respectively. Types τ are then labeled base types σ� and

arrays of labeled base types σ�[n]. Most of the expression

forms ẽ are same as e, except that the binary operators, and

Secret label m ::= A | B
Label � ::= P | m
Type τ ::= σ� | σ�[n]

Expression ẽ ::= c | x | ẽ1 ×� ẽ2 | ẽ1 >� ẽ2 | x[ẽ] | [ ẽi]n
| ẽ ?� ẽ1 : ẽ2 | inmj | 〈� �m〉 ẽ

Statement s̃ ::= τ x = ẽ | x := ẽ | · · · | s̃1; s̃2 | . . .

Fig. 6: Intermediate language syntax

the conditional forms are annotated with labels �. Looking

ahead, the label determines how the operators are evaluated:

P-labeled operators are evaluated in-clear, A-labeled operators

generate arithmetic circuits, and B-labeled operators generate

boolean circuits. The form 〈��m〉 ẽ denotes coercing ẽ from

label � to label m.

Source to intermediate compilation. We provide the compi-

lation rules in Figure 7. We present the rules in a declarative

style, where the rules are non-syntax directed, and the labels

� are chosen non-deterministically. Section VI describes the

label inference scheme in our implementation.

The judgment Γ � e : τ � ẽ, where Γ maps variables

x to types τ , says that under Γ, e (in the source language)

compiles to ẽ (in the intermediate language), where ẽ has type

τ . Rules (T-UINT) and (T-BOOL) assigns the label P to the

constants, as the constants are always public. Rule (T-MULT)

compiles a multiplication to either a public multiplication

(×P ), or a secret arithmetic multiplication (×A). As our

compiler is cryptographic cost aware, it never compiles the

multiplication to boolean multiplication ×B (Section VI). In a

similar manner, rule (T-GT) compiles e1 > e2 to either public

comparison, or secret boolean comparison >B (and never >A).

The rule for conditional (T-COND) has two cases: when the

conditional expression e is of type boolP , both the branches

have a base type σ�1 , for an arbitrary �1, and the conditional is

compiled to a public conditional, whereas when the conditional

expression has type boolB, �1 is also B, and the conditional

is compiled to a secret conditional using a boolean circuit.

Note that we restrict the type of the branches to be of base

type. Rule (T-READ) type checks an array read. It checks that

the array index e is public, and uses a static bounds checking

judgment Γ |= e < n to prove that the array index is in

bounds 5. Secret dependent array accesses can be encoded

using the conditional expressions (see Section VI). Rule (T-

INP) picks a label m for the input. Finally, the rule (T-SUB)

is the subsumption rule that coerces an expression of type σ�

to an expression of type σm using the coerce expression. It

is important for security that the secrets cannot be coerced to

public values and indeed (T-SUB) does not permit it.

Judgment Γ � s : τ � s̃ | Γ1 compiles a statement s
resulting in the statement s̃ and type environment Γ1. Rule

(T-DECL) picks a label �, and adds the binding for x to

the environment (if ψ = σ, ψ� = σ�, else if ψ = σ[n],
ψ� = σ�[n]). Rule (T-ASSIGN) looks up the type of x in

Γ and compiles e to ẽ of same type. Note that in this rule we

5Section VI discusses our implementation of this check.



Γ 
 e : τ � ẽ Γ 
 s� s̃ | Γ1

T-UINT

Γ 
 n : uintP � n

T-BOOL

c = � ∨ c = ⊥
Γ 
 c : boolP � c

T-INP

Γ 
 inj : σm � inmj

T-MULT

∀i ∈ {1, 2}. Γ 
 ei : uint
� � ẽi

(� = P) ∨ (� = A)

Γ 
 e1 × e2 : uint� � ẽ1 ×� ẽ2

T-GT

∀i ∈ {1, 2}. Γ 
 ei : uint
� � ẽi

(� = P) ∨ (� = B)
Γ 
 e1 > e2 : bool� � ẽ1 >� ẽ2

T-READ

Γ 
 x : σ�[n]� x

Γ 
 e : uintP � ẽ
Γ |= e < n

Γ 
 x[e] : σ� � x[ẽ]

T-COND

Γ 
 e : bool� � ẽ

∀i ∈ {1, 2}. Γ 
 ei : σ
�1 � ẽi

� = P ∨ (� = B ∧ �1 = B)
Γ 
 e ? e1 : e2 : σ�1 � ẽ ?� ẽ1 : ẽ2

T-ARR

∀i ∈ [n]. Γ 
 ei : σ
� � ẽi

Γ 
 [ei]n : σ�[n]� [ ẽi]n

T-SUB

Γ 
 e : σ� � ẽ

Γ 
 e : σm � 〈� �m〉 ẽ

T-DECL

Γ 
 e : ψ� � ẽ

Γ 
 ψ x = e� ψ� x = ẽ | Γ, x : ψ�

T-ASSGN

Γ(x) = σ�

Γ 
 e : σ� � ẽ

Γ 
 x := e� x := ẽ | Γ
T-FOR

Γ, x : uintP 
 while x ≤ n2 do s� while x ≤ n2 do s̃ |
Γ 
 for x in [n1, n2] do s� for x in [n1, n2] do s̃ | Γ

T-WRITE

Γ 
 x : σ�[n]� x

Γ 
 e1 : uintP � ẽ1
Γ 
 e2 : σ� � ẽ2

Γ |= e1 < n

Γ 
 x[e1] := e2 � x[ẽ1] := ẽ2 | Γ

T-OUT

Γ 
 e : σm � ẽ

Γ 
 out e� out ẽ | Γ
T-IF

Γ 
 e : boolP � ẽ
∀i ∈ {1, 2}. Γ 
 si � s̃i |

Γ 
 if(e, s1, s2)� if(ẽ, s̃1, s̃2) | Γ

T-SEQ

Γ 
 s1 � s̃1 | Γ1

Γ1 
 s2 � s̃2 | Γ2

Γ 
 s1; s2 � s̃1; s̃2 | Γ2

T-WHILE

Γ(x) = uintP Γ 
 s� s̃ | x /∈ modifies(s)

Γ 
 while x ≤ n2 do s� while x ≤ n2 do s̃ | Γ

Fig. 7: Source compilation

restrict the type of variable x to be of base type. Rule (T-FOR)

adds the loop counter x to Γ at type uintP , and delegates

type checking to the while form. Rule (T-OUT) types the

expression e at some secret label m. Rule (T-IF) checks that

the conditional expression is public (for secret conditional

expressions see Section IV-A), and rule (T-SEQ) sequences the

type environments. Finally, the typing rule for the (internal)

while form ensures that x is mapped in Γ at type uintP , and

that the statement s does not modify x (x /∈ modifies(s)) –

this is necessary for ensuring termination.

As mentioned earlier, the intermediate language models the

code, such as in Figure 3, output by our compiler. Next, a

program in the intermediate language is evaluated to a circuit

that can be executed in the distributed runtime later. The

evaluation to a circuit computes away the public parts of the

Wire id w
Circuit gate g ::= w | inmj | mult g1 g2 | gt g1 g2

| mux g g1 g2 | 〈� �m〉 g | c
Sub-circuit ṽ ::= g | [gi]n

Circuit χ ::= · | bind g w | out g | χ1;χ2

Fig. 8: Circuits syntax

program and also flattens the arrays so that the circuits are

unaware of the array structure. Crucially, this phase of the

semantics does not have access to the secret inputs. Below,

we first provide the language for the circuits followed by the

evaluation rules.

Evaluation to Circuits. Figure 8 shows the syntax of circuits.

A wire id range w denotes a set of circuit wires that carry

the runtime value of a variable with a secret label (we will

concretely define these runtime values later as part of the

circuit semantics). Circuit gates g are wires w, input gates

inmj , multiplication gates mult, comparison gates gt, and

multiplexer mux gates, coerce gates 〈� � m〉, and constants.

Sub-circuits ṽ (generated from ẽ) then consist of gates and

arrays of gates. A circuit χ is either empty, bind-ing of a

circuit gate g to wire w, out gate, or a sequence of circuits.

ρ̃ 
 ẽ ⇓ ṽ ρ̃ 
 s̃ ⇓ ρ̃1;χ

S-VAR

ρ̃ 
 x ⇓ ρ̃(x)

S-PMULT

∀i ∈ {1, 2}. ρ̃ 
 ẽi ⇓ ni

ρ̃ 
 ẽ1 ×P ẽ2 ⇓ n1 × n2

S-READ

ρ̃ 
 x ⇓ [wi]n1

ρ̃ 
 ẽ ⇓ n n < n1

ρ̃ 
 x[ẽ] ⇓ wn

S-SMULT

∀i ∈ {1, 2}. ρ̃ 
 ẽi ⇓ gi

ρ̃ 
 ẽ1 ×A ẽ2 ⇓ mult g1 g2

S-SGT

∀i ∈ {1, 2}. ρ̃ 
 ẽi ⇓ gi

ρ̃ 
 ẽ1 >B ẽ2 ⇓ gt g1 g2

S-SCOND

∀i ∈ {1, 2, 3}. ρ̃ 
 ẽi ⇓ gi

ρ̃ 
 ẽ1 ?B ẽ2 : ẽ3 ⇓ mux g1 g2 g3

S-COERCE

ρ̃ 
 ẽ ⇓ g

ρ̃ 
 〈� �m〉 ẽ ⇓ 〈� �m〉 g
S-PCOND

ρ̃ 
 ẽ ⇓ c
c = � ⇒ ẽ3 = ẽ1 c = ⊥ ⇒ ẽ3 = ẽ2

ρ̃ 
 ẽ3 ⇓ ṽ

ρ̃ 
 ẽ ?P ẽ1 : ẽ2 ⇓ ṽ

S-INP

ρ̃ 
 inmj ⇓ inmj

S-DECLC
ρ̃ 
 ẽ ⇓ ṽ

(ṽ = c) ∨ (ṽ = [ci]n)

ρ̃ 
 τ x = ẽ ⇓ ρ̃, x 	→ ṽ; ·

S-DECLCKT

ρ̃ 
 ẽ ⇓ g fresh w

ρ̃ 
 τ x = ẽ ⇓ ρ̃, x 	→ w; bind g w

S-DECLCKTA
ρ̃ 
 ẽ ⇓ [gi]n

∀i ∈ [n]. fresh wi

ρ̃ 
 τ x = ẽ ⇓ ρ̃, x 	→ [wi]n; bind gi wi

S-OUT

ρ̃ 
 ẽ ⇓ g

ρ̃ 
 out ẽ ⇓ ρ̃; out g

S-IF

ρ̃ 
 ẽ ⇓ c
c = � ⇒ s̃ = s̃1
c = ⊥ ⇒ s̃ = s̃2
ρ̃ 
 s̃ ⇓ ρ̃1;χ

ρ̃ 
 if(ẽ, s̃1, s̃2) ⇓ ρ̃1;χ

S-WRITECKT

ρ̃ 
 x ⇓ [wi]n ρ̃ 
 ẽ1 ⇓ n1

n1 < n fresh w ρ̃ 
 ẽ2 ⇓ g
ρ̃1 = ρ̃[x 	→ ([wi]n[n1 	→ w])]

ρ̃ 
 x[ẽ1] := ẽ2 ⇓ ρ̃1; bind g w

Fig. 9: Evaluation of Intermediate Language to Circuit



Figure 9 shows the judgments for the evaluation of the

intermediate language to a circuit. The circuit generation

environment maps variables to sub-circuits:

Circuit generation environment ρ̃ ::= · | ρ̃, x 	→ ṽ

We first focus on the expression evaluation judgment ρ̃ �
ẽ ⇓ ṽ. Rules (S-PMULT) and (S-SMULT) illustrate the

significance of the operator labels. In particular, the rule (S-

PMULT) evaluates a public multiplication ẽ1×P ẽ2 to n1×n2,

similar to the source semantics of Figure 5. In contrast, the

rule (S-SMULT) evaluates a secret multiplication ẽ1 ×A ẽ2
to an arithmetic multiplication gate mult g1 g2. As mentioned

above, the intermediate language expressions generated by our

compiler never have ẽ1 ×B ẽ2, as our compiler is aware that

× is more performant using an arithmetic circuit compared

to a boolean one [18]. Rules (S-PCOND) and (S-SCOND)

are along similar lines. Rule (S-PCOND) evaluates a public

conditional to the sub-circuit from one of the branches, while

the rule (S-SCOND) evaluates to a multiplexer mux gate that

takes as input the sub-circuits from the guard (g1) and both

the branches (g2 and g3). Recall, for performance reasons,

the expressions in the intermediate language generated by our

compiler do not have e1 ?A e2 : e3. Rules (S-COERCE) and

(S-INP) evaluate to coerce and input gates respectively.

Statement evaluation ρ̃ � s̃ ⇓ ρ̃1;χ evaluates a statement s̃
under the environment ρ̃ to produce a new environment ρ̃1,

and a circuit χ. Rules (S-DECLC), (S-DECLCKT), and (S-

DECLCKTA) show the variable declaration cases. Rule (S-

DECLC) shows the case when ẽ evaluates to ṽ, where ṽ is

either a constant or an array of constants. In this case, the

mapping x 	→ ṽ is added to the environment, and the resulting

circuit is empty. When ẽ evaluates to a sub-circuit g, rule (S-

DECLCKT) picks a fresh wire w, adds the mapping x 	→ w to

the environment ρ̃, and outputs the circuit bind g w. The rule

(S-DECLCKTA) is analogous for ẽ evaluating to an array of

sub-circuits. The variable assignment rules (not shown in the

figure) are similar. The rule (S-WRITECKT) shows the case

for writing to an array, where the array contents are secret.

Finally, rule (S-OUT) compiles to an out circuit.

Circuit semantics. Evaluating a program in the intermediate

language produces a circuit to be computed using a distributed

2PC protocol. With our circuit semantics, we model the func-
tional aspect of a 2PC protocol, parametrized by cryptographic

encoding and decoding functions.

During the circuit evaluation, the wire ids w are mapped

to (random) strings b. The semantics of these strings is given

by pairs of encode-decode algorithms, written as Em and Dm

(where m is either A or B). More concretely, Em(c) returns a

pair of strings (b1, b2) with the property that Dm(b1, b2) = c.
The string bj denotes the jth party’s share of c. We assume

that the underlying 2PC protocol instantiates Em and Dm ap-

propriately. For the ABY protocol [18], algorithms (EA,DA)
(resp. (EB,DB)) correspond to the arithmetic (resp. boolean)

secret-sharing and reconstruction algorithms.

ρ̂1, ρ̂2 
 g ⇓ b1, b2 ρ̂1, ρ̂2 
 χ ⇓ ρ̂′1, ρ̂
′
2;O

C-IN

(b1, b2) = Em(c)

ρ̂1, ρ̂2 
 inmj ⇓ b1, b2

C-COERCE

ρ̂1, ρ̂2 
 g ⇓ b1, b2
(b′1, b

′
2) = Em(Dm1 (b1, b2))

ρ̂1, ρ̂2 
 〈m1 �m〉 g ⇓ b′1, b
′
2

C-MULT

∀i ∈ {1, 2}. ρ̂1, ρ̂2 
 gi ⇓ b1i, b2i ni = DA(b1i, b2i)
(b1, b2) = EA(n1 × n2)

ρ̂1, ρ̂2 
 mult g1 g2 ⇓ b1, b2

C-GT

∀i ∈ {1, 2}. ρ̂1, ρ̂2 
 gi ⇓ b1i, b2i ni = DB(b1i, b2i)
(b1, b2) = EB(n1 > n2)

ρ̂1, ρ̂2 
 gt g1 g2 ⇓ b1, b2

C-MUX

∀i ∈ {1, 2, 3}. ρ̂1, ρ̂2 
 gi ⇓ b1i, b2i ci = DB(b1i, b2i)
(c1 = �) ⇒ ((b1, b2) = EB(c2)) (c1 = ⊥) ⇒ ((b1, b2) = EB(c3))

ρ̂1, ρ̂3 
 mux g1 g2 g3 ⇓ b1, b2

C-BIND

ρ̂1, ρ̂2 
 g ⇓ b1, b2
ρ̂′1 = ρ̂1[w 	→ b1] ρ̂′2 = ρ̂2[w 	→ b2]

ρ̂1, ρ̂2 
 bind g w ⇓ ρ̂′1, ρ̂
′
2; ·

C-OUT

ρ̂1, ρ̂2 
 g ⇓ b1, b2
c = Dm(b1, b2)

ρ̂1, ρ̂2 
 out g ⇓ ρ̂1, ρ̂2; c

Fig. 10: Circuit semantics in a distributed runtime

Figure 10 gives the judgments for evaluation of circuits by

the two parties using a 2PC protocol. The circuit environment

is a map from wires to shares:

Circuit environment ρ̂ ::= · | ρ̂, w 	→ b

We use ρ̂j to denote the circuit environment for party j.
We give the judgments ρ̂1, ρ̂2 � g ⇓ b1, b2, and ρ̂1, ρ̂2 �
χ ⇓ ρ̂′1, ρ̂

′
2;O, where O are the observations (similar to source

semantics). The former judgment evaluates a gate under the

environments ρ̂j and generates shares bj of the gate’s output.

Rule (C-IN) evaluates the input gate inmj , and creates the m-

type shares of the value c input by party j. Rule (C-MULT)

illustrates the pattern for evaluating circuit gates g. To evaluate

mult g1 g2, the rule first evaluates g1 to (b11, b21) and g2
to (b12, b22). Shares (b11, b21) are then combined using DA
to n1, and similarly (b12, b22) are combined to n2. The final

output of the mult gate is then EA(n1 × n2). Note that this

is a functional description of how the mult gate evaluates,

of course, concretely n1 and n2 are not observed by the

parties. Rule (C-COERCE) creates the new shares using Em
(the corresponding rule for coercion from P is similar). The

evaluation of bind updates the mapping of w in the input

environments, and the rule (C-OUT) outputs the clear value c
to the observations.

Correctness Theorem. We prove that all well typed programs

always terminate successfully (array indices are always in

bounds, there are no unbounded loops, etc.) and the 2PC

protocol produces the same outputs as the source program.

That is, if a source statement s is well-typed, and compiles

to s̃ in the intermediate language, then s terminates in the

source semantics with observations O, s̃ evaluates to circuit



χ, and χ terminates in the circuit semantics with the same ob-

servations O. Formally, the correctness theorem is as follows

(the environments on the left of � are empty and we elide the

environments on the right of � for brevity):

Theorem 1 (Correctness): ∀ s, s̃, if � s� s̃ | then ∃O,χ,

s.t. � s ⇓ ;O, � s̃ ⇓ ;χ, and � χ ⇓ , ;O.

The proof follows by induction on the compilation deriva-

tion.

Security theorem. The protocols we generate provide

simulation-based security against a semi-honest adversary, in

the framework of [14], [38], [39] and provide provable

security against all side-channel attacks. At a very high level,

in this framework, parties are modeled as non-uniform inter-

active Turing machines (ITMs), with inputs provided by an

environment Z . An adversary A, selects and “corrupts” one of

the parties - however, A still follows the protocol specification.

A interacts with Z that observes the view of the corrupted

party. At the end of the interaction, Z outputs a single bit

based on the output of the honest party and the view of

the adversary. Two different interactions are defined: the real
world and an ideal world. In the real interaction, the parties run

the protocol Π in the presence of A and Z . Let REALΠ,A,Z
denote the distribution ensemble describing Z’s output in this

interaction. In the ideal interaction, parties send their inputs to

a trusted functionality that performs the desired computation

truthfully. Let S (the simulator) denote the adversary in this

ideal execution, and IDEALF,S,Z the distribution ensemble

describing Z’s output after interacting with the ideal adversary

S. A protocol Π is said to securely realize a functionality F
if for every adversary A in the real interaction, there is an

adversary S in the ideal interaction, such that no environment

Z , on any input, can tell the real interaction apart from

the ideal interaction, except with negligible probability (in

the security parameter κ). More precisely, the above two

distribution ensembles are computationally indistinguishable.

We shall assume a cryptographic 2PC backend that securely

implements any circuit χ that is output by our compiler

(see Figure 8). This means that for any well-typed source

program s, let χ be the circuit generated as in Theorem 1.

We assume that there exists a 2PC protocol Π that securely

realizes the functionality χ and let S2pc be the corresponding

simulator (that runs on χ, input of the corrupt party and the

output obtained from trusted functionality for χ). We note that

ABY [18] provides such a protocol Π and simulator S2pc for

all circuits χ output in our framework. We now state and prove

our security theorem.

Theorem 2 (Security): Let s be a well typed program in our

source language that generates a circuit χ (as defined in The-

orem 1). Let protocol Π be the two-party secure computation

protocol that securely realizes χ (as defined above). Then, Π
securely realizes s.

Proof. Our simulator S simply runs our compiler on program

s to obtain χ. It is crucial that this compilation to circuits does

not require the secret inputs of the parties. Next, S sends the

input of the corrupt party to the trusted functionality of s to

obtain outputs O1. Note that O1 is same as the observations

in the source semantics. By Theorem 1, these outputs O1 are

identical to outputs (or observations) O2 of χ under circuit

semantics. Next, S runs S2pc on χ, input of the corrupt party

and O2. From the security of Π, we have that the simulated

view output by S2pc is indistinguishable from the real view.

Hence, the security follows.

A. Additional Features

Though we model only one dimensional arrays above, our

implementation supports multi-dimensional arrays as well.

EZPC programs can have the following operators: addition,

subtraction, multiplication, division by powers of two, left

shift, logical and arithmetic right shifts, bitwise-(and, or, xor),

unary negation, bitwise-negation, logical-(not, and, or, xor),

and comparisons (less than, greater than, equality). Because of

their high cost, integral division and floating-point operators

are not supported natively by EZPC. However, we have

implemented integral division in 30 lines of EZPC, while

the floating-point support in ABY is under active develop-

ment [40].

The formalization above restricts the array indices to be

public and secret predicates are allowed only in multiplexers,

i.e., in the ? : operator and not in “if” statements. These

restrictions can be removed by well-known desugaring trans-

formations. Details of desugaring arrays with secret indices

to arrays with public indices and multiplexers can be found

in [9]. Similarly, see [41] for desugaring “if” statement with

secret predicates to multiplexers. EZPC also has statements

out1 e (resp., out2 e) to reveal value of e to only the first

(resp., second) party. Public inputs, i.e., inputs that are public

to both parties are supported in two ways: either they can

be hardcoded in the program text or they can be supplied

by the parties to their individual protocol implementations at

runtime6 using the in keyword. To summarize, although we

have focused on EZPC’s features that are relevant to machine

learning, we believe EZPC is useful for other applications of

2PC as well.

V. SECURE CODE PIPELINING

In this section, we describe our “secure code pipelining”

(SCP) technique that allows EZPC to execute programs that

require large circuits. The reason to implement SCP is as

follows: when compiling from a high level functionality to a

circuit, the generated circuits, especially for ML applications,

can quite often be larger than the total memory available on

the machines executing the 2PC protocol. The secure protocol

for evaluating this circuit cannot then be generated without

swapping the circuit in and out of the main memory, thereby

causing large slowdowns (see Section VII-B). To avoid this

problem, we use SCP to “split” the high level functionality into

smaller programs that compile into small (mixed arithmetic

and boolean) circuits that can completely fit into the main

memory. These small circuits are then evaluated sequentially,

with proper threading of the intermediate outputs, to evaluate

6Parties provide consistent inputs as we assume semi-honest adversaries
which follow the protocol description.



the entire program. Naturally, care must be taken to ensure that

the partial evaluation of these circuits do not reveal any more

information than the final output of the overall functionality.

Concretely, let s be a program in our source language that

generates a circuit χ. For some programs, the circuit χ can

be larger than the memory size7 and fail to execute. SCP

decomposes the program s into a sequence of smaller EZPC

programs t1, t2, . . . , tk, as described below, such that the

circuit size requirement for each of the ti itself is manageable.

We compile and execute each ti sequentially, feeding the

outputs of ti as state information to ti+1. We prove SCP to be

correct (s and sequential execution of t1, t2, . . . , tk compute

the same functionality) and secure (sequential execution of

t1, t2, . . . , tk does not reveal any more information than s).

Our techniques take inspiration from the idea of pipelining

Yao’s garbled circuits described in FastGC [37]. However,

unlike FastGC, we do not operate at a circuit level and the

scheme itself is independent of the specific 2PC protocol. We

now describe the instrumentation to ensure the security of SCP.

Let s takes (secret) inputs x from Alice and y from Bob

and produces an output z to both parties. Let s1||s2|| . . . ||sk
be a decomposition of s such that the following holds. Define

q0 = ⊥ (the public empty state). For all 1 ≤ i ≤ k − 1,

si takes inputs x, y and qi−1 and outputs state qi. Finally,

sk takes inputs x, y and qk−1 to output z. It is possible

to decompose any program s into such s1||s2|| . . . ||sk. If

EZPC generates circuit χi from si, the parties can execute

χ1, χ2, . . . χk sequentially (in a distributed setting) to obtain

q1, . . . , qk−1, and finally output z. At the ith step, the parties

only need to store information proportional to x, y, qi−1 and

χi (which is much smaller than χ). However, this execution

enables the parties to learn qi (for all 1 ≤ i ≤ k − 1), which

completely breaks the security.

To overcome this problem, we define a sequence of new

programs ti (1 ≤ i ≤ k) as follows. Once again, define q0 =
⊥. Without loss of generality, let all qi be values in some

additive ring (Z,+) (e.g., the additive ring (Z264 ,+), i.e., the

additive ring of integers modulo 264). Let r1, · · · , rk−1 be a

sequence of random values sampled from the same ring (Z,+)
by Alice (in our implementation, all ri values are generated

by a pseudorandom function). Let t1 be the program that takes

as input x, r1 from Alice and y from Bob (and empty state

q0), and runs s1 (as defined above) to compute q1 and then

outputs o1 = q1 + r1 only to Bob8. Alice’s output from t1 is

r1. Next, every ti (2 ≤ i ≤ k − 1) takes as inputs x, ri−1, ri
from Alice and y, oi−1 from Bob, runs si on inputs x, y and

state qi−1 = (oi−1 − ri−1) (where − denotes subtraction in

the ring (Z,+)) and then outputs qi + ri to Bob and ri to

Alice. The last program tk takes inputs x, y, rk−1, ok−1, runs

sk on inputs x, y and state qk−1 = (ok−1− rk−1) and outputs

7In fact, there is an upper limit of 232−1 gates for the circuit size in ABY
but for most machines the memory limit is hit first.

8While the description of the scheme here assumes that the underlying
backend supports only one party receiving output, this is only a simplifying
assumption, and we can easily modify our protocol in the case where both
parties must receive the same output.

z to both parties. Although we have used arithmetic sharing

here, Boolean sharing can be used to achieve the same effect.

Thus, given a decomposition of s into s1||s2|| . . . ||sk,

we can use the construction above to generate programs

t1, t2, . . . , tk, that can be sequentially executed, using the

unmodified underlying 2PC backend. We prove the following

theorem for SCP:

Theorem 3 (Correctness and security of SCP): If

s1||s2|| . . . ||sk is a decomposition of a program s, then there

exists a sequence of programs t1, t2, . . . , tk and protocols

Π1,Π2, . . . ,Πk such that for all i, Πi securely realizes ti and

Π = Π1,Π2, . . . ,Πk securely realizes s.

Proof. Let t1, . . . , tk be the sequence of programs as defined

above corresponding to the decomposition s = s1||s2|| . . . ||sk.

For every 1 ≤ i ≤ k, let Πi be the 2PC protocol output by

our framework for ti. Our construction for programs ti ensures

that if s is well-typed, then for each 1 ≤ i ≤ k, ti is well-

typed. By Theorem 2, Πi, the 2PC protocol that evaluates the

circuit generated by ti, securely realizes ti. That is, for every

1 ≤ i ≤ k − 1, the Πi provides observations ri to Alice

and oi to Bob. Protocol Πk provides observation z to both

Alice and Bob. Finally, since ri and oi (1 ≤ i ≤ k − 1) are

individually uniformly random (in (Z,+), outputs received by

the adversary can be simulated given the final output z.

A. Implementing SCP.

EZPC decomposes the source program s into a sequence

of small programs s1|| . . . ||sk, and then appropriately in-

struments them to produce t1, . . . tk, as detailed above. It

then compiles and executes the k programs t1, t2, . . . , tk
sequentially, freeing up memory usage after execution of each

ti. Automating the decomposition step requires an analysis that

can statically estimate the resource usage of a EZPC program.

Resource analysis of high-level programs is a well-known hard

problem [42] and we describe a heuristic analysis.

To build s1, we consider the longest prefix of s whose

computation size is below the threshold enforced by the

available memory of the machine. If s = s1; sr then we

recurse on sr to obtain s2, . . . , sk. For a program u, to

estimate size(u), we need to consider three important cases:

if u ≡ u1;u2 then size(u) = size(u1) + size(u2); if

u ≡ if(e1, u1, u2) then size(u) = max(size(u1), size(u2));if
u ≡ for i in [n1, n2] dou1 then size(u) = (n2−n1)size(u1).
If (n2−n1)size(u1) is above the threshold then we replace u
by

for i in [n1,
n1 + n2

2
] do u1; for i in [

n1 + n2

2
, n2] do u1

and recurse to find the prefix again. This heuristic analysis is

sufficient for the benchmarks discussed in our evaluation.

B. Example

We now illustrate SCP through an example. Consider the

functionality in Figure 11. This is a functionality that takes

as input two vectors w and v from Alice and two vectors x
and y from Bob. It computes two inner products wTx and

vT y, compares the first value with the second and returns a



1 uint w[30] = input1(); uint v[30] = input1();
uint x[30] = input2(); uint y[30] = input2();

3 uint acc1 = 0; uint acc2 = 0;
for i in [0 : 30]

5 {acc1 = acc1 + (w[i] × x[i]);
acc2 = acc2 + (v[i] × y[i]); }

7 output2((acc1 > acc2) ? 1 : 0) //only to party 2

Fig. 11: EZPC code for wTx > vT y

1 uint w[30] = input1(); uint r1 = input1();
uint x[30] = input2();

3 uint acc1 = 0;
for i in [0 : 30] {acc1 = acc1 + (w[i] × x[i]); }

5 uint o1 = acc1+ r1;
output2(o1) //acc1 is ‘‘secret shared’’

Fig. 12: Program 1: Code for o1 = wTx+ r1

boolean value (which is 1 if wTx > vT y and 0 otherwise) to

Bob. Now, if we wish to split this functionality using SCP, one

possible split is into the following three programs9. Program

1 (Figure 12) computes wTx and “secret shares” the output

of this computation between Alice and Bob (Alice’s share is

r1, a random value, and Bob’s share is o1 = wTx+r1). Next,

program 2 (Figure 13) computes vT y and once again provides

Alice with r2 and Bob with o2 = vT y + r2. Finally, program

3 (Figure 14) compares o1− r1 with o2− r2 and provides the

output to Bob. It is easy to see that the size of the programs 1, 2
and 3 (and their corresponding circuits output by the EZPC

compiler) are smaller than the program in Figure 11 and its

corresponding circuit, and in particular, smaller than the state

that must be maintained between the programs.
VI. IMPLEMENTATION

We discuss some implementation details of EZPC. The

EZPC compiler compiles each of our benchmarks in under a

second to C++ code that makes calls to the ABY library [18].

ABY provides support for Arithmetic computations based on

[20], and boolean computations based on GMW [14] as well as

Yao’s garbled circuits [13]. Although EZPC can generate code

for both kinds of boolean computations, we have observed

better performance when using garbled circuits and use it in

our evaluation. Hence, for our benchmarks, EZPC generated

code uses arithmetic computations and garbled circuits based

boolean computations. We use 128 bits of security and OT

extension-based arithmetic multiplication triplets generation.

We use an off-the-shelf verification framework, Sea-

Horn [43], to check that the array indices are within bounds

(Γ |= e < n in (T-READ) and (T-WRITE), Figure 7). We

take the EZPC source program and translate it as an input C

program to SeaHorn, which then takes less than a minute on

our largest benchmark to verify that all the array accesses are

in-bounds.

Our implementation assigns the type labels (rule T-DECL)

conservatively. Only the for-loop counters are assigned public

9All arithmetic is over an appropriate ring in the following discussion.

uint v[30] = input1(); uint r2 = input1();
2 uint y[30] = input2();
uint acc2 = 0;

4 for i in [0 : 30] {acc2 = acc2 + (v[i] × y[i]); }
uint o2 = acc2+ r2;

6 output2(o2) //acc2 is ‘‘secret shared’’

Fig. 13: Program 2: Code for o2 = vT y + r2

uint r1 = input1(); uint r2 = input1();
2 uint o1 = input2(); uint o2 = input2();
uint acc3 = o1− r1; uint acc4 = o2− r2;

4 output2((acc3 > acc4) ? 1 : 0) //only to party 2

Fig. 14: Program 3: Code for (o1 − r1) > (o2 − r2)

labels. All other variables are assigned arithmetic labels (that

can later be coerced to boolean). While assigning public labels

to loop counters is critical for performance and/or security,

assigning arithmetic labels to other variables incurs minimal

cost in practice. While a more sophisticated type inference

procedure is certainly possible (e.g., based on network prob-

ing [24]), such approaches invariably increase the compilation

time. We believe short compilation times are essential for a

good programming experience; the EZPC compiler, with all its

optimizations, has a sub-quadratic time complexity and takes

less than a second in practice.

The compilation rules of Figure 7 can introduce repeated

coercions from arithmetic to boolean and vice versa. Since

EZPC is aware of the cryptographic costs associated with these

coercions, it tries to minimize them using several optimiza-

tions, e.g., by the standard “common subexpression elimina-

tion” optimization [44]. On each coercion, EZPC memorizes

the pair of arithmetic share and boolean share involved in

the coercion. EZPC invalidates such pairs when the variables

corresponding to the shares are overwritten by assignments. In

subsequent coercions, EZPC reuses valid pairs (if available)

instead of inserting code to recompute them afresh. These

optimizations are standard compiler optimizations [44], and we

rely on their correctness (optimizations preserve outputs and

well-typedness) for the security of the optimized programs.

Our compiler also provides a C++ backend that compiles

the source EZPC programs to plain C++ programs, without

using any cryptography. This backend, along with the usual

ABY backend, can be used for lightweight differential testing

of the functionality itself [45].

VII. EVALUATION

We evaluate EZPC on a variety of problems that can fall

under the umbrella of secure prediction, where one party (the

server) has a machine learning model, and the other party (the

client) has an input. The goal is to compute the output of

the model on client’s input, with the guarantee that the server

learns nothing about the input, and the client learns nothing

about the model beyond what is revealed from the output.



Dataset d
Prev
time
(s)

Prev
comm
(KB)

LAN
(s)

WAN
(s)

Comm
(KB)

Num
gates

LOC

Breast cancer 30 0.3 36 0.1 0.3 25 727 20
Credit 47 0.3 41 0.1 0.3 36 795 20

TABLE I: Linear classification results. We compare with [1] .

To begin, we first implement the benchmarks from Bost

et al. [1] and MINIONN [4] (both of which study the same

setting), and show that the performance of the high-level code

written in EZPC is comparable to their hand-crafted protocols.

Next, we demonstrate the generality and programmability

aspects of EZPC by implementing state-of-the-art machine

learning models from Tensorflow [27] and BONSAI [28].

Indeed, we provide the first 2PC implementation of BONSAI.

We implement a Deep Neural Network (DNN) for CIFAR-10

dataset [46] from MINIONN [4] and matrix factorization [25]

to evaluate SCP. We focus on comparing with hand-crafted

protocols as the prior frameworks for secure computation incur

more than 25x slowdown on these tasks (Section I-D).

We present the numbers for two network settings, a LAN

setting and a cross-continent WAN setting. The round trip

time between the server and the client machines in the two

settings is 1ms and 40ms respectively. When we compare our

execution times with prior protocols, we match our system

and network parameters with those of the prior work. Most

of our benchmarks are related to machine learning and we

refer the reader to the appropriate papers for descriptions of

the algorithms.

A. Secure prediction

Standard classifiers. We evaluate the three standard clas-

sifiers, linear, Naı̈ve Bayes, and decision trees, from [1]

on the following data sets from the UCI machine learning

repository [47]: the Wisconsin Breast Cancer data set, Credit

Approval data set, Audiology (Standardized) data set, Nurs-

ery data set, and ECG (electrocardiogram) classification data

from [3].

The results for linear classification are in Table I. The input

and the model are both vectors of length d. The columns “Prev.

time” and “Prev. comm” show the time and the total network

communication reported by Bost et al. [1] for a network setting

with 40ms round trip time, which is same as our WAN setting.

The total execution time of EZPC generated code in the LAN

and the WAN setting is reported next, followed by the total

communication. We observe that the EZPC code performance

matches the hand-crafted protocol of Bost et al., and the

programmer effort in EZPC is just 20 lines (last column in

the table) of high-level code in the EZPC source language.

The results for Naı̈ve Bayes are in Table II. As before, n
denotes the number of classes and F is the number of features.

As before, we compare with Bost et al. [1] and observe

that EZPC generated code has better performance, despite

using a generic 2PC, as opposed to custom designed protocols

developed by Bost et al. Moreover, they remark that in their

Dataset n F
Prev
time
(s)

Prev
comm
(MB)

LAN
(s)

WAN
(s)

Comm
(MB)

Num
gates

LOC

Nursery 5 9 1.5 0.2 0.1 0.4 0.6 73k 50
Audiology 24 70 3.9 2.0 1.5 2.9 37 4219k 50

TABLE II: Naı̈ve Bayes results. We compare with [1].

Dataset d N
Prev
time
(s)

Prev
comm
(KB)

LAN
(s)

WAN
(s)

Comm
(KB)

Num
gates

LOC

Nursery 4 4 0.3 102 0.1 0.3 32 3324 20
ECG 4 6 0.4 102 0.1 0.4 49 5002 20

TABLE III: Decision tree benchmarks. We compare with [2].

setup, generic Yao-based 2PC did not scale to the smallest

of their Naı̈ve Bayes classifiers, so they had to scale down

the prediction task, and even then Yao-based 2PC was 500x

slower. Whereas, we show that by using a cryptographic cost

aware compiler, we can scale generic 2PC to real prediction

tasks, and get performance competitive to or better than the

specialized protocols. Table III compares against the more

recent work of [2] on decision trees and further validates this

claim.

Deep neural nets. We evaluate EZPC on the DNNs described

in SecureML [5], Cryptonets [26], and the CNN from MIN-

IONN [4]. For comparison, we consider their implementations

from MINIONN [4], which outperforms their previous imple-

mentations. Table IV shows the results. We note that for each

of these DNNs, MINIONN provides a specialized protocol,

while EZPC uses a generic 2PC protocol (auto) generated from

high-level code.

The first benchmark is the DNN described in SecureML [5]

(Figure 10 in [4]). It has three fully connected layers with

square as the activation function. Next, we implement the

DNN described in Cryptonets [26] (Figure 11 in [4]) in EZPC.

This DNN also uses square as the activation function and

has one convolution (with 5 output channels) and one fully

connected layer. Finally, we implement CNN from MINIONN

(Figure 12 in [4]), that has two convolutions (with 16 output

channels each) and two fully connected layers. In contrast to

the previous two DNNs, it uses ReLU for activation and has

significantly higher number of boolean-and gates. Note that

square activation can be implemented entirely using arithmetic

gates but ReLU requires boolean-and gates. For a complete

description of these benchmarks and their accuracies, we refer

the reader to the original references.

DNN
Prev
time
(s)

Prev
comm
(MB)

LAN
(s)

WAN
(s)

Comm
(MB)

Num
gates

Model
size

LOC

SecureML 1.1 15.8 0.7 1.7 76 366k 119k 78
Cryptonets 1.3 47.6 0.6 1.6 70 316k 86k 88

CNN 9.4 657.5 5.1 11.6 501 9480k 35k 154

TABLE IV: DNN benchmarks. We compare with [4].



Classifier
LAN

(s)
WAN

(s)
Comm
(MB)

Num
And

Num
Mul

Num
gates

Model
size

LOC

Regression 0.1 0.7 5 2k 8k 35k 8k 38
CNN 30.5 60.3 2955 6082k 4163k 42104k 3226k 172

TABLE V: Tensorflow tutorial benchmarks

Dataset
LAN

(s)
WAN

(s)
Comm
(MB)

Num
And

Num
Mul

Num
gates

depth LOC

Chars4k 0.1 0.7 2 18k 3k 85k 1 89
USPS 0.2 0.9 4 62k 2k 285k 2 156

WARD 0.3 1.1 9 106k 8k 506k 3 283

TABLE VI: Bonsai benchmarks

In Table IV, the column “Model size” is the number

of parameters in the trained model. We observe that our

performance is competitive with specialized MINIONN pro-

tocols, for both the LAN and the WAN settings. Further,

lines of EZPC source code required is still small. We note

that while the MINIONN implementation is based on the

ABY framework, it does not use ABY “off-the-shelf” and

performs application-specific optimizations. In contrast, EZPC

focuses on generic 2PC and directly exploits the existing

performant implementations in ABY. MINIONN also reports

performance results on a bigger DNN with 7 convolution

layers. In EZPC, this benchmark requires SCP and we discuss

it in Section VII-B.

State-of-the-art classifiers. Tensorflow [27] is a standard

machine learning toolkit. Its introductory tutorial describes two

prediction models for handwritten digit recognition using the

MNIST dataset [48]. Each image in this dataset is a greyscale

28×28 image of digits 0 to 9. The first model that the tutorial

describes is a softmax regression that provides an accuracy of

92%. The classifier evaluates argmax W · x + b. Here, x is

a 784 length vector obtained from the input image, W is a

10 × 784 matrix, and b is a 10 length vector. We implement

this classifier in EZPC and present the results in the first row

of Table V.

The next classifier in the Tensorflow tutorial is a convolution

neural net with two convolutions (with 32 output channels)

and two fully connected layers with ReLU as the activation

function. This DNN is both bigger and more accurate than the

DNNs presented in the previous section. In particular, it has an

accuracy of 99.2%. Since, we are not aware of any other tools

that have used this model as a benchmark, we only report

numbers for EZPC. We observe that this DNN can take a

minute per prediction in the WAN setting and is the largest

benchmark that we have evaluated without SCP.

We next present BONSAI [28] results on three stan-

dard datasets: character recognition (Chars4k [49], accuracy

74.71%), text recognition (USPS [50], accuracy 94.4%), and

object categorization (WARD [51], accuracy 95.7%). BONSAI

takes as input x ∈ R
d, and its model consists of a binary tree

with N nodes, and a matrix Z. Each node j contains matrices

Wj and Vj , and a vector θj . The internal node j evaluates a

predicate (θTj · Z · x) > 0 to decide whether to pass x to the

LAN (s) WAN (s)
Comm
(MB)

Num
And

Num
Mul

Num
gates

Total 265.6 647.5 40683 21m 61m 337m
Stage 6 55.2 122.6 6744 12m 10m 98m

TABLE VII: SCP results for CIFAR-10. MINIONN takes 544

seconds and communicates 9272 Mb.

Stage LAN (s) WAN (s)
Comm
(MB)

depth
Num
gates

LOC

1 175 662 29816 16370 33m 500
2 193 1095 31945 30916 37m 516
3 178 627 29810 16369 32m 478

Total 546 2384 91571 – 102m 1494

TABLE VIII: SCP results for matrix factorization. The time

reported by [25] for this computation is 10440 seconds.

left child 2j+1 or the right child 2j+2. The predicted value

is

argmax
N−1∑
j=0

Ij(x)[(W
T
j · Z · x) ◦ (f(V T

j · Z · x))]

Here, Ij(x) is 1 if the jth node is present on the path traversed

by x and is zero otherwise. The operation ◦ is a pointwise

multiplication of two vectors, Wj’s and Vj’s are matrices of

appropriate dimensions. The activation function f is given by

f(y) = y if −1 < y < 1 and sign(y) otherwise.

We implement the trained classifiers in EZPC for all the

benchmarks from [28], and show the representative results in

Table VI. Out of all the benchmarks from [28], the dataset

WARD requires the largest model. The column “depth” shows

the depth of the tree used by BONSAI.

To summarize, by providing first 2PC implementations of

state-of-the-art classifiers, we have demonstrated the expres-

siveness of EZPC. We discuss scalability next.

B. SCP evaluation

The largest benchmark of MINIONN [4] is a DNN for

CIFAR-10 dataset [46]. The classifier’s task is to categorize

colored (32× 32) images into 10 classes. A secure evaluation

of this DNN needs more memory than what is available on our

machines. Therefore, we use SCP and divide the computation

into seven stages. The first step does a convolution with 64

output channels and a ReLU activation. The next four stages

together perform a convolution that involves multiplying a

64 × 576 matrix with a 576 × 1024 matrix. The sixth stage

performs a ReLU and a convolution. The final stage has four

convolutions, five ReLUs, and a fully connected layer. The

total number of lines of EZPC code for this benchmark is

336 lines.

Table VII shows the end-to-end numbers as well as the

numbers for the sixth stage, which is the heaviest. The number

of gates are in millions, hence the suffix ‘m’ in the last

three columns. As with Table IV, EZPC generated generic

2PC protocol is competitive with MINIONN here as well.

Therefore, we believe that with SCP, EZPC can scale to large



Fig. 15: Comparison of EZPC code with and without SCP.

x-axis denotes the number of layers in the DNN, while y-axis

denotes time in seconds for the secure protocol.

computations while maintaining performance competitive with

existing specialized protocols. In particular, for a large enough

DNN, MINIONN could run out of memory but an appropri-

ately pipelined EZPC implementation would still succeed.

Scalability. To illustrate the scalability of SCP, we evaluate a

sequence of DNNs with and without SCP in Figure 15. All

layers are identical and SCP places each layer in a separate

stage. For DNNs with up to 4 layers, the performance, with

and without SCP, is almost identical and the lines overlap,

thereby illustrating that SCP does not cause any noticeable

performance overheads. Memory issues start showing up in

the non-pipelined implementation of the 5 layer DNN and it

is slower. In particular, the circuit for this DNN does not fit

in RAM and uses swap space. Performance degrades rapidly

thereafter: executing the 5 layer DNN and half operations of

the sixth layer incurs a 2x slowdown. DNNs with 6 or more

layers fail to execute (terminate with a “bus error”). However,

the pipelined implementation scales well to even these large

DNNs.

C. Matrix factorization

EZPC is not tied to secure prediction and can express more

general computations. To demonstrate this expressiveness, we

implement secure matrix factorization [25]. Abstractly, given

a sparse matrix M of dimensions n × m and M non-zero

entries, the goal is to generate a matrix U of dimension n×d
and a matrix V of dimension d × m such that M ≈ UV .

This operator is useful in recommender systems. In particular,

Nikolaenko et al. [25] shows how to implement a movie

recommender system which does not require users to reveal

their data in the clear, i.e., the ratings the users have assigned

to movies are kept secret. The implementation is a two party

computation of an iterative algorithm for matrix factorization

(Algorithm 1 in [25]). This algorithm is based on gradient

descent and iteratively converges to a local minima. We

implement this algorithm in EZPC.

To ensure that the algorithm converges to the right local

minima, Nikolaenko et al. require 36 bits of precision. Since

ABY supports either 32-bit or 64-bit integers, our EZPC

implementation manipulates 64-bit variables. For the matrix

M of user data, Nikolaenko et al. consider n = 940 users,

m = 40 most popular movies, and M = 14683 ratings from

the MovieLens dataset. The time reported in [25] for one

iteration is 2.9 hours. This computation is large enough that we

pipeline each iteration into three stages. The first stage involves

a Batcher [52] sorting network followed by a linear pass. The

second stage involves sorting and gradient computations and

is the heaviest stage. The third stage is similar to the first

stage. The results are presented in Table VIII. These circuits

have a large depth (column “depth”); the circuits for secure

prediction had depth below 100.

We observe that in the LAN setting, we are about 19

times faster than [25] The main source of this significant

speedup is that, unlike [25], EZPC does not need to convert the

functionality into boolean circuits. However, this benchmark

requires more lines of code than the previous benchmarks

because of Batcher’s sort (450 lines of EZPC code in each

stage). However, the current programmer effort seems minus-

cule compared to the mammoth implementation effort put in

by Nikolaenko et al. (Section 5 of [25]) to scale a boolean

circuits based backend to this benchmark.

VIII. RELATED WORK

EZPC falls into the category of frameworks that compile

high level languages to 2PC protocols. We discuss other

such frameworks next. Fairplay’s Secure Function Definition

Language (SFDL) [6], [53] and CBMC-GC [9] compile C

or Pascal like programs into boolean circuits that are then

evaluated using garbled circuits [13]. ObliVM [8] protects ac-

cess patterns using an oblivious RAM [54], [55] and also uses

garbled circuits for compute. In Secure Multiparty Computa-

tion Language (SMCL) [10], Java like programs are compiled

into arithmetic circuits that are then evaluated using the VIFF

framework [16]. Wysteria [7] enables programmers to write

n-party mixed-mode programs that combine local, per-party

computations with secure computations. It compiles secure

computations to boolean circuits and uses a GMW-based

backend [56], [14]. Mitchell et al. [12] allow the user to select

between Shamir’s secret sharing [15] and fully homomorphic

encryption [17], while Alchemy [57] provides compilation

of plaintext code into fully homomorphic encryption. The

work of Araki et al. [58] generalizes the SPDZ compiler

to multiple backend protocols for multi-party computation;

however, mixing of protocols is still not supported. Unlike

EZPC, all these tools use either an arithmetic backend or a

boolean backend but not a combination of both.

Next, we discuss tools that expose libraries which develop-

ers can use to describe 2PC protocols. To generate efficient

protocols for a functionality, the programmer must break the

functionality into components and call the appropriate library

functions. For example, ABY [18] falls in this category. The

TASTY tool [19] allows mixing homomorphic encryption

based arithmetic computations and garbled circuits based

boolean computations and the interconversions between the

two are inserted by the programmer explicitly. Kerschbaum



et al. [20] and Pattuk et al. [24] provide schemes to auto-

matically assign homomorphic encryption or garbled circuits

to each operator in a computation. They operate over circuits

represented as a sequence of dyadic operations, while EZPC

provides a high-level programming language with loops and

branches. EZPC compilation is automatic and sub-quadratic

in the size of generated ABY programs (e.g. Figure 3) after

switching off memory safety checking. In sharp contrast, [20]

and [24] describe approaches that would be exponential in

the length of ABY programs. As a result, these techniques

are not directly applicable to EZPC. Other examples include

the VIFF framework [16] for arithmetic computations and

Sharemind [11] (secure 3-party boolean computation).

2PC backends have made tremendous progress in the

last decade. For example, the circuits can be optimized for

depth [40], [59], large garbled circuits can be pipelined [37],

[8], online complexity can be reduced at the cost of offline

complexity [60], encrypted values output from a garbled

circuit can be reused [61] and oblivious RAM [54], [55] can be

used to hide access patterns of MIPS code [62]. ABY3 [63]

shows an ABY-like backend for 3-party secure computation

protocols and could potentially serve as another backend to

EZPC. Incorporating these backends would only improve the

performance and scalability of EZPC implementations.

Many works have designed specialized protocols for various

2PC tasks. This requires deep knowledge of cryptography to

ensure security. Examples include [3], [30], [31], [32], [33],

[25], [34], [1], [2], [5], [4].

There have been several recent works in the area of exe-

cuting secure machine learning tasks using 2PC. Juvekar et

al. [64] presented GAZELLE, which provides new, specialized

protocols for convolutional neural networks (CNNs) that are

more efficient than ABY: GAZELLE can evaluate the CNN

benchmark in Table IV in 0.8 seconds, as opposed to 5.1

seconds taken by EzPC with the ABY backend. In the future,

once GAZELLE is available, we could add it as another

cryptographic backend to EZPC and improve the productivity

of GAZELLE’s users.

HyCC [29] is a recent ABY-based system that translates

an unspecified subset of ANSI-C to ABY without any formal

guarantees about the translation process. HyCC does not scale

to large neural networks like CIFAR-10 and has been evaluated

only on smaller benchmarks whose circuits fit in memory.

For the benchmarks that HyCC can handle, EZPC generates

identical protocols to HyCC and the EZPC compiler is at least

600X faster than the HyCC system.

IX. CONCLUSION AND FUTURE WORK

We presented EZPC, the first cryptographic cost aware

framework that generates efficient and scalable 2PC proto-

cols from high-level programs. The compiler is backed by

formal semantics that help it maintain correctness, security,

and efficiency. The generated protocols comprise combinations

of arithmetic and boolean circuits and have performance

comparable to, or better than the previously known custom

specialized protocols from previous works. Because of its

scalability and rich syntax, we believe EZPC can express

arbitrary machine learning models that arise in practice. The

only remaining bottleneck for such tasks is the communication

and computational complexity of the state-of-the-art 2PC

protocols.
Currently, we are working on a front-end to translate

Tensorflow code to EZPC. The aim here is to provide a

push button implementation that generates secure implemen-

tations for existing Tensorflow models. In the future, we

would like to extend our security guarantees to malicious

adversaries. We think that, with suitable changes to operator

costs, EZPC can target other backends including 3PC or

MPC, or protocols secure against malicious adversaries. The

cryptographic backends continue to improve and the modular

design of EZPC makes it easy to integrate with the best

available backends. However, we are currently unaware of

a maliciously secure 2PC implementation for combinations

of arithmetic and boolean circuits. On the compiler side, we

are exploring the possibility of mechanically verifying the

compiler implementation. Finally, we would like to conduct

user studies to quantify the impact of EZPC on programmer

productivity.
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